Claudia Frugiuele 춮 Fermilab

R symmetry as the lepton number

Fermilab, 01/10/13

LHC will finally reveal whether or not the electroweak scale is tuned

˜*b^R* [→] *^b*ν*^e* or ˜*b^R* [→] *te t* ˜*^L* [→] *be* Ω3*/*2*h*² *<* 10−⁸ ¹³³ *<* 4 10−⁴ Ω3*/*2*h*² *<* 10−⁸ Supersymmetry (SUSY)

dicle c ˜*b^R* [→] *^b*ν*^e* or ˜*b^R* [→] *te* \int *P* \int *R* \int *P* \int SM particle content (at least) doubled

^F [∼] *^M*² *T* ˜*^L* [→] *be* ˜*^L* [→] *be* possibly many new particle to be discovered at the LHC

 $\frac{1}{2}$ **HILED** *D*² 2009 | *D*₁ LHC pheno determined by SUSY breaking terms

^Q˜*Q*˜*†Q*˜ ⁺ *^m*² *L*˜*L*˜*†L*˜ *F* f f MSSM soft terms

and higgses $b_{ij}\phi_i\phi_j$ *a* dia 2008.
P λ*a*λ*^a* 1) Mass and mixing term for sleptons, squarks

ass for the gau $\lambda^a \lambda^a$ 2) Majorana mass for the gauginos

3) Trilinear couplings $a_{ijk}\phi_i\phi_j\phi_k$ strong flavor constraints on the MSSM soft terms!

˜*b^R* [→] *^b*ν*^e* or ˜*b^R* [→] *te t* ˜*^L* [→] *be* Ω3*/*2*h*² *<* 10−⁸ ¹³³ *<* 4 10−⁴ Ω3*/*2*h*² *<* 10−⁸ Supersymmetry (SUSY)

dicle c ˜*b^R* [→] *^b*ν*^e* or ˜*b^R* [→] *te* \int *P* \int *R* \int *P* \int SM particle content (at least) doubled

^F [∼] *^M*² *T* ˜*^L* [→] *be* ˜*^L* [→] *be* possibly many new particle to be discovered at the LHC

 \overline{d} \overline{d} *H*⁰ *^F* [∼] *^M*² LHC pheno determined by SUSY breaking terms

λ*a*λ*^a ^Q*˜*Q*˜*†Q*˜ ⁺ *^m*² *L*˜*L*˜*†L*˜ *F* $\frac{1}{2}$ **a** \mathbf{S} MSSM soft terms

and higgses $b_{ij}\phi_i\phi_j$ *,* oqu λ*a*λ*^a* 1) Mass and mixing term for sleptons, squarks

ass for the gau 2) Majorana mass for the gauginos

3) Trilinear couplings $a_{ijk}\phi_i\phi_j\phi_k$

λ*a*λ*^a* strong Degenerate squarks port t and sieptons masses Degenerate squarks and sleptons masses

Lepton and baryon number are not accidental symmetries arv

Proton instability! \overline{C}

 Typical solution: **i**ypical solution.
impose a discrete symmetry called R parity

$$
R = (-1)^{3B + L + 2s}
$$

SM particle even under R parity SUSY partners odd under it

Missing energy signals

SUSY searches at the LHC

no hints of SUSY so far!

- Gluinos and degenerate squarks reached the TeV threshold
- To save naturalness: 1st and 2nd generation heavy
- 3rd generation squark can still be light (?)

..heavy gluino is already in tension with naturalness

log divergent contributions to scalar masses

Lesson from the LHC SUSY searches

- SUSY will not show itself in its simplest form
- Need to explore different SUSY scenarios/ SUSY breaking mediation mechanism
	- flavorful SUSY breaking mediation (to produce minimal natural spectrum)
	- hadronic RPV
	- stealth supersymmetry
	- Dirac gauginos

Dirac gauginos

New Adjoints superfields for each SM gauge group

 $\psi_{\tilde{B}} \quad \psi_{\tilde{W}} \quad \psi_{\tilde{g}}$

Supersoft SUSY breaking

 $\frac{d^2\theta}{M}W'_\alpha W^\alpha_i \psi_i$

Ξ

$$
W'_\alpha \sim D\theta_\alpha
$$

D term spurion

Fox,Nelson,Weiner,2002

supersoft=no log divergent gauginos contributions to scalar masses

 $\int \frac{d^2\theta}{\sqrt{2\pi}}$

Supersofteness

No log divergent contributions to the scalar masses

Smaller squarks productions

1st & 2nd generation bounds lowered, 600-700 GeV

Thursday, January 31, 2013

Smaller squarks cross section

Majorana mass insertion

no $\tilde{q}\tilde{q}'$ production of same chirality squarks

$$
\sigma \left(qq' \to \tilde{q}_L \tilde{q}'_L \right) = \sigma \left(qq' \to \tilde{q}_R \tilde{q}'_R \right) = 0 \quad \& \quad \sigma \left(q \bar{q}' \to \tilde{q}_L \tilde{q}'_R \right) = 0
$$

\n
$$
\sigma_{\text{Dirac}}^{\text{Tot}} \left(\tilde{q} \tilde{g} \right) = \sigma_{\text{Majorana}}^{\text{Tot}} \left(\tilde{q} \tilde{g} \right)
$$

\n
$$
\sigma_{\text{Dirac}}^{\text{Tot}} \left(gg \to \tilde{g} \tilde{g} \right) = 2 \sigma_{\text{Majorana}}^{\text{Tot}} \left(gg \to \tilde{g} \tilde{g} \right)
$$

it acts differently on the bosonic and on the fermionic component of a superfield

chiral superfield R

scalar component R fermionic component R-1

vector superfield R=0 gauge boson R=0 gaugino R=1

U(1)R symmetry

- Majorana gaugino masses
- Trilinear scalar interaction
- Standard mu term

Larger flavor and CP violation compatible with experimental bounds

Kribbs, Poppitz,Weiner 07

R symmetry and Flavor

Most of the SUSY flavor problem arise from R violating interactions

$$
e.g. \qquad \mu \rightarrow e \gamma
$$

no chirality flip from Majorana mass insertion or μ term

Larger squark and slepton mixing allowed in R symmetric models

Flavor universality in danger from the LHC searches

might be easier to build UV completion for LHC viable spectrum

MRSSM (Minimal R symmetry SUSY extension of the SM)

α *π***¹** Standard R charge assignment: all SM particle are neutral under it all the BSM are charged under it

Enlarged Higgs sector

$R(H_u) = R(H_d) = 0$

$\mu H_u H_d$ forbidden by the R symmetry

MRSSM solution: add to extra inert doublets

 $\mu_1 H_u R_d + \mu_2 R_u H_d$

Is the MRSSM the minimal model?

More minimal models

Just two Higgs doublets model as in the MSSM if..

- One Higgs doublet model, Davies,March-Russell,McCullogh
- Sneutrino as the down type Higgs, CF&T.Grègoire

even more minimal model

The sneutrino is the only Higgs! Biggio, Pomarol, Riva 2012

R symmetry as the lepton number

Non standard R symmetries

They all guarantee proton stability

if the R symmetry is the lepton number then

The sneutrino does not carry R charge/lepton number

a sneutrino VeV does not break lepton number No Majorana mass for the neutrino induced

if the R symmetry is the lepton number then

The sneutrino does not carry R charge/lepton number

a sneutrino VeV does not break lepton number No Majorana mass for the neutrino induced

Sneutrino can play the role of the down type Higgs H_d

More minimal particle content than in the MRSSM two higgs doublets instead of four!

Large sneutrino vev

$B_i h_u \tilde{l}_i$ bilinear RPV

In the MSSM neutrino mass at one loop

3.1.1 Lepton and neutrino mixing: limits on the sneutrino VEV from EWPM In the MMRSSM all the sparticles, expect the sneutrino and the slepton of flavor *a,* are *a* leptons, and in particular the new fermions (gauginos, adjoints, higgsinos) mxies with the ordinary neutrino and r ² [−]*gv* ² −*µ* 0 000 √ \leftarrow ² [−]*gv* √ ν˜*l* ¯ ² 00 000 *MB*˜ 0 00 000 $\overline{\mathsf{V}}$ Bounds on the sneutrino vev

√

Indeed the left handed component of the charged lepton *l ^a* mixes with the charged components of Leptons as the lightest charginos and neutralinos The physical neutrino is the massless eigenvalue of the matrix *M^N ,* and it corresponds to the following

 $l_a^{'\pm} = \cos\phi \,\, l_a^{\pm} + \sin\phi \,\, \psi_{\tilde{W}}^{\pm}$

where the mixing angles and mixing angles and

mixture:
Se anno 1990, compositor de la compositor
Se anno 1990, compositor de la comp

$$
\left. \begin{array}{c|c} \pm \\ \tilde{W} \end{array} \right| \qquad \nu'_a = c_\nu \nu_a + c_{\tilde{B}} \psi_{\tilde{B}} + c_{\tilde{W}} \psi_{\tilde{W}} , \qquad \quad
$$

$$
a=e,\mu,\tau
$$

 $\overline{1}$ γ
γ
γ [√]2*MW*˜ 1+(*^g*!*MW*˜ Constraints from gauge bosons coupling to leptons

M^N =

√

1 sneutrino VeV Heavier wino larger

V + $\frac{1}{2}$ *+* $\frac{1}{2}$ *+* lepton universality violation

^A + δ*gA,* (20)

More minimal particle content

single vev basis: just one sneutrino acquires vev

$$
H_d \to L_a
$$

\n
$$
a = e \text{ or } \mu \text{ or } \tau
$$

\n
$$
W = \mathbf{y}_u \bar{u} Q H_u - \mathbf{y}_d \bar{d} Q L_a - y_l l^c L L_a + \mu H_u R_d
$$

\n
$$
R(H_u) = 0
$$

\n
$$
R(R_d) = 2 \text{ inert doublet}
$$

Minimal particle content just two higgs doublets!

λ*bciLbLce^c ⁱ* ⁺! *ij* (λ! *bijLbQid^c ^j* + λ! Trilinear RPV

cijLcQid^c

^j)*,* (5)

$$
W_{Yukawa} = y_b^a L_a L_b e_b^c + y_c^a L_a L_c e_c^c + y_{di}^a L_a Q_i d_i^c,
$$

W = $\frac{1}{2}$ $\frac{1}{$ where we chose a different notation for the trilinear couplings containing *L^a* in order to make down type Yukawa couplings RF down type Yukawa couplings RPV couplings

$$
W_{trilinear} = \sum_{i=a,b,c} \lambda_{bci} L_b L_c e_i^c + \sum_{ij} (\lambda'_{bij} L_b Q_i d_j^c + \lambda'_{cij} L_c Q_i d_j^c),
$$

In the single VeV basis it is immediate to notice that the charged lepton of flavor *a* does not

bLaLbe^c ^b + *y^a cLaLce^c diLaQid^c ⁱ,* (6) where we chose a different containing the tribition for the tribition of the tribition RPV is violated since standard lepton number is violated assume that the this section will generate a hard Yukawa coupling for all the leptons not just include \sim RPV is violated since standard lepton number is violated

couplings between the messenger and the messenger and the messenger and the leptonic superfields in the same way as $[$

^Wtrilinear ⁼ !

clear that they are the different couplings. In the single vertice to the single vertice to notice that the charged lepton of flavor α does not flavor α doe account mass trom neutrino physics! **for a.** This suite different constraints: **a with another flavor than** *e*, the hard Yukawa coupling from neutrino physics!

superpotential is

Leptoquarks(LQ)

R symmetry lepton number $\lambda'_{i33} \sim 1$ RPV MSSM $\lambda'_{i33} \sim 10^{-3}$

Leptoquarks signals are generic LHC signatures!

$$
\text{sizeable BR for } \quad \tilde{t}_L \to bl \quad \tilde{b}_L \to b\nu \quad \tilde{s}_R \to lj
$$

Third generation leptoquarks

Mixed topologies e− L ντ ^W[−] ^µ[−]

τ − L

 λ' can 'compete' with gauge or large Yukawa couplings

Different RPV pheno

q ˜

q˜∗

τ − L

LHC PHENO

with T. Grègoire,P.Kumar and E.Pontòn

hep-ph1210.5257 hep-ph1210.0541

Benchmark spectrum

- Heavy gauginos (> 1 TeV)
- electron sneutrino as the down type Higgs
- natural spectrum, $\mu < 250 \; GeV$
- light sleptons (EW scale)

In our scenario naturalness requires also light sleptons!

typically the higgsino or the sleptons are the LSP

In this talk higgsino LSP

Neutralinos and charginos

the electron and neutrino of flavor a mix with charginos and neutralinos

$$
\tilde{\chi}_{i}^{0+} = V_{i\tilde{b}}^{N} \tilde{b} + V_{i\tilde{w}}^{N} \tilde{w} + V_{id}^{N} \tilde{h}_{d}^{0},
$$
 higgsino LSP

$$
\tilde{\chi}_{i}^{0-} = U_{i\tilde{s}}^{N} \tilde{s} + U_{i\tilde{t}}^{N} \tilde{T}^{0} + U_{iu}^{N} \tilde{h}_{u}^{0} + U_{i\nu}^{N} \nu_{e},
$$

In the standard RPV scenarios strong bounds on sneutrino vev implies long lived neutralino/chargino or displaced vertex

1st & 2nd generation

no significant BR for leptoquark channels

$$
\tilde{q} \to \chi_1^0 q \qquad \tilde{q} \to \chi_1^{\pm} q'
$$

most sensitive search: ATLAS jet+MET 5.8 fb^-1

multileptons CMS and ATLAS searches

$$
\chi_1^0 \to W e
$$

Mass bound around 550-650 GeV

still room for a rich subTeV LHC pheno!

3rd generation Leptoquark (LQ) signal

- $\tilde{t}_L \rightarrow be$ through the bottom yukawa *t* $\tilde{t}_L \rightarrow be$
- $\tilde{t}_L \rightarrow \tau b$ through the coupling *t* $\tilde{t}_L \rightarrow \tau b$

$$
y_b = \lambda'_{133} \qquad \lambda'_{333}
$$

max
$$
\lambda'_{333} \sim \sim \frac{10^{-2}}{y_b}
$$

Still room for a light third generation

Standard RPV: natural region ruled out

LQ channel visible JUST if the 3rd generation is the LSP

Thursday, January 31, 2013

R breaking and neutrino physics

in collaboration with E. Bertuzzo **hep-ph 1203.5340**

Anomaly mediated R to our case, as the model preaking Standard *R^p* violating trilinear couplings are also constrained by cosmological bounds and these constraints can be quite stringent. For example, the requirement of $\mathbb R$ erased before the electroweak transition typically implies [19] λ*,* λ! *<* 10−⁷*.* These constraints do not apply see in the following section, the MMRSSM requires a very low required requirement of \mathcal{L}_1 different baryogenesis mechanism.

R symmetry is not exact. Broken by gravitino mass

will investigate the phenomenological consequences of this in section 5.5 equation 5.5 equat

R-symmetry is not an exact symmetry because it is broken (at least) by the gravitino mass term that is R breaking communicated to the visibile sector through anomaly mediation

Majorana mass for gauginos and trilinear coupling and the following state into a large into an extra following anomaly-symmetric terms α senerated!

$$
\mathcal{L}_{AM} = A^u \tilde{u}_r \tilde{q}_L H_u - A^d \tilde{d}_R \tilde{q}_L \tilde{l}_a - A^l \tilde{l}_a \tilde{l} \tilde{e}_R + M_{\lambda_{\tilde{B}}} \lambda_{\tilde{B}} \lambda_{\tilde{B}} + M_{\lambda_{\tilde{W}}} \lambda_{\tilde{W}} \lambda_{\tilde{W}} + M_{\lambda_{\tilde{g}}} \lambda_{\tilde{g}} \lambda_{\tilde{g}},
$$

necessary to cancel the cosmological constant. This breaking is then communicated to the visible sector,

Neutrino mass generated at one loop!

Bounds on gravitino mass $m_{3/2}$ < 100 MeV

 $\overline{\mathcal{L}}$

Fitting neutrino physics

Neutrino masses and mixings can be introduced without the need of additional degrees of freedom or scale

Normal or inverted hierarchy?

it depends on the sneutrino higgs flavor

electronic inverted hierarchy muonic both/ taunic none

Gravitino dark matter c andidate ? *W U U U N I N I I I n dQL^e* [−] *^y^e* ing dork mottor *dQL^e* [−] *^y^e*

^k + *µijLiL^j*

µµ^c

*m*3*/*² *<* 1 MeV $1MeV < m_{3/2} < 50MeV$

Thursday, January 31, 2013

Conclusions

Summarizing..

- Dirac gauginos well motivated alternative to the MSSM
- Different LHC phenomenology from the MSSM (generic leptoquark signaturesprompt RPV neutralino decays)..but the LHC will not miss it!

Still room for a rich and visible sub TeV LHC pheno!

3rd generation phenomenology and the R symmetry

Some work in progress...

Thursday, January 31, 2013

Third generation squarks always decay into third generation quarks

this makes easier to find them: b tagging and/or leptons from top quarks

dominant decay mode in a larger region of the parameter space than in the MSSM

Tevatron covered all the parameter space relevant for the MSSM

Tevatron covered all the parameter space relevant for the MSSM

no LHC dedicated searches for this topology, but other searches might be sensitive

Monojets searches in the compressed spectrum region

Jet+MET for larger mass splitting

LHC is doing a very good job to look for SUSY beyond the MSSM

However..different interpretation of possible discoveries

b jets or top quark does not mean necessarily 3rd generation squarks

Heavy squarks in channels with heavy quarks does not mean fine tuning!