Interactions of the Higgs-like particle

Bogdan Dobrescu (Fermilab)

Work with Joe Lykken: 1210.3342

Outline: • Non-standard production

- Non-standard decays
- Upper & lower limits on the Higgs width and couplings

Joint Theoretical-Experimental Seminar, Fermilab, 2013

Electroweak symmetry

Weak & electromagnetic interactions described by $SU(2)_W imes U(1)_Y$ gauge symmetry: 4 gauge bosons $o W^\pm,\,Z^0,\,\gamma$

If the laws of physics are gauge invariant,

where are the W^{\pm} and Z^{0} masses coming from?

Sheldon Glashow "Partial-symmetries of weak interactions" 1961

Vacuum = ground state of a quantum field theory. Lagrangian has $SU(2)_W imes U(1)_Y$ gauge symmetry, vacuum has only $U(1)_{e.m.}$ gauge symmetry.

Steven Weinberg "A Theory of Leptons" 1967

Similar to superconductivity: photon is massive inside superconductors.

Need something to populate the vacuum ...

Higgs field 'condenses', has a Vacuum Expectation Value:

 $v=(2/g)M_Wpprox 246\,\,{
m GeV}$

 Z^0 acquires a mass!

Within the Standard Model, the Higgs field is an $SU(2)_W$ doublet: $H = \begin{pmatrix} W_L^+ \\ \frac{1}{\sqrt{2}} \left(v + h^0 + iZ_L \right) \end{pmatrix}$ (W_L is the longitudinally-polarized W boson)

SM Higgs field implies the existence of a particle h^0 carrying the same quantum numbers as the vacuum.

A Higgs boson is defined as any scalar particle h^0 that couples to the W and Z according to:

$$rac{g}{M_W} h^0 \left(C_W M_W^2 W_\mu^+ W^{-\mu} + C_Z rac{M_Z^2}{2} Z_\mu Z^\mu
ight)$$

 $g \approx 0.6$ is the $SU(2)_W$ gauge coupling.

 C_W and C_Z parametrize the deviation from the SM couplings:

$$C_W^{
m SM}=C_Z^{
m SM}=1$$

The LHC is not only a quark-quark or a gluon-gluon collider, but also a WW and a ZZ collider!

Higgs boson can also be radiated by a W or Z boson:

 3σ observation at the Tevatron

Chiral quarks

The two top quarks:

- "left-handed" top part of an $SU(2)_W$ doublet
- "right-handed" top $-SU(2)_W$ singlet

Top mass: t_L turns into t_R and vice-versa

Large coupling of h^0 to the top quark implies that the Higgs boson is copiously produced in gluon fusion at the LHC:

Couplings of a Higgs boson to 3rd generation fermions:

$$-C_trac{m_t}{v}h^0\,ar{t}t-C_brac{m_b}{v}h^0\,ar{b}b-C_ aurac{m_ au}{v}h^0\,ar{ au}$$

 C_t, C_b, C_τ are real parameters, equal to 1 in the SM.

Extensions of the SM with two or more Higgs doublets allow C_b and C_{τ} to be orders of magnitude larger or smaller than 1, while $C_t \leq O(1)$.

Non-standard Higgs production

Higgs 'portal' coupling: $\kappa G_H^a G_H^a H^{\dagger} H$, G_H has spin 0, carries color. The direct signatures of the new colored particles at the LHC may have large backgrounds.

Scalar octet

 G_H : spin 0, transforms as (8,1,0) under $SU(3)_c \times SU(2)_W \times U(1)_Y$

 $SU(2)_W$ forbids renormalizable couplings of G_H to SM quarks. Renormalizable couplings of G_H to gluons are fixed by $SU(3)_c$ gauge invariance \Rightarrow production of G_H at hadron colliders occurs in pairs.

Dobrescu, Kong, Mahbubani, hep-ph/0709.2378

 G_H decays are model dependent. A simple possibility: $G_H \rightarrow gg$ Dobrescu, Bai, 1012.5814 G_H G_H

A more complicated decay: $G_H o ar{\psi}^* \psi^* o gar{q} \, gq$

Signal: a pair of narrow *gg* resonances of same mass

1000

ATLAS search for (jj)(jj) (2010 data)

Effective Higgs coupling to a pair of gluons is given by a dimension-5 operator:

$$C_g {lpha_s \over 12 \pi v} h^0 \, G^{\mu
u} G_{\mu
u}$$

Effective coupling to photons:

$$C_\gamma \equiv \left(rac{\Gamma(h^0 o \gamma \gamma)}{\Gamma^{
m SM}(h^0 o \gamma \gamma)}
ight)^{1/2}$$

Within the SM: $C_g = C_{\gamma} = 1$. Deviations from 1 are due to new particles in the loops as well as changes in the Higgs couplings to $\overline{t}t$ and WW.

Couplings of a non-standard Higgs boson are described by 7 parameters: $C_W, C_Z, C_t, C_b, C_\tau, C_g, C_\gamma$.

Eventually, $C_{Z\gamma}$ and C_{μ} will also be important (also $h \rightarrow \tau \mu$, ... Harnik et al, 1209.1397)

For
$$M_h^2 \ll M_{G_H}^2$$
: $C_g pprox 1 + 3\kappa rac{v^2}{8M_{G_H}^2}$

Change in Higgs production through gluon fusion:

Dobrescu, Kribs, Martin: 1112.2208

(see also Bai, Fang, Hewett 1112.1964; Kumar, Vega-Morales, Yu 1205.4244)

Nonstandard Higgs decays

Standard model + a gauge-singlet complex scalar S:

 $S=rac{1}{\sqrt{2}}\left(arphi_S+\langle S
angle
ight)e^{iA^0/\langle S
angle}$, A^0 is a CP-odd spin-0 particle

$$rac{c\,v}{2}h^0A^0A^0~\mathrm{coupling}~~\Rightarrow~~\Gamma(h^0
ightarrow A^0A^0)~=~rac{c^2\,v^2}{32\pi M_h}~\left(1-4rac{M_A^2}{M_h^2}
ight)^{1/2}$$

For $2M_A \ll M_h = 125$ GeV:

Higgs boson may be the portal to a hidden sector: dark matter, ...

$\begin{array}{ccc} A^{0} \mbox{ decays are model dependent.} \\ \mbox{Example:} & (Dobrescu, Landsberg, Matchev, hep-ph/0005308) \\ \\ A^{0} \hfill & \chi \hfi$

Even $\mathcal{B}(h \to A^0 A^0 \to 4 g)$ near 100% is very hard to observe due to huge backgrounds.

Total width Γ_h of the Higgs-like particle may be \gg the sum over the partial widths of the SM decays.

 $\mathcal{B}(A^0 \to \gamma \gamma) \lesssim 1\%$, but $h \to A^0 A^0 \to \gamma \gamma j j$ may still be eventually observed at the LHC. (Chang, Fox, Weiner, hep-ph/0608310, A. Martin hep-ph/0703247 ...) Cross section \times branching fractions:

$$\sigma(pp
ightarrow h + X
ightarrow ... + X) \propto rac{1}{\Gamma_h}$$

Rate measurements give:

Duhrssen, et al, hep-ph/0407190 Barger, Ishida, Keung, 1203.3456 HXSWG, 1209.0040, ...

Observables:
$$a_{\mathcal{P}} = C_{\mathcal{P}}^2 \left(\frac{\Gamma_h^{\mathrm{SM}}}{\Gamma_h} \right)^{1/2}$$
, for $\mathcal{P} = W, Z, g, \gamma, t, b, au$

How can we extract the Higgs couplings?

E.g., an increase in all couplings can be compensated by a larger Γ_h due to (almost) undetectable decays through new particles.

First, extract the $a_{\mathcal{P}}$ observables from the rate measurements:

$$egin{split} \left(rac{\sigma}{\sigma_{
m SM}}
ight)(hjj
ightarrow\gamma\gamma jj) &= rac{a_W+ra_Z}{1+r}a_\gamma\ rpprox 0.3 \end{split}$$

. . .

$$\left(rac{\pmb{\sigma}}{\pmb{\sigma}_{ ext{SM}}}
ight) (Wh o Wbar{b}) = a_W a_b$$

$$\left(rac{\pmb{\sigma}}{\pmb{\sigma}_{
m SM}}
ight) (\pmb{W}m{h} o \pmb{W}m{W}m{W}) = a_W^2$$

Then, make a mild theoretical assumption ...

If electroweak symmetry breaking is due entirely to VEVs of $SU(2)_W$ doublets, then:

$$0 < C_W = C_Z \le 1$$

If triplets or higher $SU(2)_W$ representations have VEVs, it is possible to have $C_W \neq C_Z$, and values for $C_W, C_Z > 1$.

Even then one can derive some upper bounds (~ 1.5) on the couplings:

$$|C_W| < C_W^{\max}$$
 , $|C_Z| < C_Z^{\max}$

Can be directly tested at the LHC through searches for H^{++} , ...

Upper limit on Γ_h

The upper limits on C_W and C_Z imply

$$\Gamma_h \leq \Gamma_h^{\max} = \operatorname{Min} \left\{ \frac{(C_W^{\max})^4}{a_W^2}, \, \frac{(C_Z^{\max})^4}{a_Z^2} \right\} \, \, \Gamma_h^{\mathrm{SM}}$$

If the electroweak symmetry is broken only by the VEVs of $SU(2)_W$ doublets (majority of viable theories), then

$$\Gamma_h \leq \Gamma_h^{ ext{max}} = rac{\Gamma_h^{ ext{SM}}}{a_V^2}$$

where $a_W = a_Z \equiv a_V$.

h^0 decay	h^0 production	observable	measured $\sigma/\sigma_{ m SM}$
WW*	$gg ightarrow h^0$	$a_g a_W$	1.35 $^{+0.57}_{-0.55}$, ATLAS 0.77 $^{+0.27}_{-0.25}$, CMS 0.8 $^{+0.9}_{-0.8}$, Tevatron our average: $0.88^{+0.24}_{-0.23}$
	VBF	$(a_W\!+ra_Z)/(1\!+\!r)a_W$	$-0.05^{+0.74}_{-0.55}$, CMS
	$W^* ightarrow Wh^0$	a_W^2	$-0.31^{+2.22}_{-1.94}$, CMS
	$Z^* o Zh^0$	$a_Z a_W$	
ZZ*	$gg ightarrow h^0$	$a_g a_Z$	$1.07^{+0.5}_{-0.4}$, ATLAS $0.80^{+0.35}_{-0.28}$, CMS our average: $0.90^{+0.28}_{-0.24}$
	VBF	$(a_W\!+ra_Z)/(1\!+\!r)a_Z$	
$\gamma\gamma$	$gg ightarrow h^0$	$a_g a_\gamma$	1.8 \pm 0.5 , ATLAS 1.4 \pm 0.6 , CMS 6.1 ^{+3.3} _{-3.2} , Tevatron our average: 1.7 \pm 0.4
	VBF	$(a_W\!+ra_Z)/(1\!+\!r)a_\gamma$	2.0 ± 1.4 , ATLAS $2.1^{+1.4}_{-1.1}$, CMS our average: $2.1^{+1.0}_{-0.9}$
	$W^* ightarrow Wh^0$	$a_W a_\gamma$	1.9 ± 2.6 , ATI AS
	$Z^* o Zh^0$	$a_Z a_\gamma$	

Combine the $gg o h^0 o WW^*, ZZ^*$ rate measurements $(\sigma/\sigma_{
m SM})(gg o h o VV^*) = 0.89 \pm 0.17$

For $C_W = C_Z$, $a_V^2 = (\sigma/\sigma_{\rm SM})(gg \rightarrow h \rightarrow VV^*) \frac{(\sigma/\sigma_{\rm SM})(\text{VBF} \rightarrow hjj \rightarrow \gamma\gamma jj)}{(\sigma/\sigma_{\rm SM})(gg \rightarrow h \rightarrow \gamma\gamma)}$

Using (bifurcated) Gaussian distributions,

 $a_V = 1.05^{+0.30}_{-0.29}$

This implies:

$$\Gamma_h \leq \Gamma_h^{ ext{max}} = 0.65^{+1.06}_{-0.10} \; \Gamma_h^{ ext{SM}}$$

Lower limit on Γ_h

A lower limit on Γ_h can be derived from the rates required for its observation.

$$\Gamma_h = \sum_{\substack{\mathcal{P} = W, Z, \ b, \tau, g, \gamma}} C_{\mathcal{P}}^2 \ \Gamma^{\mathrm{SM}}(h^0 o \mathcal{PP}) + \ \Gamma_X$$

 Γ_X is the h^0 partial decay width into final states other than the SM ones.

Given that $\Gamma_X \geq 0$,

$$\Gamma_h \geq \Gamma_h^{\min} = \left(egin{array}{c} \sum\limits_{\substack{\mathcal{P} = W, Z, \ b, au, g, \gamma}} a_\mathcal{P} \ \mathcal{B}^{ ext{SM}}(h^0 o \mathcal{P}\mathcal{P})
ight)^2 \ \Gamma_h^{ ext{SM}}$$

h^0 decay	h^0 production	observable	measured $\sigma/\sigma_{ m SM}$
$bar{b}$	$W^* o W h^0$	$a_W a_b$	-0.3 ± 1.0 , ATLAS $1.31^{+0.65}_{-0.60}$, CMS $1.56^{+0.72}_{-0.73}$, Tevatron
	$Z^* o Zh^0$	$a_Z a_b$	our average: 1.1 ± 0.4
	$tar{t}h^0$	$a_t a_b$	$-0.80^{+2.10}_{-1.84}$, CMS
$ au^+ au^-$	$gg o h^0$	$a_g a_ au$	2.4 ± 1.7 , ATLAS $0.9^{+0.8}_{-0.9}$, CMS $2.1^{+2.2}_{-1.9}$, Tevatron our average: 1.3 ± 0.7
	VBF	$(a_W\!+ra_Z)/(1\!+\!r)a_{ au}$	-0.4 ± 1.2 , ATLAS 0.7 ± 0.8 , CMS
	$W^* o W h^0$	$a_W a_ au$? , ATLAS
	$Z^* o Zh^0$	$a_Z a_ au$	

Lower limit on the width:

$$\Gamma_h \geq \Gamma_h^{
m min} = 0.97^{+0.83}_{-0.27} \; \Gamma_h^{
m SM}$$

$$a_{\mathcal{P}} = C_{\mathcal{P}}^2 \left(rac{\Gamma_h^{\mathrm{SM}}}{\Gamma_h}
ight)^{1/2}$$

Intervals for 'apparent squared-couplings':

$$a_{\mathcal{P}}^{1/2} \left(rac{\Gamma_h^{\min}}{\Gamma_h^{\mathrm{SM}}}
ight)^{1/4} < C_{\mathcal{P}} < a_{\mathcal{P}}^{1/2} \left(rac{\Gamma_h^{\max}}{\Gamma_h^{\mathrm{SM}}}
ight)^{1/4}$$

Coupling 'spans':

Branching fraction of exotic decays:

(non-SM particles, $c\bar{c}$, ...)

$${\mathcal B}_X = 1 - rac{1}{\Gamma_h} \sum_{\substack{{\mathcal P} = W, Z, \ b, au, g, \gamma}} C_{\mathcal P}^2 \ \Gamma^{ ext{SM}}(h^0 o {\mathcal P} {\mathcal P})$$

$$\Rightarrow \quad \mathcal{B}_X \leq \mathcal{B}_X^{\max} = 1 - \left(\frac{\Gamma_h^{\text{SM}}}{\Gamma_h^{\max}}\right)^{1/2} \sum_{\substack{\mathcal{P} = W, Z, \\ b, \tau, g, \gamma}} a_{\mathcal{P}} \, \mathcal{B}^{\text{SM}}(h^0 \to \mathcal{PP})$$

 $\mathcal{B}_X^{
m max} < 22\%$ at the 68% CL $\mathcal{B}_X^{
m max} < 52\%$ at the 95% CL.

Vectorlike quarks

All Standard Model fermions are <u>chiral</u>: their masses arise from the Higgs coupling.

<u>Vectorlike</u> (*i.e.* non-chiral) elementary fermions – a new (hypothetical) form of matter. Masses allowed by $SU(2)_W \times U(1)_Y$ gauge symmetry \Rightarrow naturally heavier than the *t* quark.

A vectorlike quark χ which mixes with the top quark:

Higgs boson may lead to the discovery of the vectorlike quark.

Is the Higgs boson an elementary particle or a bound state ?

Composite Higgs field as a bound state of the top quark and a vectorlike quark (S. Chivukula, B. Dobrescu, H. Georgi, C. Hill, 1998)

Binding due to some new strongly coupled interaction:

Conclusions

Higgs boson is a sensitive probe of various phenomena beyond the Standard Model.

A lower limit on the Higgs width follows from the LHC and Tevatron rates required for observation.

An upper limit on Γ_h follows from the well-motivated assumption that the Higgs coupling to a W or Z pair is not much larger than in the Standard Model.

This range for Γ_h allows the extraction of a "span" (*i.e.*, lower and upper limits) for each Higgs coupling.

The upper limit for Γ_h implies an upper limit on the branching fraction of exotic Higgs decays. (52% at the 95% CL, if the electroweak symmetry is broken only by doublets).