

Big Data - Ops vs Flops

Steve Wallach

swallach”at”conveycomputer “dot”com
Convey <= Convex++

Why is this interesting?
•  Big Data is on everyone’s mind. It is in the

NEWS.
–  HPC Classic (Flops) & Big Data (Ops)

•  Power efficiency is on everyone’s mind. It is in
the NEWS.

•  Are today’s processor architectures a match for
Exascale applications that are in the NEWS?
–  Ops vs Flops

•  Deep dive into some micro-architecture discussions

•  A smarter computer for Exascale. It is in the
NEWS

swallach - 2012 November - IA^3 2

From a NEWS Perspective
•  World Economic Forum

–  declared data a new class of
economic asset, like currency or
gold.

•  growing at 50 percent a year, or
more than doubling every two
years, estimates IDC

•  “data-driven decision making” achieved
productivity gains that were 5 percent to
6 percent higher than other factors
could explain.

•  “false discoveries.” “many bits
of straw look like needles.”

February, 11, 2012, NY Times, “The Age of Big Data”,
 STEVE LOHR

swallach - 2012 November - IA^3 3

Support from Washington DC

OBAMA ADMINISTRATION UNVEILS “BIG DATA”

INITIATIVE: ANNOUNCES $200 MILLION IN NEW

R&D INVESTMENTS
Office of Science and Technology Policy Executive Office of the President
New Executive Office Building

Washington, DC 20502

March 29, 2012

swallach - 2012 November - IA^3 4

Perhaps another reason

Venture Capitalist

swallach - 2012 November - IA^3 5

Seriously
•  “Computing may be on the cusp

of another such wave.”
•  “The wave will be based on

smarter machines and software
that will automate more tasks
and help people make better
decisions.”

•  “The technological building
blocks, both hardware and
software, are falling into place,
stirring optimism.”

September 8, 2012, NY Times, “Tech’s New Wave,
Driven by Data”
 STEVE LOHR

swallach - 2012 November - IA^3 6

 Thinking on Technology

•  Flops and Ops are
applicable to Exascale

•  More items in common
then initially obvious

•  Examine in more detail
•  The role of Time

Sharing . The role of cloud
 computing

swallach - 2012 November - IA^3 7

Compare Flops with Ops
•  ExaFlop (FP Intensive)

–  Historical Metrics/Features
•  Memory Capacity

–  Byte/Flop
•  Interconnect Bandwidth

–  .1 Bytes/Flop
•  Memory Bandwidth

–  4 Bytes/sec/Flop
•  Linpack

–  Relatively static data set size
•  3D … X,Y,Z - multiple points per cell
•  WaveFront Algorithms

–  Node level synchronization
•  Domain Decomposition

–  64 bit memory references
•  32 and 64 bit float

–  Cache Friendly (In general?)

•  ExaOp (Data Intensive)
•  Transactions per sec
•  Transaction Latency
•  Graph edges per sec
•  YES/NO

–  Data Sets are dynamic
•  New data always being added

–  Never enough physical memory
Memory/compute algorithms
•  Limited disk access

–  Flash memory/Memristor/Phase Change?
–  Memcached

–  Graphs, Trees, Bit and Byte strings
•  Fine grain synchronization

–  Threads/Transactions
•  Granularity of memory references
•  User defined strings
•  NORA (Non-Obvious Relationship

Analysis)
–  Cache Unfriendly

swallach - 2012 November - IA^3 8

Solving Flops – HPC Classic
•  Multi (Many) Core
•  Multiple FMAC’s

–  Floating Point
•  Vector Accumulators
•  Structured Data
•  Attached accelerators

–  GPU, FPGA, …
•  High Speed Interconnects

–  MPI Pings
•  Open source numerical libraries

–  (e.g., LAPACK)
•  Memory system

–  Classic – highly interleaved
–  Micro - multiple cache levels

swallach - 2012 November - IA^3 9

Solving Ops
-An Architectural Perspective-

•  Very Large Physical Memory
–  ExaOps è ExaBytes
–  64 bits of address is not enough

•  Run out by 2020
•  1 to 1.5 bits increase per 1 to 1.5 years

•  Single Level, Global Physical Memory
–  Simplifies Programming Model
–  Extensible over time
–  Updates in Real Time
–  Runtime binding
–  PGAS Languages
–  MAP REDUCE / HADOOP

•  Multiple machine state models can exist
•  Heterogeneous Processing
•  Fine grain synchronization

–  Threads
–  Bit and Bytes
–  Adjacency Matrices

swallach - 2012 November - IA^3 10

Now What
•  Uniprocessor Performance has to

be increased
–  Heterogeneous here to stay
–  The easiest to program will be the

correct technology
•  Smarter Memory Systems (PIM)

–  Synchronization
–  Complex Data Structures
–  Dram, NVRAM, Disk

•  New HPC/Big Data Software must
be developed.

–  SMARTER COMPILERS
–  ARCHITECTURALLY

TRANSPARENT
–  Domain Specific Languages

•  New algorithms
•  New ways of referencing DATA at

the processor level

swallach - 2012 November - IA^3 11

Ops and Flops – Processor
Memory System

•  Caches create in order memory
references for ALU’s from out of
order main memory references.

–  Cache block is in order
•  Direct memory references tend to

be out of order
–  Better for random references
–  Hundreds (thousands) of

outstanding loads and stores
•  Which memory reference approach

is preferred?
•  How does HMC (hybrid memory

cube) change the approach?

swallach - 2012 November - IA^3 12

Ops and Flops in one system?

•  For in order memory, a vector
ISA is very efficient. For out of
order, a thread model is more
efficient (also hides latency
better)
–  Threads execute independently

but synchronized.
–  Supported by OpenMP

Do I = 1,n!
A(i) = B(i) +C(i)!

ENDDO!

swallach - 2012 November - IA^3 13

-

NVIDIA

swallach - 2012 November - IA^3 14

Definition
Boston, Hyannis, Martha’s Vineyard, Nantucket,
New Bedford, Providence, and Provincetown,

Adjacency Matrix

swallach - 2012 November - IA^3 15

Breadth-First Search: Sparse mat * vec

x	

 ATx	

1 2

3

4 7

6

5

AT	

à

•  Multiply by adjacency matrix à step to neighbor vertices
•  Work-efficient implementation from sparse data structures

•  Ref: CS240a – UCSB – John Gilbert

swallach - 2012 November - IA^3 16

Breadth-First Search: Sparse mat * vec

x	

 ATx	

1 2

3

4 7

6

5

AT	

à

•  Multiply by adjacency matrix à step to neighbor vertices
•  Work-efficient implementation from sparse data structures

•  Ref: CS240a – UCSB – John Gilbert

swallach - 2012 November - IA^3 17

Breadth-First Search: Sparse mat * vec

AT	

1 2

3

4 7

6

5

(AT)2x	

à à

x	

 ATx	

•  Multiply by adjacency matrix à step to neighbor vertices
•  Work-efficient implementation from sparse data structures

•  Ref: CS240a – UCSB – John Gilbert
–  http://www.cs.ucsb.edu/~gilbert/cs240a/old/cs240aSpr2011/index.html

swallach - 2012 November - IA^3 18

Problem Statement

•  4 Giga Names
– Actual Names
–  IP address’s

•  16k Meta Tags
•  Discover Knowledge
•  Adjacency Matrix

–  32 Terabytes (if every bit
is explicitly interpreted (“1”
or “0”))

swallach - 2012 November - IA^3 19

Problem Solution
•  Need a way for dynamic

selection of optimal solution
–  Threads
–  Bit Operations directly on

Adjacency Matrix

•  Just like sparse numerical
solvers
–  Based on sparsity

(dynamically chosen)
•  Operations Under Mask
•  Vector of Indices
•  Compress reduce/expand

swallach - 2012 November - IA^3 20

 Adjacency Matrices
 •  Interesting properties in BIT

domains
–  If compressed column, just having

an index indicates a logical “1” or
“0”

•  Cardinality is trivial (POPCOUNT)
•  Logical Operations are trivial
•  Optimum Data Set structure is

dynamic
–  http://www.ll.mit.edu/HPEC/agendas/

proc10/Day2/S4_1335_Song_abstract.pdf
–  3-D Graph Processor
–  William S. Song, Jeremy Kepner, et. aI.,

Lincoln Laboratory, Massachusetts
Institute Technology, Lexington, MA
02420

Yellow Brick Road

swallach - 2012 November - IA^3 21

ISA Definition
•  Load/Store Bit streams

–  Indirect thru Dope vector of compressed
columns or a dense bit stream

–  Load indices of columns (i)
•  If bit convert to index within processor
•  Block rows (like strip mining for

parallelism)

–  Output indices that satisfy logical
operation (general purpose N-adic)

–  PIM memory controllers interpret
and create Dope Vectors

•  Arithmetic's are Convolvers
–  N-Adic
–  Keep track of index

swallach - 2012 November - IA^3 22

Dope Vector

•  Column_(start, end bit)
–  Index_A (1,3)
–  Index_A (n: 1)
–  Index_B(0,2)
–  Index_B (n-3,1)
–  32 or 64 bit index
–  Usually very sparse data set
–  Column Update – new dope

vector

0
1
1
1

0
0
0
1

0
1
2
3

n-3

n

Index
Adjacency
Matrix

1
1
0
0

1
0
0
0

A B

swallach - 2012 November - IA^3 23

Node Logical Convolver

Load-store vector architecture with 64 bit
random access , memory

 Bit addressable memory ?
Data accessed via dope vectors
Multiple function pipes for data parallelism

Multiple functional units and out-of-order
execution for instruction parallelism

Multiple Modes of Parallelism

 dense bit streams
 64 bit wide logical ALU to crossbar

co
nv

ol
ve

co
nv

ol
ve

co
nv

ol
ve

co
nv

ol
ve

Vector architecture
optimized for Bit
Processing

in
te

ge
r

st
or

e

lo
ad

pa
ck

un

pa
ck

m
is

c ad
d

ad
d

vector elements parallelized within function pipes

Crossbar

Dispatch

Crossbar

Dispatch

Crossbar

Dispatch

Crossbar

Dispatch

PIM Memory Controllers
swallach - 2012 November - IA^3 24

Example - Friends of Friends
•  Dope Vectors friends of John
•  Dope Vectors friends of Mary
•  Dope Vectors friends of Steve
•  Perform bitwise (index-wide 3-

input AND)
–  Dope Vectors per Meta Tag

Pre-computed as is sparse
matrice’s

•  Benefits
–  Easy to understand
–  Easy to update

•  Add or Delete entries
•  No synch needed once

operation begins

•  Coding (via Instrinsic)
–  Z (i) = Convolve (AND, John,

Mary, Steve)

swallach - 2012 November - IA^3 25

Adjacency Matrix- Compute Model
Names(1)

Names(n)

John’s Friends

0
1
0
0
1

1
1

Mary’s Friends Steve’s Friends

1
1
0
0
0

1
0

0
0
1
1
1

1

AND AND EQUALS

 Common Friends

Parallelize block
Rows – no sync
Needed

Parallelize Columns

Run-Time Decision

swallach - 2012 November - IA^3 26

 Interesting Properties
•  Can compute with threads if necessary
•  Can define some interesting operators like

–  Majority (N out of K attributes)
–  Markov weighted edges

•  The compute is straight forward, especially if the memory
system is SMART
–  Probably a compute/time memory tradeoff
–  Tagged memory address’s
–  Bit, Byte, Word Addressability (Deja Vu)
–  Short circuit logical operators

•  The programming model is straightforward
–  From APL and MATLAB

•  perspicuous

swallach - 2012 November - IA^3 27

Exascale Workshop Dec 2009, San Diego

swallach - 2012 November - IA^3 28

Development Frameworks for Multiple
Architectural Models

•  CHOMP for Arrays of Customized Cores
−  MIMD parallelism with many simple cores
−  OMP based shared memory programming model
−  Compile and run user model

•  Convey Vectorizer for Custom SIMD
−  vector personalities optimized for specific data types
−  automatic vectorization of C/C++ and Fortran
−  support for customized instructions via intrinsics

•  PDK for Algorithmic Personalities
−  specific routines in hardware
−  pipelining and replication for very high performance
−  PDK supports implementations in Verilog or with

high level design tools

X(I,J,K)	
 =	
 S0*Y(I	
 	
 ,J	
 	
 ,K	
 	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 S1*Y(I-­‐1,J	
 	
 ,K	
 	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 S2*Y(I+1,J	
 	
 ,K	
 	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 S3*Y(I	
 	
 ,J-­‐1,K	
 	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 S4*Y(I	
 	
 ,J+1,K	
 	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 S5*Y(I	
 	
 ,J	
 	
 ,K-­‐1)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 S6*Y(I	
 	
 ,J	
 	
 ,K+1)	

ACTGTGACATGCTGACATGCTAG
Stencils [FD/FV/FE]

Genomics/Proteomics

Graph Theory

Edge Vector

Vertex Vector

, etc,
etc

swallach - 2012 November - IA^3 29

Fox Single-node Block Diagram

32 DDR3 SG-DIMMs
HalfDIMM up to 4GB - 256GB system
FullDIMM up to 32GB - 1TB system

64MB pages
Atomic ops

1024 TIDs per
link (32K
OR)

32TB (45 bit)
physical
address
space

AEH AE0

Host

TLB

snoop
aops aops
sched sched

SG
D

IM
M

SG

D
IM

M

SG
D

IM
M

SG

D
IM

M

AE1 AE2 AE3

TLB

snoop
aops aops
sched sched

SG
D

IM
M

SG

D
IM

M

SG
D

IM
M

SG

D
IM

M

TLB

snoop
aops aops
sched sched

SG
D

IM
M

SG

D
IM

M

SG
D

IM
M

SG

D
IM

M

TLB

snoop
aops aops
sched sched

SG
D

IM
M

SG

D
IM

M

SG
D

IM
M

SG

D
IM

M

TLB

snoop
aops aops
sched sched

SG
D

IM
M

SG

D
IM

M

SG
D

IM
M

SG

D
IM

M

TLB

snoop
aops aops
sched sched

SG
D

IM
M

SG

D
IM

M

SG
D

IM
M

SG

D
IM

M

TLB

snoop
aops aops
sched sched

SG
D

IM
M

SG

D
IM

M

SG
D

IM
M

SG

D
IM

M

TLB

snoop
aops aops
sched sched

SG
D

IM
M

SG

D
IM

M

SG
D

IM
M

SG

D
IM

M

swallach - 2012 November - IA^3 30

Graph 500 Results: Performance/
Power

Single Node, All Scale (by GTEPS)
★
★
★
★
★

★=	
 Convey	
 swallach - 2012 November - IA^3 31

System Level - Trends
•  Global Flat, Virtual Address Space

–  Common to Flops and Ops
–  Program using a PGAS Language

•  Single Program Multiple Data (SPMD)

–  64 bits growing to 128 bits in 2020 and beyond

 Physical Page Address- 40

Node
 Field

Control

Control – Physical Memory Level
 Dram – Flash – Disk

Node Field – PGAS model
Data Semantics – PIM Control

 private vs. shared

4 KB – 1 MB Page Size

4 PetaBytes To 1 ExaBytes
 of Physical Address

PTE Data
Semantic

swallach - 2012 November - IA^3 32

Exascale Programming Model
1: #include<upc_relaxed.h> !
2: #define N 200*THREADS !
3: shared [N] double A[N][N]; NOTE: Thread is 16000!
4: shared double b[N], x[N]; !
5: void main() !
6: { !
7: int i,j; !
8: /* reading the elements of matrix A and the !
9: vector x and initializing the vector b to zeros !
10: */ !
11: !upc_forall(i=0;i<N;i++;i) !
12: ! ! for(j=0;j<N;j++) !
13: ! !b[i]+=A[i][j]*x[j] ; !
14: } !

Example 4.1-1: Matrix by Vector Multiply

swallach - 2012 November - IA^3 33

Finally

The system which is the simplest to
program will win. USER cycles are more
important that CPU cycles

FLOPs OPs Flops/Ops
/Watt

swallach - 2012 November - IA^3 34

