
  
Big Data  -  Ops  vs Flops 

 

 
Steve Wallach 

swallach”at”conveycomputer “dot”com 
Convey <= Convex++ 



Why is this  interesting? 
•  Big Data is on everyone’s mind. It is  in the 

NEWS. 
–  HPC Classic (Flops)  & Big Data (Ops) 

•  Power efficiency is on everyone’s mind. It is in 
the NEWS. 

•  Are today’s processor architectures  a match for 
Exascale applications that are in the NEWS? 
–  Ops vs Flops 

•  Deep dive into some micro-architecture discussions 

•  A smarter computer for Exascale. It is in the 
NEWS 
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From a NEWS  Perspective 
•  World Economic Forum  

–  declared data a new class of 
economic asset, like currency or 
gold. 

•  growing at 50 percent a year, or 
more than doubling every two 
years, estimates IDC  

•  “data-driven decision making” achieved 
productivity gains that were 5 percent to 
6 percent higher than other factors 
could explain. 

•  “false discoveries.” “many bits 
of straw look like needles.” 

February, 11, 2012,  NY Times, “The Age of Big Data”,  
                  STEVE LOHR 
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Support from Washington  DC 

OBAMA ADMINISTRATION UNVEILS “BIG DATA” 

INITIATIVE: ANNOUNCES $200 MILLION IN NEW 

R&D INVESTMENTS  
Office of Science and Technology Policy Executive Office of the President 
New Executive Office Building 

Washington, DC 20502  

March 29, 2012  
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Perhaps another reason 

Venture Capitalist 
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Seriously 
•  “Computing may be on the cusp 

of another such wave.” 
•  “The wave will be based on 

smarter machines and software 
that will automate more tasks 
and help people make better 
decisions.” 

•  “The technological building 
blocks, both hardware and 
software, are falling into place, 
stirring optimism.” 

September 8, 2012,  NY Times, “Tech’s New Wave,  
Driven by Data”     
                  STEVE LOHR 
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 Thinking on Technology 

•  Flops and Ops are 
applicable to Exascale 

•  More items in common 
then initially obvious 

•  Examine in more detail 
•  The role of Time 

Sharing . The role  of  cloud 
  computing 
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Compare Flops  with Ops 
•  ExaFlop (FP Intensive) 

–  Historical Metrics/Features 
•  Memory Capacity 

–  Byte/Flop 
•  Interconnect Bandwidth 

–  .1 Bytes/Flop 
•  Memory Bandwidth 

–  4 Bytes/sec/Flop 
•  Linpack 

–  Relatively static data set size 
•  3D … X,Y,Z -  multiple points per cell 
•  WaveFront Algorithms 

–  Node level synchronization 
•  Domain Decomposition 

–  64 bit memory references 
•  32 and 64 bit float 

–  Cache Friendly (In general?) 

•  ExaOp (Data Intensive) 
•  Transactions per sec 
•  Transaction Latency 
•  Graph edges  per sec 
•  YES/NO 

–  Data Sets are dynamic 
•  New data always being added  

–  Never enough physical memory 
Memory/compute algorithms 
•  Limited disk access 

–   Flash memory/Memristor/Phase Change? 
–  Memcached 

–  Graphs, Trees,  Bit and Byte strings 
•  Fine grain synchronization 

–  Threads/Transactions 
•  Granularity of memory references 
•  User defined strings 
•  NORA (Non-Obvious Relationship 

Analysis) 
–  Cache Unfriendly 
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Solving Flops – HPC Classic 
•  Multi (Many) Core 
•  Multiple  FMAC’s 

–  Floating Point 
•  Vector Accumulators 
•  Structured Data  
•  Attached accelerators 

–  GPU,  FPGA, … 
•  High Speed Interconnects 

–  MPI Pings 
•  Open source numerical libraries 

–  (e.g., LAPACK) 
•  Memory system 

–  Classic – highly interleaved 
–  Micro -   multiple cache levels 
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Solving Ops  
-An Architectural Perspective- 

•  Very Large Physical Memory 
–  ExaOps è ExaBytes 
–  64 bits of address is not enough 

•  Run out by 2020 
•  1 to 1.5 bits increase per  1 to 1.5 years 

•  Single Level,  Global Physical Memory 
–  Simplifies Programming Model 
–  Extensible over time 
–  Updates in Real Time 
–  Runtime binding 
–  PGAS Languages 
–  MAP REDUCE / HADOOP 

•  Multiple machine state models can exist 
•  Heterogeneous Processing 
•  Fine grain synchronization 

–  Threads 
–  Bit and Bytes 
–  Adjacency Matrices 
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Now What 
•  Uniprocessor Performance has to 

be increased 
–  Heterogeneous here to stay 
–  The easiest to program will be the 

correct technology 
•  Smarter Memory Systems (PIM) 

–  Synchronization 
–  Complex Data Structures 
–  Dram, NVRAM, Disk 

•  New HPC/Big Data Software must 
be developed.  

–  SMARTER COMPILERS 
–  ARCHITECTURALLY 

TRANSPARENT 
–  Domain Specific Languages 

•  New algorithms 
•  New ways of  referencing DATA at 

the processor level 
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Ops and Flops – Processor 
Memory System 

•  Caches create in order memory 
references for ALU’s from out of 
order main memory references. 

–  Cache block is in order 
•  Direct memory references  tend to 

be out of order 
–  Better for random references 
–  Hundreds (thousands) of 

outstanding loads and stores 
•  Which memory reference approach 

is preferred? 
•  How does HMC (hybrid memory 

cube) change the approach? 
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Ops and Flops in one system? 

•  For in order memory, a vector 
ISA is very efficient. For out of 
order, a thread model is more 
efficient (also hides latency 
better) 
–  Threads execute independently 

but synchronized. 
–  Supported by OpenMP 

Do I = 1,n!
A(i) = B(i) +C(i)!

ENDDO!
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- 

NVIDIA 
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Definition 
Boston, Hyannis, Martha’s Vineyard, Nantucket, 
New Bedford, Providence, and Provincetown,  

 
Adjacency Matrix 
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Breadth-First Search: Sparse mat * vec 
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•  Multiply by adjacency matrix à step to neighbor vertices 
•  Work-efficient implementation from sparse data structures 

•  Ref: CS240a – UCSB – John Gilbert 
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Breadth-First Search: Sparse mat * vec 

AT	
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•  Multiply by adjacency matrix à step to neighbor vertices 
•  Work-efficient implementation from sparse data structures 

•  Ref: CS240a – UCSB – John Gilbert 
–  http://www.cs.ucsb.edu/~gilbert/cs240a/old/cs240aSpr2011/index.html 
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Problem Statement 

•  4 Giga Names 
– Actual Names 
–  IP address’s 

•  16k Meta Tags 
•  Discover Knowledge 
•  Adjacency Matrix 

–    32 Terabytes (if every bit 
is explicitly interpreted (“1” 
or “0”)) 
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Problem Solution 
•  Need a way for dynamic 

selection of optimal solution 
–  Threads 
–  Bit Operations directly on 

Adjacency Matrix 

•  Just like sparse  numerical 
solvers 
–  Based on sparsity 

(dynamically chosen) 
•  Operations Under Mask 
•  Vector of Indices 
•  Compress  reduce/expand 
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 Adjacency Matrices 
 •  Interesting properties in BIT 

domains 
–  If compressed  column, just having 

an index indicates a logical “1” or 
“0” 

•  Cardinality is trivial (POPCOUNT) 
•  Logical Operations are trivial 
•  Optimum Data Set structure is 

dynamic 
–  http://www.ll.mit.edu/HPEC/agendas/

proc10/Day2/S4_1335_Song_abstract.pdf 
–  3-D Graph Processor  
–  William S. Song, Jeremy Kepner, et. aI.,  

Lincoln Laboratory, Massachusetts 
Institute Technology, Lexington, MA 
02420 

Yellow Brick Road 
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ISA Definition 
•  Load/Store Bit streams 

–  Indirect thru Dope vector of compressed  
columns or a  dense bit stream 

–  Load indices of  columns (i) 
•  If bit convert to index within processor 
•  Block  rows (like strip mining for 

parallelism) 

–  Output indices  that satisfy logical 
operation (general purpose N-adic) 

–  PIM memory controllers interpret 
and create Dope Vectors 

•  Arithmetic's are Convolvers 
–  N-Adic 
–  Keep track of index  
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Dope Vector 

•  Column_(start, end bit) 
–  Index_A (1,3) 
–  Index_A (n: 1) 
–  Index_B(0,2) 
–  Index_B (n-3,1) 
–  32 or 64 bit index 
–  Usually very sparse data set 
–  Column Update – new dope  

vector 
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Node Logical Convolver 

Load-store vector architecture with 64 bit 
random access , memory 

 Bit addressable memory ? 
Data accessed via dope vectors 
Multiple function pipes for data parallelism 
 
Multiple functional units and out-of-order 
execution for instruction parallelism 
 
Multiple Modes of Parallelism 

 dense bit streams 
 64 bit wide logical ALU to crossbar 
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Example  - Friends of Friends 
•  Dope Vectors  friends of  John 
•  Dope Vectors  friends of Mary 
•  Dope Vectors  friends of Steve 
•  Perform bitwise (index-wide 3-

input AND) 
–  Dope Vectors per Meta Tag 

Pre-computed as is sparse 
matrice’s 

•  Benefits 
–  Easy to understand 
–  Easy to update 

•  Add or Delete entries 
•  No synch needed once 

operation begins 

•  Coding (via Instrinsic) 
–  Z (i) = Convolve (AND, John, 

Mary, Steve) 
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Adjacency Matrix- Compute Model 
Names(1) 

Names(n) 

John’s Friends 
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AND AND EQUALS 
 
 
 Common Friends 

Parallelize block 
Rows – no sync 
Needed 
 
Parallelize Columns 
 
Run-Time Decision 
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 Interesting Properties 
•  Can  compute with threads if necessary 
•  Can define some interesting operators like 

–  Majority (N out of K attributes) 
–  Markov weighted edges 

•  The compute is straight forward, especially if  the memory 
system is SMART 
–  Probably a compute/time memory tradeoff 
–  Tagged memory address’s 
–  Bit, Byte, Word Addressability (Deja Vu) 
–  Short circuit  logical operators 

•  The programming model is straightforward 
–  From APL and MATLAB 

•  perspicuous 
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Exascale Workshop Dec 2009,  San Diego 
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Development Frameworks for Multiple 
Architectural Models 

•  CHOMP for Arrays of Customized Cores 
−  MIMD parallelism with many simple cores 
−  OMP based shared memory programming model 
−  Compile and run user model 

•  Convey Vectorizer for Custom SIMD 
−  vector personalities optimized for specific data types 
−  automatic vectorization of C/C++ and Fortran 
−  support for customized instructions via intrinsics 

•  PDK for Algorithmic Personalities 
−  specific routines in hardware 
−  pipelining and replication for very high performance 
−  PDK supports implementations in Verilog or with 

high level design tools 

X(I,J,K)	  =	  S0*Y(I	  	  ,J	  	  ,K	  	  )	  
	  	  	  	  	  	  	  	  	  +	  S1*Y(I-‐1,J	  	  ,K	  	  )	  
	  	  	  	  	  	  	  	  	  +	  S2*Y(I+1,J	  	  ,K	  	  )	  
	  	  	  	  	  	  	  	  	  +	  S3*Y(I	  	  ,J-‐1,K	  	  )	  
	  	  	  	  	  	  	  	  	  +	  S4*Y(I	  	  ,J+1,K	  	  )	  
	  	  	  	  	  	  	  	  	  +	  S5*Y(I	  	  ,J	  	  ,K-‐1)	  
	  	  	  	  	  	  	  	  	  +	  S6*Y(I	  	  ,J	  	  ,K+1)	  

ACTGTGACATGCTGACATGCTAG 
Stencils [FD/FV/FE] 

Genomics/Proteomics 

Graph Theory 

Edge Vector 

Vertex Vector 

, etc, 
etc 
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Fox Single-node Block Diagram 

32 DDR3 SG-DIMMs 
HalfDIMM up to 4GB - 256GB system 
FullDIMM up to 32GB - 1TB system 

64MB pages 
Atomic ops 

1024 TIDs per 
link (32K 
OR) 

32TB (45 bit) 
physical 
address 
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Graph 500 Results: Performance/
Power 

Single Node, All Scale (by GTEPS) 
★ 
★ 
★ 
★ 
★ 

★=	  Convey	  swallach - 2012 November - IA^3 31 



System Level - Trends 
•  Global Flat, Virtual Address Space 

–  Common to Flops and Ops 
–  Program using a PGAS Language 

•  Single Program Multiple Data  (SPMD)  

–  64 bits growing to 128 bits in 2020 and beyond 

  Physical Page Address- 40 
 

Node 
 Field 

Control 

Control – Physical Memory Level 
 Dram – Flash – Disk 

Node Field – PGAS model 
Data Semantics – PIM Control 

 private vs. shared 
 

4 KB – 1 MB Page Size 

4  PetaBytes To 1 ExaBytes 
 of Physical Address 

PTE Data 
Semantic 
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Exascale Programming Model 
1: #include<upc_relaxed.h> !
2: #define N 200*THREADS !
3: shared [N] double A[N][N];   NOTE: Thread is 16000!
4: shared double b[N], x[N]; !
5: void main() !
6: { !
7: int i,j; !
8: /* reading the elements of matrix A and the !
9: vector x and initializing the vector b to zeros !
10: */ !
11: !upc_forall(i=0;i<N;i++;i) !
12: ! ! for(j=0;j<N;j++) !
13: ! !b[i]+=A[i][j]*x[j] ; !
14: } !

Example 4.1-1: Matrix by Vector Multiply  
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Finally 

The system which is the simplest to 
program will win. USER cycles are more 
important that CPU cycles 

FLOPs OPs Flops/Ops 
/Watt 
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