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Why is this  interesting? 
•  Big Data is on everyone’s mind. It is  in the 

NEWS. 
–  HPC Classic (Flops)  & Big Data (Ops) 

•  Power efficiency is on everyone’s mind. It is in 
the NEWS. 

•  Are today’s processor architectures  a match for 
Exascale applications that are in the NEWS? 
–  Ops vs Flops 

•  Deep dive into some micro-architecture discussions 

•  A smarter computer for Exascale. It is in the 
NEWS 
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From a NEWS  Perspective 
•  World Economic Forum  

–  declared data a new class of 
economic asset, like currency or 
gold. 

•  growing at 50 percent a year, or 
more than doubling every two 
years, estimates IDC  

•  “data-driven decision making” achieved 
productivity gains that were 5 percent to 
6 percent higher than other factors 
could explain. 

•  “false discoveries.” “many bits 
of straw look like needles.” 

February, 11, 2012,  NY Times, “The Age of Big Data”,  
                  STEVE LOHR 
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Support from Washington  DC 

OBAMA ADMINISTRATION UNVEILS “BIG DATA” 

INITIATIVE: ANNOUNCES $200 MILLION IN NEW 

R&D INVESTMENTS  
Office of Science and Technology Policy Executive Office of the President 
New Executive Office Building 

Washington, DC 20502  

March 29, 2012  
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Perhaps another reason 

Venture Capitalist 
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Seriously 
•  “Computing may be on the cusp 

of another such wave.” 
•  “The wave will be based on 

smarter machines and software 
that will automate more tasks 
and help people make better 
decisions.” 

•  “The technological building 
blocks, both hardware and 
software, are falling into place, 
stirring optimism.” 

September 8, 2012,  NY Times, “Tech’s New Wave,  
Driven by Data”     
                  STEVE LOHR 
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 Thinking on Technology 

•  Flops and Ops are 
applicable to Exascale 

•  More items in common 
then initially obvious 

•  Examine in more detail 
•  The role of Time 

Sharing . The role  of  cloud 
  computing 
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Compare Flops  with Ops 
•  ExaFlop (FP Intensive) 

–  Historical Metrics/Features 
•  Memory Capacity 

–  Byte/Flop 
•  Interconnect Bandwidth 

–  .1 Bytes/Flop 
•  Memory Bandwidth 

–  4 Bytes/sec/Flop 
•  Linpack 

–  Relatively static data set size 
•  3D … X,Y,Z -  multiple points per cell 
•  WaveFront Algorithms 

–  Node level synchronization 
•  Domain Decomposition 

–  64 bit memory references 
•  32 and 64 bit float 

–  Cache Friendly (In general?) 

•  ExaOp (Data Intensive) 
•  Transactions per sec 
•  Transaction Latency 
•  Graph edges  per sec 
•  YES/NO 

–  Data Sets are dynamic 
•  New data always being added  

–  Never enough physical memory 
Memory/compute algorithms 
•  Limited disk access 

–   Flash memory/Memristor/Phase Change? 
–  Memcached 

–  Graphs, Trees,  Bit and Byte strings 
•  Fine grain synchronization 

–  Threads/Transactions 
•  Granularity of memory references 
•  User defined strings 
•  NORA (Non-Obvious Relationship 

Analysis) 
–  Cache Unfriendly 
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Solving Flops – HPC Classic 
•  Multi (Many) Core 
•  Multiple  FMAC’s 

–  Floating Point 
•  Vector Accumulators 
•  Structured Data  
•  Attached accelerators 

–  GPU,  FPGA, … 
•  High Speed Interconnects 

–  MPI Pings 
•  Open source numerical libraries 

–  (e.g., LAPACK) 
•  Memory system 

–  Classic – highly interleaved 
–  Micro -   multiple cache levels 
 

swallach - 2012 November - IA^3 9 



Solving Ops  
-An Architectural Perspective- 

•  Very Large Physical Memory 
–  ExaOps è ExaBytes 
–  64 bits of address is not enough 

•  Run out by 2020 
•  1 to 1.5 bits increase per  1 to 1.5 years 

•  Single Level,  Global Physical Memory 
–  Simplifies Programming Model 
–  Extensible over time 
–  Updates in Real Time 
–  Runtime binding 
–  PGAS Languages 
–  MAP REDUCE / HADOOP 

•  Multiple machine state models can exist 
•  Heterogeneous Processing 
•  Fine grain synchronization 

–  Threads 
–  Bit and Bytes 
–  Adjacency Matrices 
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Now What 
•  Uniprocessor Performance has to 

be increased 
–  Heterogeneous here to stay 
–  The easiest to program will be the 

correct technology 
•  Smarter Memory Systems (PIM) 

–  Synchronization 
–  Complex Data Structures 
–  Dram, NVRAM, Disk 

•  New HPC/Big Data Software must 
be developed.  

–  SMARTER COMPILERS 
–  ARCHITECTURALLY 

TRANSPARENT 
–  Domain Specific Languages 

•  New algorithms 
•  New ways of  referencing DATA at 

the processor level 
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Ops and Flops – Processor 
Memory System 

•  Caches create in order memory 
references for ALU’s from out of 
order main memory references. 

–  Cache block is in order 
•  Direct memory references  tend to 

be out of order 
–  Better for random references 
–  Hundreds (thousands) of 

outstanding loads and stores 
•  Which memory reference approach 

is preferred? 
•  How does HMC (hybrid memory 

cube) change the approach? 
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Ops and Flops in one system? 

•  For in order memory, a vector 
ISA is very efficient. For out of 
order, a thread model is more 
efficient (also hides latency 
better) 
–  Threads execute independently 

but synchronized. 
–  Supported by OpenMP 

Do I = 1,n!
A(i) = B(i) +C(i)!

ENDDO!
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- 

NVIDIA 
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Definition 
Boston, Hyannis, Martha’s Vineyard, Nantucket, 
New Bedford, Providence, and Provincetown,  

 
Adjacency Matrix 
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Breadth-First Search: Sparse mat * vec 
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à 

•  Multiply by adjacency matrix à step to neighbor vertices 
•  Work-efficient implementation from sparse data structures 

•  Ref: CS240a – UCSB – John Gilbert 
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Breadth-First Search: Sparse mat * vec 
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•  Multiply by adjacency matrix à step to neighbor vertices 
•  Work-efficient implementation from sparse data structures 

•  Ref: CS240a – UCSB – John Gilbert 
–  http://www.cs.ucsb.edu/~gilbert/cs240a/old/cs240aSpr2011/index.html 
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Problem Statement 

•  4 Giga Names 
– Actual Names 
–  IP address’s 

•  16k Meta Tags 
•  Discover Knowledge 
•  Adjacency Matrix 

–    32 Terabytes (if every bit 
is explicitly interpreted (“1” 
or “0”)) 
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Problem Solution 
•  Need a way for dynamic 

selection of optimal solution 
–  Threads 
–  Bit Operations directly on 

Adjacency Matrix 

•  Just like sparse  numerical 
solvers 
–  Based on sparsity 

(dynamically chosen) 
•  Operations Under Mask 
•  Vector of Indices 
•  Compress  reduce/expand 
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 Adjacency Matrices 
 •  Interesting properties in BIT 

domains 
–  If compressed  column, just having 

an index indicates a logical “1” or 
“0” 

•  Cardinality is trivial (POPCOUNT) 
•  Logical Operations are trivial 
•  Optimum Data Set structure is 

dynamic 
–  http://www.ll.mit.edu/HPEC/agendas/

proc10/Day2/S4_1335_Song_abstract.pdf 
–  3-D Graph Processor  
–  William S. Song, Jeremy Kepner, et. aI.,  

Lincoln Laboratory, Massachusetts 
Institute Technology, Lexington, MA 
02420 

Yellow Brick Road 
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ISA Definition 
•  Load/Store Bit streams 

–  Indirect thru Dope vector of compressed  
columns or a  dense bit stream 

–  Load indices of  columns (i) 
•  If bit convert to index within processor 
•  Block  rows (like strip mining for 

parallelism) 

–  Output indices  that satisfy logical 
operation (general purpose N-adic) 

–  PIM memory controllers interpret 
and create Dope Vectors 

•  Arithmetic's are Convolvers 
–  N-Adic 
–  Keep track of index  
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Dope Vector 

•  Column_(start, end bit) 
–  Index_A (1,3) 
–  Index_A (n: 1) 
–  Index_B(0,2) 
–  Index_B (n-3,1) 
–  32 or 64 bit index 
–  Usually very sparse data set 
–  Column Update – new dope  

vector 
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Node Logical Convolver 

Load-store vector architecture with 64 bit 
random access , memory 

 Bit addressable memory ? 
Data accessed via dope vectors 
Multiple function pipes for data parallelism 
 
Multiple functional units and out-of-order 
execution for instruction parallelism 
 
Multiple Modes of Parallelism 

 dense bit streams 
 64 bit wide logical ALU to crossbar 

co
nv

ol
ve

 

co
nv

ol
ve

 

co
nv

ol
ve

 

co
nv

ol
ve

 

Vector architecture 
optimized for Bit 
Processing 

in
te

ge
r 

st
or

e 

lo
ad

 

pa
ck

 
un

pa
ck

 

m
is

c ad
d 

ad
d 

vector elements parallelized within function pipes 

Crossbar 

Dispatch 

Crossbar 

Dispatch 

Crossbar 

Dispatch 

Crossbar 

Dispatch 

PIM  Memory Controllers 
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Example  - Friends of Friends 
•  Dope Vectors  friends of  John 
•  Dope Vectors  friends of Mary 
•  Dope Vectors  friends of Steve 
•  Perform bitwise (index-wide 3-

input AND) 
–  Dope Vectors per Meta Tag 

Pre-computed as is sparse 
matrice’s 

•  Benefits 
–  Easy to understand 
–  Easy to update 

•  Add or Delete entries 
•  No synch needed once 

operation begins 

•  Coding (via Instrinsic) 
–  Z (i) = Convolve (AND, John, 

Mary, Steve) 
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Adjacency Matrix- Compute Model 
Names(1) 

Names(n) 

John’s Friends 
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AND AND EQUALS 
 
 
 Common Friends 

Parallelize block 
Rows – no sync 
Needed 
 
Parallelize Columns 
 
Run-Time Decision 
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 Interesting Properties 
•  Can  compute with threads if necessary 
•  Can define some interesting operators like 

–  Majority (N out of K attributes) 
–  Markov weighted edges 

•  The compute is straight forward, especially if  the memory 
system is SMART 
–  Probably a compute/time memory tradeoff 
–  Tagged memory address’s 
–  Bit, Byte, Word Addressability (Deja Vu) 
–  Short circuit  logical operators 

•  The programming model is straightforward 
–  From APL and MATLAB 

•  perspicuous 
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Exascale Workshop Dec 2009,  San Diego 
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Development Frameworks for Multiple 
Architectural Models 

•  CHOMP for Arrays of Customized Cores 
−  MIMD parallelism with many simple cores 
−  OMP based shared memory programming model 
−  Compile and run user model 

•  Convey Vectorizer for Custom SIMD 
−  vector personalities optimized for specific data types 
−  automatic vectorization of C/C++ and Fortran 
−  support for customized instructions via intrinsics 

•  PDK for Algorithmic Personalities 
−  specific routines in hardware 
−  pipelining and replication for very high performance 
−  PDK supports implementations in Verilog or with 

high level design tools 
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Fox Single-node Block Diagram 

32 DDR3 SG-DIMMs 
HalfDIMM up to 4GB - 256GB system 
FullDIMM up to 32GB - 1TB system 

64MB pages 
Atomic ops 

1024 TIDs per 
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OR) 

32TB (45 bit) 
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Graph 500 Results: Performance/
Power 

Single Node, All Scale (by GTEPS) 
★ 
★ 
★ 
★ 
★ 

★=	
  Convey	
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System Level - Trends 
•  Global Flat, Virtual Address Space 

–  Common to Flops and Ops 
–  Program using a PGAS Language 

•  Single Program Multiple Data  (SPMD)  

–  64 bits growing to 128 bits in 2020 and beyond 

  Physical Page Address- 40 
 

Node 
 Field 

Control 

Control – Physical Memory Level 
 Dram – Flash – Disk 

Node Field – PGAS model 
Data Semantics – PIM Control 

 private vs. shared 
 

4 KB – 1 MB Page Size 

4  PetaBytes To 1 ExaBytes 
 of Physical Address 

PTE Data 
Semantic 
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Exascale Programming Model 
1: #include<upc_relaxed.h> !
2: #define N 200*THREADS !
3: shared [N] double A[N][N];   NOTE: Thread is 16000!
4: shared double b[N], x[N]; !
5: void main() !
6: { !
7: int i,j; !
8: /* reading the elements of matrix A and the !
9: vector x and initializing the vector b to zeros !
10: */ !
11: !upc_forall(i=0;i<N;i++;i) !
12: ! ! for(j=0;j<N;j++) !
13: ! !b[i]+=A[i][j]*x[j] ; !
14: } !

Example 4.1-1: Matrix by Vector Multiply  
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Finally 

The system which is the simplest to 
program will win. USER cycles are more 
important that CPU cycles 

FLOPs OPs Flops/Ops 
/Watt 
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