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Introduction/Motivation An alternative dycore option within the Community
Climate System Model (CCSM):

High-Order Methods Modeling Environment (HOMME) 

Fully Implicit (FI) Solution Method

Shallow Water: Test Case 1

Shallow Water: Test Case 2
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Future Plans for Implicit Methods in HOMME 
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1. Take large implicit time steps (tN) to span entire 
simulation quickly
2. Assign each processor one time subset covering 
a large time step
3. In parallel, integrate at a finer time scale (ticks) 
to resolve relevant scale
4. Correct discrepancy between fine and coarse 
simulations (ΔΝ)
5. Translate corrections along time trajectory 
(starred points)
6. Repeat until convergence (typically 2-3x)

Further Acceleration: Parallel-in-time Integration 

Summary 

Jv � F (x + εv) − F (x)
ε

JM̃−1(M̃δx) = −F (x)
set M̃δx = δz.

J(M̃−1δz) = −F (x)
Once Kyrlov update sufficient,

M̃−1(δz) = δx

Spectral Element Spatial Discretization 

Spectral Transform Methods Finite Element Methods 

High order accuracy
High convergence rate

Geometric Flexibility
Minimal Communication

1. Domain: 6 cube faces mapped to the sphere and tiled into lat-lon elements
2. Within each element, variables are approximated by polynomial expansions
3. Communication is only needed at the element edges
4. Mesh refinement: add elements or increase order of spectral degree

Combines favorable aspects of two 
discretizations onto a cubed sphere grid 

Advection of a cosine bell curve using prescribed velocities

Steady state nonlinear zonal flow

Initial, t=0 1st order, 
Fully Implicit Solve

2nd order, CN
Fully Implicit Solve

Semi-Implicit (SI) Solver as a preconditioner  

In order to minimize code implementation, the existing 
SI solver is adapted for use as preconditioner. It can be 
designed to capture the relevant linear physics for the 
problem of interest and has been used successfully to
enhance other shallow water equation models (Mousseau 
et al., 2002). 

1. Include more linear physics in the SI preconditioner as model solves more complicated problems
2. Use Restrictive Additive Schwarz preconditioner; used in spectral element models with success
3. Use Multi-level preconditioner; complementary to implementation of time-parallel capability

The preconditioner can be written as an operator matrix,      .  
Then, the Jacobian-vector update is multiplied by             . 
Thus         is applied once to update the Krylov vector, and 
then again to return the state vector update      .

M̃
M̃−1M̃

δx
M̃−1

 

First, the equations are written as a nonlinear residual
of the state vector so that all the terms are written and 
solved coherently. For shallow water eq’ns,                      .

Taking the first term of a Taylor series expansion at
       gives a linearized update for F as the Jacobian, J,
times the update.  Solving for an            that satisfies
the          within a specified nonlinear tolerance is 
inexact Newton’s method. 

The update,     , is found using GMRES, a linear solution
method that builds a Krylov vector. Rather than explicitly
calculating the Jacobian to get an update for           ,  a 
finite difference approximation is used. Generally, more 
iterations are needed, but the end result is more efficient.
The efficiency of the linear solver can be enhanced with 
the use of a preconditioner.

Once a Jacobian-vector multiply is built, it is evaluated 
to see if it satisfies a linear tolerance requirement,     ,
upon which the latest      is sent to be evaluated in the 
nonlinear residual calculation.

x = {u, v, h}T

xk

The inclusion of new physics and chemistry and grid refinement of the Community Climate System Model (CCSM) create new 
algorithmic challenges including coupled nonlinear multiscale processes and enhanced scalability requirements. To maintain 
scalability, a number of climate models have been returning to fully explicit methods developed several decades ago. However, 
finer model grids require a superlinear reduction in the time step size to account for the smaller spatial scale and increased 
multiscale interactions (Keyes et al., 2006). Fully implicit methods are well established as a more accurate and efficent solution 
method for a range of multiscale applications because they eliminate the stability restriction for time step size selection and solve
all the dependent variables consistently. However with the exception of recent linearized oceanic spin-up models (Bernsen et al., 
2008; Li and Primeau, 2008), global Earth system models have not implemented a FI solver capability. The current solver 
implementation utilizes a Fortran interface package within the Trilinos project, which allows fully tested, optimized, and robust 
code with a suite of parameter options to be included a priori. Presently, a fully implicit (FI) solution method is applied to several 
shallow water test cases from Williamson et al. (1992) within the High-order Method Modeling Environment (HOMME) component 
of the CCSM, and early results are presented. 

For test case 1, the structure of an anomaly advected by a prescribed wind field is retained even when using a time step much 
larger than the gravity wave CFL. To evaluate solver performance for steady state analyses, test case 2 is applied using an FI 
method preconditioned with an adaptation of the existing semi-implicit method, and both solution time and iteration count is 
reduced appreciably in some cases. A more realistic test modeling the flow of air over a mountain feature highlights the ability to 
run accurately over the gravity wave CFL but also the limitations of the current preconditioner.
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F (xk) = −J(xk)δx
xk+1 = xk + δx

δx

xk+1

F (x)

F (x)

δx
ηl

F (x) = 0

*For spectral element grids, MxNxN notation is 
used, where M is the number of elements in each 
direction on each cube face and N refers to the 
spectral degree order within each element. Grids
(1) and (2) to the left have similar average grid 
spacing, but (2) has a larger spectral discretization
and thus higher accuracy but smaller time step
contstraints for the explicit method. NL is the #
outer Newton iterations, and Lin per NL refers to 
the # of linear Krylov iterations per NL. 
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(1) 4x12x12* (avg grid=227km, min grid=69km)

Test case 2 solves the steady state nonlinear flow and is designed to evaluate performance of the 
dycore and solution method.  It also tests methods that would assist with model spin up and
parameter continuation studies, where a number of steady state simulations are desired. Because 
the solution is a steady state, FI can run at an arbitrary time step size without sacrificing error, 
and thus complete the simulation relatively more efficiently upon grid refinement. For example, in
configuration (1), the implicit method can take 1 time step over the length of the simulation and thus
save 80% time over the extra cost of iteration and forming a preconditioner.  The number of iterations 
in this case due to the preconditioner is reduced from 62 to 8 (per time step). Because this is a simple 
test problem, the time of set up is most of the work and thus the time is not reduced appreciably.

(2) 15x4x4* (avg grid=222km, min grid=184.5km)
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2nd order Filtered
Leapfrog

The FI solution framework acts as an accelerator for existing methods in the HOMME model that require smaller time steps on relatively fine grids, and allows new time 
stepping methods to be developed. The solution is verified to be as accuate as other methods even with larger time steps, and can produce solutions more quickly than 
the explicit (or a semi-implicit formulation, which published results show 2-3 times increased efficiency compared to explicit (Thomas and Loft, 2002)) for early results 
with a preconditioner. Initial work with test case 5 has produced solutions with the FI method as well, but the preconditioner does not effectively reduce iterations and
increase efficency to make it a competitive option.  A high fidelity preconditioner that addresses the advection terms is needed and is currently being developed.

≡

≡

|Jδx + F (xk)|2
|F (xk)|2

≤ ηl

*Developed at NCAR as part of DOE’s Climate Chance Prediction Program (CCPP), HOMME has exhibited superior scalability and 
efficiency. The spectral element formulation as applied in HOMME is the only dycore within CAM that locally conserves mass and energy

ut+1 − ut−1

2∆t
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2∆t
= −∇ · htut − ho∇ · 1

2
(ut+1 + ut−1)

Shallow Water: Test Case 5
More realistic case: Zonal flow over an isolated mountain

Improved Preconditioning strategies 
When used as a solver, the semi-implicit method solves the advection and background flow terms 
explicitly and the gravity wave terms implicitly, so a time step above the gravity wave time scale can
be taken (Thomas and Loft, 2002). The benefit of splitting this way is that the implicit terms can be
rewritten as the Helmholtz equation of the geopotential height, the solutions of which can be found 
efficiently using the congugate gradient method.  The implicit terms are the terms retained in the 
current application of the preconditioner used here.

Steps for gravity wave preconditioner:

1. Recast u and h in terms of updates       and     , and retain 
    only gravity wave terms (underlined above)
2. Solve multiply       equation by the gradient operator, 
3. Substitute grad u into height equation to get a Helmholtz equation for 
4. Solve using CG to get      , then sub into      equation and return values to FI above

δh δu

δu
 ∇δu

δh
 

Plots of the cosine bell anomaly on a course grid (~500km spacing) 
with a 1 hour time step, which is close to the limit at which explicit 
leapfrog is stable. Notice that the 1st order method (BE) is overly 
diffusive. Both leapfrog (LF) and Crank Nicolson (CN) are 2nd order 
accurate, but leapfrog must be filtered to maintain stability, which 
affects accuracy. All the methods experience some spectral ‘ringing’ 
given such a coarse grid. However this configuration highlights the
accuracy issues with various time discretization strategies.

The L2 norm of error for runs using the three methods mentioned 
above for a finer grid (~140km) after the anomaly has been advected 
around the sphere. The leapfrog (LF), backward euler (BE), and Crank 
Nicolson (CN) are plotted with a time step size of 16 minutes (solid
lines), close to the limit at which explicit leapfrog is stable. Not 
surprisingly, the first order method (BE) has the highest error. A run 
with a time step size of 1/2 hour is also performed using CN (dashed
green line), and still the L2 error is less than LF. 

This case uses an equatorally aligned zonal flow in 
the presence of an isolated mountain feature. As with 
the other test cases, the FI method does not require a 
smaller time step with grid refinement to maintain 
stability. For a 4x12x12 grid (see above for description), 
a 20 minunte time step (verses 2 min for explicit) can 
be taken without a loss resolution of the physical 
processes of the system. However, early runs of this 
test case show that unlike test case 2, the Helmholtz 
preconditioner does not improve the implicit method, 
possibly because of the advection dominated behavior, 
which is not included in the linear inversion of the 
Helmholtz. Several strategies for an improved preconditioner are being pursued. For current numerical 
methods in HOMME, there is an imposed numerical diffusion to keep the KE spectrum reasonable. This 
issue will be also addressed with the ongoing accuracy and efficiency assessment for the FI method.
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LF=2nd order filtered
CN= 2nd order
CN=1/2hr ts
BE 1st order

Fully
Implicit CN
(w/precon)

Fully
Implicit CN
(2nd order)

Explicit
Leap Frog
(2nd order)

Time
Integration
Method

2/42.8e-16     0.1986400s
(1 day)

1/625.7e-14     0.1886400s
(1 day)

N.A.2.1e-12       1120s

Solver Stats
(see text)

NL/Lin per NL

L2 ErrorSimulation
Time (Relative
to Explicit)

Time Step
Size

LDRDδu
δh

Fully
Implicit CN
(2nd order)

Explicit
Leap Frog
(2nd order)

Time
Integration
Method

6/84.75.3e-7     6.721600s
(6 hr)

N.A.6.6e-7       1240s

Solver Stats
(see text)

NL/Lin per NL

L2 ErrorSimulation
Time (Relative
to Explicit)

Time Step
Size


