

Pocket Guide Version 2009.2

Pocket Guide Version 2009.2

Certain commercial equipment, instruments, or materials are identified in this document. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose.

All data will be published once the test method has gone through the standards process.

Certain commercial equipment, instruments, or materials are identified in this document. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose.

All data will be published once the test method has gone through the standards process.

Contacts

Contacts

Intelligent Systems Division Manufacturing Engineering Laboratory National Institute of Standards and Technology 100 Bureau Drive, MS8230 Gaithersburg, MD 20899

National Institute of Standards and Technology

Manufacturing Engineering Laboratory

100 Bureau Drive, MS8230

Gaithersburg, MD 20899

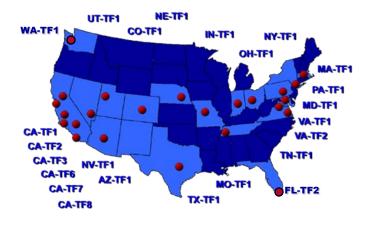
Program Overview

Application-specific robot standards and repeatable performance testing with objective performance metrics will accelerate the development and deployment of mobile robotic tools for US&R responders, enhancing the effectiveness of these teams while reducing the risks to personnel during disaster response. Currently, no such standards or performance metrics exist.

In order to address this need, the DHS Science and Technology (S&T) Directorate initiated an effort in fiscal year 2004 with the National Institute of Standards and Technology (NIST) to develop comprehensive standards related to the development, testing, and certification of effective robotic technologies for US&R applications. These standards will address robot mobility, sensing, navigation, planning, integration into operational caches, and human factors. Such standards will allow DHS to provide guidance to local, state, and federal homeland security entities regarding the purchase, deployment, and use of robotic systems for US&R applications.

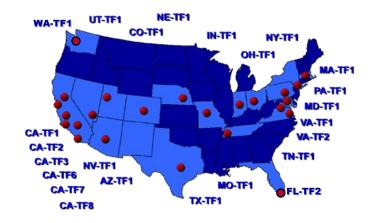
This standards development effort focuses on fostering collaboration between US&R responders, robot vendors, and robot developers to generate consensus standards for task specific robot capabilities and interoperability of components. Furthermore, the effort includes the development and administration of technology readiness level (TRL) assessment exercises. These exercises will generate statistically significant performance data for developmental and fieldable robotic systems.

Program Overview


Application-specific robot standards and repeatable performance testing with objective performance metrics will accelerate the development and deployment of mobile robotic tools for US&R responders, enhancing the effectiveness of these teams while reducing the risks to personnel during disaster response. Currently, no such standards or performance metrics exist.

In order to address this need, the DHS Science and Technology (S&T) Directorate initiated an effort in fiscal year 2004 with the National Institute of Standards and Technology (NIST) to develop comprehensive standards related to the development, testing, and certification of effective robotic technologies for US&R applications. These standards will address robot mobility, sensing, navigation, planning, integration into operational caches, and human factors. Such standards will allow DHS to provide guidance to local, state, and federal homeland security entities regarding the purchase, deployment, and use of robotic systems for US&R applications.

This standards development effort focuses on fostering collaboration between US&R responders, robot vendors, and robot developers to generate consensus standards for task specific robot capabilities and interoperability of components. Furthermore, the effort includes the development and administration of technology readiness level (TRL) assessment exercises. These exercises will generate statistically significant performance data for developmental and fieldable robotic systems.


These response robot evaluation exercises for US&R teams introduce emerging robotic capabilities to emergency responders within their own training facilities, while educating robot developers regarding the necessary performance requirements and operational constraints to be effective. Emerging standard test methods and usage guides for US&R robot performance are under development within the ASTM International Committee on Homeland Security, Operational Equipment (E54.08.01). These events help refine the proposed standard test methods and fixtures/props that developers can use to practice critical capabilities and measure performance in ways that are relevant to emergency responders. These events are conducted in US&R training scenarios to help correlate the proposed standard test methods with envisioned deployment tasks and to lay the foundation for usage guides identifying a robot's applicability to particular response scenarios.

These response robot evaluation exercises for US&R teams introduce emerging robotic capabilities to emergency responders within their own training facilities, while educating robot developers regarding the necessary performance requirements and operational constraints to be effective. Emerging standard test methods and usage guides for US&R robot performance are under development within the ASTM International Committee on Homeland Security, Operational Equipment (E54.08.01). These events help refine the proposed standard test methods and fixtures/props that developers can use to practice critical capabilities and measure performance in ways that are relevant to emergency responders. These events are conducted in US&R training scenarios to help correlate the proposed standard test methods with envisioned deployment tasks and to lay the foundation for usage guides identifying a robot's applicability to particular response scenarios.

TASK FORCE PARTICIPATION

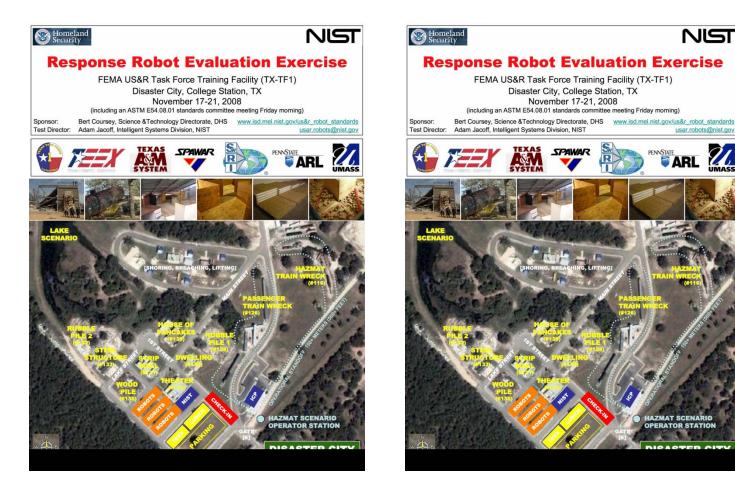
TASK FORCE PARTICIPATION

Disaster City November 17 - 21, 2008

Disaster City November 17 - 21, 2008

November 17-21, 2008

SPAWAR


NIST

usar.robots@nist.gov

ARL Z

HAZMAT SCENARIO

OPERATOR STATION

6

Event Introduction

The fifth in a series of DHS/NIST Response Robot Evaluation Exercises for FEMA urban search and rescue (US&R) teams is hosted at the Texas Task Force 1 (TX-TF1) training facility known as **Disaster City** located at Texas A&M University, College Station, TX. All applicable robots were invited to take part in this exercise, which will capture robot performance data within emerging standard robot test methods and operationally relevant practice scenarios. Practice scenarios feature ground robots working in confined spaces within a partially collapsed structure along with down-range reconnaissance of two train wrecks; one a hazardous materials train and the other a passenger train from an operational stand-off greater than 150m/500ft. Other practice scenarios will also be available.

The robots used in these scenarios should deploy any or all appropriate sensors such as: color cameras, two-way audio, thermal imagers, chemical sensors, 3D mapping, GPS/GIS location, and/or other useful capabilities such as payloads, manipulators, etc. General descriptions of the robots that were sought are as follows, but are not limited to:

- Ground based portable robots that can circumnavigate large unknown situations
- Highly agile, man-packable robots that can lead responders through complex environments
- Confined space accessible robots for deployment into sub-human size voids or be thrown into/over inaccessible area
- Aquatic vehicles with sonar and/or other sensors to search and identify underwater environments
- Quad-rotor aerial vehicles (under 2kg/4.4lbs) deploying sensors to perform horizontal and vertical station keeping in front of windows.

Event Introduction

The fifth in a series of DHS/NIST Response Robot Evaluation Exercises for FEMA urban search and rescue (US&R) teams is hosted at the Texas Task Force 1 (TX-TF1) training facility known as **Disaster City** located at Texas A&M University, College Station, TX. All applicable robots were invited to take part in this exercise, which will capture robot performance data within emerging standard robot test methods and operationally relevant practice scenarios. Practice scenarios feature ground robots working in confined spaces within a partially collapsed structure along with down-range reconnaissance of two train wrecks; one a hazardous materials train and the other a passenger train from an operational stand-off greater than 150m/500ft. Other practice scenarios will also be available.

The robots used in these scenarios should deploy any or all appropriate sensors such as: color cameras, two-way audio, thermal imagers, chemical sensors, 3D mapping, GPS/GIS location, and/or other useful capabilities such as payloads, manipulators, etc. General descriptions of the robots that were sought are as follows, but are not limited to:

- Ground based portable robots that can circumnavigate large unknown situations
- Highly agile, man-packable robots that can lead responders through complex environments
- Confined space accessible robots for deployment into sub-human size voids or be thrown into/over inaccessible area
- Aquatic vehicles with sonar and/or other sensors to search and identify underwater environments
- Quad-rotor aerial vehicles (under 2kg/4.4lbs) deploying sensors to perform horizontal and vertical station keeping in front of windows.

7

Event Robots - 2008

Robot Name (by size)	Compar	
Ground Robots		
Active Scope Camera	Tohoku U	
Pointman (LRV)	ARA	
VGTV	Inuktun	
Dragon Runner SUGV	Foster-Mil	
Versatrax 100	Inuktun	
Marv	Mesa Rob	
G2Bot	Mesa Rob	
Jacobs Rugg.Robot	Jacobs U	
Hero	First-Resp	
Super Kenaf	IRS	
PackBot EOD	iRobot	
PackBot Explorer	iRobot	
Robbie 6	University	
Matilda	Mesa Rob	
Matilda II	Mesa Rob	
NuTech-R4	Nagaoka	
Versatrax 150	Inuktun	
Modular Log. Platform	Segway	
Talon Gen IV	Foster-Mil	
Talon Hazmat	Foster-Mil	
TeleMAX	TeleRob	
HD-1	Remotec	
RMP 400	Segway	
Aerial Robots		
AirRobot	AirRobot	

mpany noku University Ą ktun ter-Miller/Automatika ktun sa Robotics sa Robotics obs University t-Response Robotics oot bot versity Koblenz-Landau sa Robotics sa Robotics aoka Univ. Tech. ktun way ter-Miller/Qinetiq ter-Miller/Qinetiq Rob notec way

Event Robots - 2008

Robot Name (by size)
Ground Robots
Active Scope Camera
Pointman (LRV)
VGTV
Dragon Runner SUGV
Versatrax 100
Marv
G2Bot
Jacobs Rugg.Robot
Hero
Super Kenaf
PackBot EOD
PackBot Explorer
Robbie 6
Matilda
Matilda II
NuTech-R4
Versatrax 150
Modular Log. Platform
Talon Gen IV
Talon Hazmat
TeleMAX
HD-1
RMP 400
Aerial Robots

AirRobot

Company

Tohoku University ARA Inuktun Foster-Miller/Automatika Inuktun Mesa Robotics Mesa Robotics Jacobs University **First-Response Robotics** IRS iRobot iRobot University Koblenz-Landau Mesa Robotics Mesa Robotics Nagaoka Univ. Tech. Inuktun Segway Foster-Miller/Qinetiq Foster-Miller/Qinetiq TeleRob Remotec Segway

AirRobot

Event Robots - 2008

Robot Name (by size)

Aquatic Robots

VideoRay Pro 3 LBV200L2 LBV150SE-5

VideoRay SeaBotix SeaBotix

Company

Sensors

dcMap High Speed 3D Scanner Multibeam Imaging Sonar MBI350-45

P450E-15 P900E-20 Multibeam Imaging Sonar Swiss Ranger 4000

Tohoku University BlueView Tech. BlueView Tech. BlueView Tech. BlueView Tech. Mesa Imaging

University of Freiburg

Event Robots - 2008

Robot Name (by size) Company **Aquatic Robots** VideoRay Pro 3 VideoRay LBV200L2 SeaBotix LBV150SE-5 SeaBotix


Sensors

dcMap University of Freiburg High Speed 3D Scanner Multibeam Imaging Sonar MBI350-45 BlueView Tech. P450E-15 P900E-20 Multibeam Imaging Sonar Swiss Ranger 4000 Mesa Imaging

Tohoku University BlueView Tech. BlueView Tech. BlueView Tech.

Site Map

#134 Multi-Purpose Building Collapse/Theater Building

Dispatch Station/Robot Picture/Cache Packaging

Robot Navigation During Teleoperation (Random Maze)

#134 Multi-Purpose Building Collapse/Theater Building

Dispatch Station/Robot Picture/Cache Packaging

Robot Navigation During Teleoperation (Random Maze)

Main Street

Main Street

Visual Acuity/Field Of View/Spatial Awareness Test Method

Visual Acuity/Field Of View/Spatial Awareness Test Method

#130 Annex Covered Vehicle Port

#130 Annex Covered Vehicle Port

Endurance Test Method

Endurance Test Method

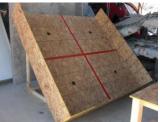
#129 Dwelling Collapse

The House of Pancakes collapse scenario

The House of Pancakes collapse scenario

#130 House of Pancakes

#130 House of Pancakes


Dwelling collapse scenario

Dwelling collapse scenario

#133 **Municipal Building Industrial Complex**

Confined Space Test Method

Incline Plane Test Method

Step Gap Test Method

#133 **Municipal Building Industrial Complex**

Incline Plane Test Method

Stairs

Step Gap Test Method

#131 Strip Mall Collapse

Directed Perception and Grasping Dexterity Test Method

#131 Strip Mall Collapse

Directed Perception and Grasping Dexterity Test Method

Near Hazmat Train Derailment

Towing Test Method

Near Hazmat Train Derailment

Towing Test Method

Hazmat Train Derailment



Decontamination Test Method

Hazmat Train Derailment

Decontamination Test Method

#128 Passenger Train Derailment

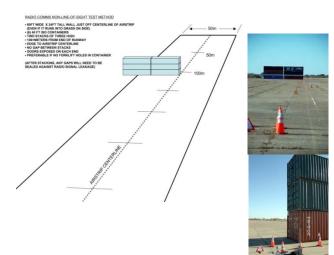
Passenger train derailment scenario

#128 Passenger Train Derailment

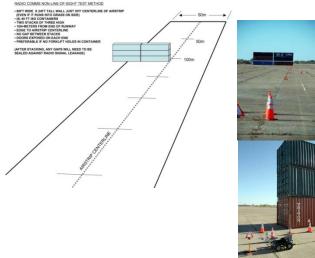
Passenger train derailment scenario

Lake / Dock

Underwater Scenario


Lake / Dock

Underwater Scenario


Off-Site Riverside Airstrip

Radio Comms Non-line of Sight Test Method

17

Off-Site Riverside Airstrip

Radio Comms Non-line of Sight Test Method

Mapping Scenarios

#134 Theater Building:

This building showcases two emerging test methods used to evaluate the performance of robotic mapping technologies. The Wall Maze and Tube Maze are testing apparatuses designed to challenge mapping technologies over potential failure conditions.

Wall Maze Test Method

Tube Maze Test Method

#130 Pancake House:

This building embeds the Tunnel Test Method, another emerging test method for robotic mapping, to create a scenario that evaluates a robots ability to map three-dimensional space in environments that may not contain distinguishable features.

Tunnel Test Method

Pancake House with Tunnel

Mapping Scenarios

#134 Theater Building:

This building showcases two emerging test methods used to evaluate the performance of robotic mapping technologies. The Wall Maze and Tube Maze are testing apparatuses designed to challenge mapping technologies over potential failure conditions.

Wall Maze Test Method

Tube Maze Test Method

#130 Pancake House:

This building embeds the Tunnel Test Method, another emerging test method for robotic mapping, to create a scenario that evaluates a robots ability to map three-dimensional space in environments that may not contain distinguishable features.

Tunnel Test Method

Pancake House with Tunnel

Mapping in Scenarios Cont.

#128 Passenger Train Derailment

The scenario combines emerging test methods used to evaluate the mobility of robotic platforms to assess how complex terrain in variable environmental conditions (indoor and outdoor) will impact the ability of a robot to make maps.

Passenger Train Derailment

#129 The Dwelling:

Inside Passenger Train

Mapping in Scenarios Cont.

#128 Passenger Train Derailment

The scenario combines emerging test methods used to evaluate the mobility of robotic platforms to assess how complex terrain in variable environmental conditions (indoor and outdoor) will impact the ability of a robot to make maps.

Passenger Train Derailment

Inside Passenger Train

#129 The Dwelling:

This building houses partial mazes in operationally relevant environments to create a scenario that explores the ability of a robot to create maps in unknown environments containing undefined features and shape primitives.

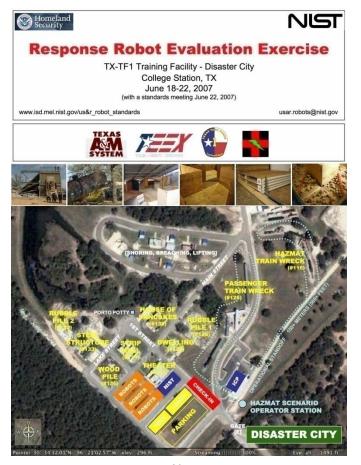
The Dwelling

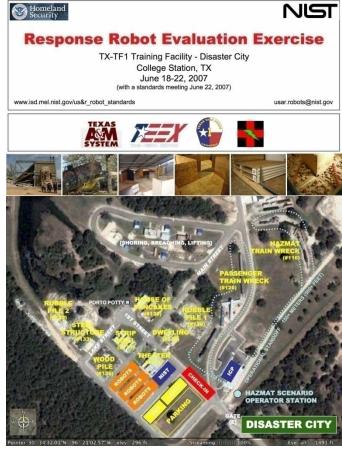
Partial Mazes in Scenarios

undefined features and shape primitives.

The Dwelling

Partial Mazes in Scenario


This building houses partial mazes in operationally relevant


robot to create maps in unknown environments containing

environments to create a scenario that explores the ability of a

Disaster City June 18-22, 2007

Disaster City June 18-22, 2007

Event Introduction

The fourth in a series of DHS/NIST Response Robot Evaluation Exercises for FEMA urban search and rescue (US&R) teams is hosted at the Texas Task Force 1 (TX-TF1) training facility known as **Disaster City** located at Texas A&M University, College Station, TX. All applicable robots were invited to take part in this exercise, which will capture robot performance data within emerging standard robot test methods and operationally relevant practice scenarios. Practice scenarios feature ground robots working in confined spaces within a partially collapsed structure along with down-range reconnaissance of two train wrecks; one a hazardous materials train and the other a passenger train from an operational stand-off greater than 150m/500ft. Other practice scenarios will also be available.

The robots used in these scenarios should deploy any or all appropriate sensors such as: color cameras, two-way audio, thermal imagers, chemical sensors, 3D mapping, GPS/GIS location, and/or other useful capabilities such as payloads, manipulators, etc. General descriptions of the robots that were sought are as follows, but are not limited to:

- Ground based portable robots that can circumnavigate large unknown situations (i.e. around the train derailments).
- Highly agile, man-packable robots that can lead responders through complex environments (i.e. the buildings and rubble piles).
- Confined space accessible robots for deployment into subhuman size voids or be thrown into/over inaccessible area
- Wall climbing robots for surveillance from elevated vantage points

Event Introduction

The fourth in a series of DHS/NIST Response Robot Evaluation Exercises for FEMA urban search and rescue (US&R) teams is hosted at the Texas Task Force 1 (TX-TF1) training facility known as **Disaster City** located at Texas A&M University, College Station, TX. All applicable robots were invited to take part in this exercise, which will capture robot performance data within emerging standard robot test methods and operationally relevant practice scenarios. Practice scenarios feature ground robots working in confined spaces within a partially collapsed structure along with down-range reconnaissance of two train wrecks; one a hazardous materials train and the other a passenger train from an operational stand-off greater than 150m/500ft. Other practice scenarios will also be available.

The robots used in these scenarios should deploy any or all appropriate sensors such as: color cameras, two-way audio, thermal imagers, chemical sensors, 3D mapping, GPS/GIS location, and/or other useful capabilities such as payloads, manipulators, etc. General descriptions of the robots that were sought are as follows, but are not limited to:

- Ground based portable robots that can circumnavigate large unknown situations (i.e. around the train derailments).
- Highly agile, man-packable robots that can lead responders through complex environments (i.e. the buildings and rubble piles).
- Confined space accessible robots for deployment into subhuman size voids or be thrown into/over inaccessible area
- Wall climbing robots for surveillance from elevated vantage points

Event Robots - 2007

Robot Name (by size)	Company	Robot Name (by s
Ground Robots		Ground Robots
Eyeball	Remington Tech	Eyeball
ToughBot	Omnitech Robotics	ToughBot
Active Scope Camera	Tohoku University	Active Scope Came
Dragon Runner	Automatika	Dragon Runner
BomBot	WVHTC	BomBot
BomBot 2	WVHTC	BomBot 2
Marv	Mesa Robotics	Marv
Hero	First-Response Robotics	Hero
PackBot EOD	iRobot	PackBot EOD
PackBot Explorer	iRobot	PackBot Explorer
Matilda	Mesa Robotics	Matilda
Modular Log. Platform	Segway	Modular Log. Platfor
Talon	Foster-Miller	Talon
Talon Hazmat	Foster-Miller	Talon Hazmat
RMP 200	Segway	RMP 200
RMP 400	Segway	RMP 400
TeleMax	TeleRob	TeleMax
Vall Climbers		Wall Climbers
VMRP	Vortex	VMRP
erial Robots		Aerial Robots
AirRobot	AirRobot	AirRobot

Event Robots - 2007

ne (by size) ots	Company
015	Remington Tech
	Omnitech Robotics
pe Camera	Tohoku University
Inner	Automatika
	WVHTC
	WVHTC
	Mesa Robotics
	First-Response Robotics
OD	iRobot
xplorer	iRobot
	Mesa Robotics
og. Platform	Segway
	Foster-Miller
mat	Foster-Miller
	Segway
	Segway
	TeleRob
'S	
	Vortex
S	
	AirRobot

Site Map

Site Map

Maryland TF-1 August 19-21, 2006

Event Introduction

The third in a series of response robot informal evaluation exercises for DHS/FEMA US&R teams was hosted at the Montgomery County Fire Rescue Training Academy in Rockville, Maryland (near Washington DC). This event finalized the test methods targeted for the initial (Wave 1) set of standards as well as initiated experimentation with onboard payloads, especially for Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) sensing. Therefore, emphasis was on (a) robots that could address the deployment categories relevant to Wave 1 standards and (b) deploying CBRNE sensors on these robots. The three robot deployment categories selected by responders to be emphasized in Wave 1 are: ground peek robots that are small and throwable, ground wide-area survey robots that can traverse non-collapsed structures or areas external to the collapse, and aerial survey or loiter robots. Manufacturers of robots, purchasable and/or developmental, that can address these areas, were invited to take part in this exercise, which will highlight operationally relevant US&R scenarios.

Maryland Task Force 1 Training Facility

Event Introduction

The third in a series of response robot informal evaluation exercises for DHS/FEMA US&R teams was hosted at the Montgomery County Fire Rescue Training Academy in Rockville, Maryland (near Washington DC). This event finalized the test methods targeted for the initial (Wave 1) set of standards as well as initiated experimentation with onboard payloads, especially for Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) sensing. Therefore, emphasis was on (a) robots that could address the deployment categories relevant to Wave 1 standards and (b) deploying CBRNE sensors on these robots. The three robot deployment categories selected by responders to be emphasized in Wave 1 are: ground peek robots that are small and throwable. ground wide-area survey robots that can traverse non-collapsed structures or areas external to the collapse, and aerial survey or loiter robots. Manufacturers of robots, purchasable and/or developmental, that can address these areas, were invited to take part in this exercise, which will highlight operationally relevant US&R scenarios.

Maryland Task Force 1 Training Facility

Event Robots - 2006

Robot Name (by size)	Company
Ground Robots	
Eyeball	Remington Tech
ToughBot	Omnitech Robotics
Iris	Toin
LRV	Applied Research
VGTV-Extreme	Inuktun
Dragon Runner	Automatika
BomBot	WVHTC
Marv	Mesa Robotics
Soryu	IRS
Soryu V	IRS
PackBot EOD	iRobot
PackBot Explorer	iRobot
Hibiscus	Toin
Cphea	Toin
Shinobi	Univer. Electro Co
Matilda	Mesa Robotics
ATRV mini	Idaho National Lab
Talon	Foster-Miller
Mini-Andros II	Remotec
Andros F6A	Remotec
Boz I	BOZ Robotics
Wall Climbers	
VMRP	Vortex
NanoMag	Inuktun
Aerial Robots	
Blimp	ARACAR
AirRobot	AirRobot
Yamaha Heliocoper	Skeyes Unlimited

on Tech h Robotics Research Assoc. ika obotics Electro Comm. obotics ational Lab liller botics

Event Robots - 2006

Robot Name (by size)	Company
Ground Robots	
Eyeball	Remington Tech
ToughBot	Omnitech Robotics
Iris	Toin
LRV	Applied Research Assoc.
VGTV-Extreme	Inuktun
Dragon Runner	Automatika
BomBot	WVHTC
Marv	Mesa Robotics
Soryu	IRS
Soryu V	IRS
PackBot EOD	iRobot
PackBot Explorer	iRobot
Hibiscus	Toin
Cphea	Toin
Shinobi	Univer. Electro Comm.
Matilda	Mesa Robotics
ATRV mini	Idaho National Lab
Talon	Foster-Miller
Mini-Andros II	Remotec
Andros F6A	Remotec
Boz I	BOZ Robotics
Wall Climbers	
VMRP	Vortex
NanoMag	Inuktun
Aerial Robots	
Blimp	ARACAR
AirRobot	AirRobot
Yamaha Heliocoper	Skeyes Unlimited

Site Overview

Site Overview

Disaster City April 4-6, 2006

Disaster City April 4-6, 2006

Event Introduction

The second in a series of response robot evaluation exercises for DHS/FEMA US&R teams was hosted at the TX-TF1 training facility known as Disaster City located at Texas A&M University, College Station, TX. All applicable robots and supporting technologies (e.g., sensors), purchasable and/or developmental, were invited to take part in this exercise, which highlighted operationally relevant US&R scenarios specifically devised for ground, aerial, and underwater response robots. Based on their experiences deploying robots within the training scenarios, responders selected three robot categories as being the focus deployment types for the development of the Wave 1 standards. These are small throw-able "peek bots;" wide-area ground survey robots; and aerial loiter/survey robots.

Event Introduction

The second in a series of response robot evaluation exercises for DHS/FEMA US&R teams was hosted at the TX-TF1 training facility known as Disaster City located at Texas A&M University, College Station, TX. All applicable robots and supporting technologies (e.g., sensors), purchasable and/or developmental, were invited to take part in this exercise, which highlighted operationally relevant US&R scenarios specifically devised for ground, aerial, and underwater response robots. Based on their experiences deploying robots within the training scenarios, responders selected three robot categories as being the focus deployment types for the development of the Wave 1 standards. These are small throw-able "peek bots;" wide-area ground survey robots; and aerial loiter/survey robots.

Event Robots - 2006

Robot Name (by size)

Company

Remington Tech

Ground Robots
Eyeball
ToughBot
VGTV-Extreme
BomBot
Marv
PackBot EOD
PackBot Explorer
Matilda
Chaos
Talon
Mini-Andros II
Andros F6A
TeleMax
PackBot Scout
Sneaky
Wall Climbers
VMRP
NanoMag

Aerial Robots

Blimp Nighthawk Dragon Eye CyberBug Raven Evolution-XTS Flying Bassett Wasp

Aquatic Robots

Pro III

Omnitech Robotics
Inuktun
WVHTC
Mesa Robotics
iRobot
iRobot
Mesa Robotics
Autonomous Solutions, Inc.
Foster-Miller
Remotec
Remotec
TeleRob
iRobot
M-Bots
Vortex

Inuktun ARACAR

Applied Research Assoc. AeroVironment, Inc. Cyber Defense Systems, Inc. AeroVironment, Inc. L-3 BAI Aerosystems, Inc Univ. of AL – Huntsville AeroVironment, Inc.

VideoRay, LLC 30

Event Robots - 2006

Robot Name (by size)	Company
Ground Robots	
Eyeball	Remington
ToughBot	Omnitech R
VGTV-Extreme	Inuktun
BomBot	WVHTC
Marv	Mesa Robo
PackBot EOD	iRobot
PackBot Explorer	iRobot
Matilda	Mesa Robo
Chaos	Autonomou
Talon	Foster-Mille
Mini-Andros II	Remotec
Andros F6A	Remotec
TeleMax	TeleRob
PackBot Scout	iRobot
Sneaky	M-Bots
Wall Climbers	
VMRP	Vortex
NanoMag	Inuktun
Aerial Robots	
Blimp	ARACAR
Nighthawk	Applied Res
Dragon Eye	AeroVironm
CyberBug	Cyber Defe
Raven	AeroVironm
Evolution-XTS	L-3 BAI Aer
Flying Bassett	Univ. of AL
Wasp	AeroVironm
Aquatic Robots	
Pro III	VideoRay, I

emington Tech minitech Robotics nuktun /VHTC lesa Robotics Robot lesa Robotics utonomous Solutions, Inc. oster-Miller emotec eleRob Robot I-Bots

Applied Research Assoc. AeroVironment, Inc. Cyber Defense Systems, Inc. AeroVironment, Inc. L-3 BAI Aerosystems, Inc Univ. of AL – Huntsville AeroVironment, Inc.

VideoRay, LLC 30

Site Map

Site Map

Safety	35	Safety 35
Test Methods	37	Test Methods 37
Ground Robots	71	Ground Robots 71
Wall Climbers 157		Wall Climbers 157
Aerial Robots	163	Aerial Robots 163
Aquatic Robots	187	Aquatic Robots 187
Sensors ³³	191	Sensors 191 ³³

Safety

Safety

Safety of all personnel participating in this event is our first concern. The fact that we have robotics personnel generally unaccustomed to working within the hazardous environments at these US&R training sites is particularly problematic. Having emergency responders generally unaccustomed to working with robots is also a concern. Please follow these simple guidelines:

 Appropriate personal protective equipment (PPE) must be worn at all times while on site (see associated page on PPE). Compliance with PPE rules are mandatory.

• Rubble piles and other difficult scenarios present the most risk to novices. If your robot needs to be extracted, please ask your associated emergency responder to retrieve it.

 Always maintain awareness of others working within your scenario and communicate your intentions *before* doing whatever you have in mind.

• Robots can do unpredictable things; the bigger/heavier the robot the more space you should allow it when operating. Always verify that the robot is powered off before interacting with it. Never stick your fingers into wheels, tracks, manipulator pinch points, etc. while the robot is powered on. Remotely teleoperated robots may be the most dangerous because the remote operator may not know you decided to perform on-the-spot maintenance! Always familiarize yourself with the EMERGENCY STOP procedures first -- and last -before interacting with or operating robots. Some implementations are more predictable than others.

• If you see anything you consider unsafe in our environment, please inform the Test Director or any emergency responder on site, and let's discuss it at the daily after action briefing to be sure every potential hazard is addressed.

· Everybody on site is a safety officer!

Safety

Safety of all personnel participating in this event is our first concern. The fact that we have robotics personnel generally unaccustomed to working within the hazardous environments at these US&R training sites is particularly problematic. Having emergency responders generally unaccustomed to working with robots is also a concern. Please follow these simple guidelines:

• Appropriate personal protective equipment (PPE) must be worn at all times while on site (see associated page on PPE). Compliance with PPE rules are mandatory.

• Rubble piles and other difficult scenarios present the most risk to novices. If your robot needs to be extracted, please ask your associated emergency responder to retrieve it.

 Always maintain awareness of others working within your scenario and communicate your intentions *before* doing whatever you have in mind.

 Robots can do unpredictable things; the bigger/heavier the robot the more space you should allow it when operating. Always verify that the robot is powered off before interacting with it. Never stick your fingers into wheels, tracks, manipulator pinch points, etc. while the robot is powered on. Remotely teleoperated robots may be the most dangerous because the remote operator may not know you decided to perform on-the-spot maintenance! Always familiarize yourself with the EMERGENCY STOP procedures first -- and last -before interacting with or operating robots. Some implementations are more predictable than others.

• If you see anything you consider unsafe in our environment, please inform the Test Director or any emergency responder on site, and let's discuss it at the daily after action briefing to be sure every potential hazard is addressed.

· Everybody on site is a safety officer!

Personal Protective Equipment

Personal protective equipment (PPE) is required for working within any US&R scenario at the site. People in street clothes or without helmets/gloves/etc as shown below are limited to paved roads only. If you are working within a scenario, you must wear ALL the equipment shown below. Compliance with these personal protective equipment rules are mandatory - it is standard practice for US&R environments.

• Helmet

Hard hats are okay. We have some to borrow or you can purchase at www.thefirestore.com for \$75 and up.

• Ear protection We'll supply these.

• Eye protection Sunglasses are okay.

- Long sleeve shirt
- Work gloves
- Long pants Army surplus stores sell typical BDU and EMT pants.

Boots
 Preferably steel toe.

Additional protective padding for knees and elbows is optional, but good for rubble piles.

Personal Protective Equipment

Personal protective equipment (PPE) is required for working within any US&R scenario at the site. People in street clothes or without helmets/gloves/etc as shown below are limited to paved roads only. If you are working within a scenario, you must wear ALL the equipment shown below. Compliance with these personal protective equipment rules are mandatory - it is standard practice for US&R environments.

Helmet

Hard hats are okay. We have some to borrow or you can purchase at www.thefirestore.com for \$75 and up.

• Ear protection We'll supply these.

• Eye protection Sunglasses are okay.

- Long sleeve shirt
- Work gloves
- Long pants Army surplus stores sell typical BDU and EMT pants.

• Boots Preferably steel toe.

Additional protective padding for knees and elbows is optional, but good for rubble piles.

Test Methods

Test Methods

Test Methods/Practices and Suites:

Each is described in a form and organized into suites.

Standardization levels

- Standard Test Method 船牌
- Standard Practice, Terminology
- Validating--may be indicated with an ASTM Work Item (WK) designation
- Ρ Prototype

* The majority progress from Practice to Test Method, but some are Practices or Terminology in nature, as specifically noted.

Terminology

Version 2007a*

Logistics Suite

Cache Packaging, Setup, Weight, Tools

Sensing Suite

Video: Acuity and Field of View

- Video: Directed Search
- V Video: Underpass Search
- Audio: One/Two Way Audio V
- Р Laser Range: Mapping

Mobility Suite

- Flat Dash and Tow (1 km) V
- Slalom: Flat Flooring (2, 4, 8 turns; 250m) V
- Slalom: Continuous Ramps (2, 4, 8 turns; 250m) V
- V Slalom: Crossing Ramps (2, 4, 8 turns; 250m)
- V Slalom: Symmetric Stepfields (2, 4 turns; 250m)
- V Gap Crossing (10 - 100 cm)
- V Pipe Step (10 - 100 cm)
- Stairs (30°, 35°, 40°, 45°; wood, steel) V
- V Inclined Plane (30°, 45°)
- Tow: Hitched Trailer (100m;1 turn) Р
- Tow: Hitched Drag (100m;1 turn)
- Tow: End-Effector Drag (100m;1 turn) Р
- V Confined Space (10 – 100 cm)
- * The standard is Practice/Terminology in nature and not a Test Method.

Test Methods/Practices and Suites:

Each is described in a form and organized into suites.

Standardization levels

- Standard Test Method 4517
- Standard Practice, Terminology
- V Validating--may be indicated with an ASTM Work Item (WK) designation
- Р Prototype

* The majority progress from Practice to Test Method, but some are Practices or Terminology in nature, as specifically noted.

Terminology

Version 2007a* (II)

Logistics Suite

Cache Packaging, Setup, Weight, Tools **()**

Sensing Suite

- Video: Acuity and Field of View
 - Video: Directed Search
- V Video: Underpass Search
- V Audio: One/Two Way Audio
- Р Laser Range: Mapping

Mobility Suite

- Flat Dash and Tow (1 km) V
- Slalom: Flat Flooring (2, 4, 8 turns; 250m) V
- Slalom: Continuous Ramps (2, 4, 8 turns; 250m) V
- V Slalom: Crossing Ramps (2, 4, 8 turns; 250m)
- V Slalom: Symmetric Stepfields (2, 4 turns; 250m)
- V Gap Crossing (10 - 100 cm)
- V Pipe Step (10 - 100 cm)
- V Stairs (30°, 35°, 40°, 45°; wood, steel)
- V Inclined Plane (30°, 45°)
- Tow: Hitched Trailer (100m;1 turn) Р
- Р Tow: Hitched Drag (100m;1 turn)
- Р Tow: End-Effector Drag (100m;1 turn)
- V Confined Space (10 – 100 cm)
- * The standard is Practice/Terminology in nature and not a Test Method.

Radio Comms Suite

- V Line-of-sight
- V Non line-of-sight
- P Structure & Tunnel Penetration
- P Urban Canyon

Energy/Power Suite

V Endurance

Human-System Interaction (HSI) Suite

- V Random Maze Search
- V Random Maze Navigation
- P Checklist Items

Mobile Manipulation Suite

- V Perception
- V Grasping
- P Door Opening

Maneuvering-Aerial Suite

V VTOL Station Keeping

Maneuvering-Aquatic Suite

V Underwater Navigation and Search

Safety/Environment Suite

V Washdown/Decontamination

Radio Comms Suite

- V Line-of-sight
- V Non line-of-sight
- P Structure & Tunnel Penetration
- P Urban Canyon

Energy/Power Suite

V Endurance

Test Methods

Human-System Interaction (HSI) Suite

- V Random Maze Search
- V Random Maze Navigation
- P Checklist Items

Mobile Manipulation Suite

- V Perception
- V Grasping
- P Door Opening

Maneuvering-Aerial Suite

V VTOL Station Keeping

Maneuvering-Aquatic Suite

V Underwater Navigation and Search

Safety/Environment Suite

V Washdown/Decontamination

Purpose

The goal of this effort is to facilitate emergency responders evaluations and comparisons of robots based on quantitative and statistically significant performance data, captured via running the standard test methods, to help guide purchasing decisions and understand deployment capabilities. The test methods also support operator proficiency training and foster development and hardening of advanced mobile robot capabilities.

General Scope

These suites of test methods are developed to characterize the capabilities of robots to be operated in human-scale. complex environments that feature variable lighting, temperature, terrains, etc. Ground, aerial, and aquatic robots are covered. The robots shall be teleoperated via a remote operator control unit (OCU) out of sight and sound of the test apparatuses, relying solely on the robot's communications capability. A robot shall use a single configuration (in traction mechanisms, manipulators, payloads, batteries, communications, etc.), for all the suites of test methods. Any variation in the configuration shall cause the entire suites to be retested. Assistive or autonomous capabilities that particular robots may have guipped with can be used for improved performance, efficiency, and survivability during tests. While developed for emergency response robots, these test methods may be applicable to other remotely controlled devices and in other application domains.

Apparatuses

The NIST team strives to use readily available, inexpensive, and easily specifiable material to furnish each test method with an apparatus, many of which specify targets, terrains, and tasks that are intentionally abstract to facilitate repeatable and reproducible performance data as required for the standardization process. These artifacts can be modified or replaced with more operationally representative examples while generally conforming to the same apparatus and method for training, practice, and comparison of results. This approach allows direct comparisons across different robot models and particular configurations of similar robot models.

Purpose

The goal of this effort is to facilitate emergency responders evaluations and comparisons of robots based on quantitative and statistically significant performance data, captured via running the standard test methods, to help guide purchasing decisions and understand deployment capabilities. The test methods also support operator proficiency training and foster development and hardening of advanced mobile robot capabilities.

General Scope

These suites of test methods are developed to characterize the capabilities of robots to be operated in human-scale. complex environments that feature variable lighting, temperature, terrains, etc. Ground, aerial, and aquatic robots are covered. The robots shall be teleoperated via a remote operator control unit (OCU) out of sight and sound of the test apparatuses, relying solely on the robot's communications capability. A robot shall use a single configuration (in traction mechanisms, manipulators, payloads, batteries, communications, etc.), for all the suites of test methods. Any variation in the configuration shall cause the entire suites to be retested. Assistive or autonomous capabilities that particular robots may have guipped with can be used for improved performance, efficiency, and survivability during tests. While developed for emergency response robots, these test methods may be applicable to other remotely controlled devices and in other application domains.

Apparatuses

The NIST team strives to use readily available, inexpensive, and easily specifiable material to furnish each test method with an apparatus, many of which specify targets, terrains, and tasks that are intentionally abstract to facilitate repeatable and reproducible performance data as required for the standardization process. These artifacts can be modified or replaced with more operationally representative examples while generally conforming to the same apparatus and method for training, practice, and comparison of results. This approach allows direct comparisons across different robot models and particular configurations of similar robot models.

Performance Data Collections

Test methods are implemented as described in the Purposes, Apparatuses, Metrics, and Procedures sections. Performance data are collected through conducting the tests with statistically significant numbers of trials, using the associated evaluation forms. The numbers of trials are determined by ASTM with input from all participants, using statistical principles and considering operational practicality. The baseline performance data are obtained from testing "expert" operators, as designated by the robot developers. Performance data collected from novice populations are used to evaluate training requirements, they also provide average performance expectations in field practices.

Key Words

- <u>complete</u>: when robot finishes the specified procedure, a traverse, repetition, or test and the footprint lands on the end point and the appendages are in the original, retracted positions.
- <u>corner</u>: a path feature for testing ground robots, formed by two wall elements connecting on the edges by 90 degrees. A corner is <u>visited</u> when robot's position projects both wall elements.
- flat floor element: a standardized unit of flat surface made of two OSB boards separated by 10 x 10 cm (4 x 4 in) solid wood posts, with the overall size of 1200 x 1200 x 10 cm (48 x 48 x 4 in).
- <u>OSB plywood board</u>: OSB stands for Oriented Strand Board. The material provides a frictional surface similar to dust covered concrete. It is commonly available in U.S. in the size of 1200 x 2400 cm (48 x 96 in).
- remote teleoperation: when teleoperating the robot from a non light-of-sight location and without the effect of sound.
- <u>ramp</u>: a terrain type for testing ground robots where the floor elevation increases in a 15 degree angle. A <u>ramp element</u> is a standardized unit for <u>ramp</u> with the surface area of 1.2 x 1.2 m (4' x 4'). A <u>half ramp</u> <u>element</u> is also used where the elevating direction extends only half the distance, 60cm (2').
- <u>repetition</u>: when robot completes all the tasks in the test once and is back on the ending point; is used typically when a test requires to be run multiple times to gain significance.
- step field: a terrain type for testing ground robots where the floor is covered with rolls of 10 x 10 cm (4 x 4 in) solid wood posts. The heights of the wood posts vary with respect to designed patterns. The heights of the posts are standardized in 10, 20, and 40 cm. The size of a step field element or step field pallet is 1.2 x 1.2 m (4' x 4').

41

Performance Data Collections

Test methods are implemented as described in the Purposes, Apparatuses, Metrics, and Procedures sections. Performance data are collected through conducting the tests with statistically significant numbers of trials, using the associated evaluation forms. The numbers of trials are determined by ASTM with input from all participants, using statistical principles and considering operational practicality. The baseline performance data are obtained from testing "expert" operators, as designated by the robot developers. Performance data collected from novice populations are used to evaluate training requirements, they also provide average performance expectations in field practices.

Key Words

- <u>complete</u>: when robot finishes the specified procedure, a traverse, repetition, or test and the footprint lands on the end point and the appendages are in the original, retracted positions.
- <u>corner</u>: a path feature for testing ground robots, formed by two wall elements connecting on the edges by 90 degrees. A corner is <u>visited</u> when robot's position projects both wall elements.
- flat floor element: a standardized unit of flat surface made of two OSB boards separated by 10 x 10 cm (4 x 4 in) solid wood posts, with the overall size of 1200 x 1200 x 10 cm (48 x 48 x 4 in).
- <u>OSB plywood board</u>: OSB stands for Oriented Strand Board. The material provides a frictional surface similar to dust covered concrete. It is commonly available in U.S. in the size of 1200 x 2400 cm (48 x 96 in).
- remote teleoperation: when teleoperating the robot from a non light-of-sight location and without the effect of sound.
- <u>ramp</u>: a terrain type for testing ground robots where the floor elevation increases in a 15 degree angle. A <u>ramp element</u> is a standardized unit for <u>ramp</u> with the surface area of 1.2 x 1.2 m (4' x 4'). A <u>half ramp</u> <u>element</u> is also used where the elevating direction extends only half the distance, 60cm (2').
- <u>repetition</u>: when robot completes all the tasks in the test once and is back on the ending point; is used typically when a test requires to be run multiple times to gain significance.
- step field: a terrain type for testing ground robots where the floor is covered with rolls of 10 x 10 cm (4 x 4 in) solid wood posts. The heights of the wood posts vary with respect to designed patterns. The heights of the posts are standardized in 10, 20, and 40 cm. The size of a step field element or step field pallet is 1.2 x 1.2 m (4' x 4').

Cache Packaging, Setup, Weight, Tools Logistics Suite

Purpose

This standard practice is intended to quantitatively evaluate the cache packaging attributes of deployable robotic systems intended to be compatible with transportation and storage procedures prescribed by the Federal Emergency Management Agency (FEMA) Urban Search & Rescue (US&R) Task Force Teams.

Metrics

Number of packets and weight, setup time, tools needed for repair and maintenance at the base of operation, downrange weight

Cache Packaging, Setup, Weight, Tools

Logistics Suite

Purpose

This standard practice is intended to quantitatively evaluate the cache packaging attributes of deployable robotic systems intended to be compatible with transportation and storage procedures prescribed by the Federal Emergency Management Agency (FEMA) Urban Search & Rescue (US&R) Task Force Teams.

Metrics

Number of packets and weight, setup time, tools needed for repair and maintenance at the base of operation, downrange weight

E2592-07

Standard Practice for Evaluating Cache Packaged Weight and Volume of Robots for Urban Search and Rescue

E2592-07

Standard Practice for Evaluating Cache Packaged Weight and Volume of Robots for Urban Search and Rescue

Packing cases or pallets qualified for use by FEMA US&R Task Forces.

Procedure

- 1. Note the number and type of packaging containers necessary for the robot to deploy for 10 days, without re-supply for the first 72 hours.
- 2. Time the setup process until ready to go down range.
- 3. Note the tools needed to perform setup and repair and take a picture of the tool set.
- 4. Weigh the robot and operator interface unit (OCU).
- 5. Take picture of robot and OCU in picture taking station.

Apparatus

Packing cases or pallets qualified for use by FEMA US&R Task Forces.

Test Methods

- 1. Note the number and type of packaging containers necessary for the robot to deploy for 10 days, without re-supply for the first 72 hours.
- 2. Time the setup process until ready to go down range.
- 3. Note the tools needed to perform setup and repair and take a picture of the tool set.
- 4. Weigh the robot and operator interface unit (OCU).
- 5. Take picture of robot and OCU in picture taking station.

Visual Acuity and Field of View Sensing Suite

Purpose

The purpose of this test method is to quantitatively evaluate the subject parameters isolated from the robot's remote teleoperation sensing capability. The following key parameters of the video systems are evaluated: visual acuity, field of view (FOV), and zooming.

Metrics

Distances in meters or Snelling fraction for visual acuity, total angular ranges in degrees for field of view.

E2566-08

Standard Test Method for Determining Visual Acuity and Field of View of On-Board Video Systems for Teleoperation of Robots for Urban Search and Rescue Applications

Visual Acuity and Field of View Sensing Suite

Purpose

The purpose of this test method is to quantitatively evaluate the subject parameters isolated from the robot's remote teleoperation sensing capability. The following key parameters of the video systems are evaluated: visual acuity, field of view (FOV), and zooming.

Metrics

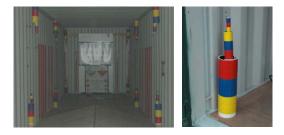
Distances in meters or Snelling fraction for visual acuity, total angular ranges in degrees for field of view.

E2566-08

Standard Test Method for Determining Visual Acuity and Field of View of On-Board Video Systems for Teleoperation of Robots for Urban Search and Rescue Applications

This test apparatus is implemented in a 12 x 2.4 m (40' x 8') standard ISO container . The far vision visual acuity Eye charts and HAZMAT labels are posted at the wall at the far side. The corresponding standard testing distance for far vision acuity tests, 6m, are marked on the floor. The near vision visual chart is portable and is to be placed along the marker and 40cm toward the side wall. The FOV lines are marked on the wall at the far side of the Container.

Procedure


- 0. Administrator note the robotic features as per the form, the lux level of lighted and dark charts.
- 1. Place the robot to behind the 20m line.
- Read the aerial, far field, and near field charts. Circle the decimal equivalent for the smallest correct line read normally and with zoom lens in ambient light.
- 3. Operator teleoperate the robot to turn 90 degrees and read the near field chart.
- 4. Repeat 1-3 with illumination <1 lux.

Apparatus

This test apparatus is implemented in a $12 \times 2.4 \text{ m}$ (40' x 8') standard ISO container. The far vision visual acuity Eye charts and HAZMAT labels are posted at the wall at the far side. The corresponding standard testing distance for far vision acuity tests, 6m, are marked on the floor. The near vision visual chart is portable and is to be placed along the marker and 40cm toward the side wall. The FOV lines are marked on the wall at the far side of the Container.

- 0. Administrator note the robotic features as per the form, the lux level of lighted and dark charts.
- 1. Place the robot to behind the 20m line.
- Read the aerial, far field, and near field charts. Circle the decimal equivalent for the smallest correct line read normally and with zoom lens in ambient light.
- 3. Operator teleoperate the robot to turn 90 degrees and read the near field chart.
- 4. Repeat 1-3 with illumination <1 lux.

Directed Search Sensing Suite

Purpose

The purpose of this test method is to quantitatively evaluate robot's ability to provide video and operator's subsequent ability to gain spatial awareness during teleoperation. Objects are displayed in a variety of spatial and temporal settings for evaluating the robot's video capability.

Metrics

Number of light sources that are correctly identified in the duration of 5 seconds of shining, number of objects that are correctly identified in the given 10 minutes

Directed Search Sensing Suite

<u>Purpose</u>

The purpose of this test method is to quantitatively evaluate robot's ability to provide video and operator's subsequent ability to gain spatial awareness during teleoperation. Objects are displayed in a variety of spatial and temporal settings for evaluating the robot's video capability.

Metrics

Number of light sources that are correctly identified in the duration of 5 seconds of shining, number of objects that are correctly identified in the given 10 minutes

<u>Apparatus</u>

This test apparatus is implemented in a $12 \times 2.4 \text{ m} (40' \times 8')$ standard ISO container. Two settings are to be implemented. First, a set of standardized objects is used and individual objects can be randomly ordered. Five equally spaced logical cross-sections along the depth of the Container are devised. A set of the objects is placed at each corner of each of the cross-section. Second, light bulbs are to be placed at the randomly selected corners. A 15 degree ramp is placed at the center of the Container.

Procedure

Test 1:

- 1. Operator teleoperate the robot to the center of the Container and on the ramp.
- Administrator turn on the light bulbs located at the randomly pre-selected corners for 5 seconds. Operator to report the number of identified source.

Test 2:

1. Operator identify all the pre-located objects in terms of all the color and size settings, in dark.

Apparatus

This test apparatus is implemented in a $12 \times 2.4 \text{ m} (40' \times 8')$ standard ISO container. Two settings are to be implemented. First, a set of standardized objects is used and individual objects can be randomly ordered. Five equally spaced logical cross-sections along the depth of the Container are devised. A set of the objects is placed at each corner of each of the cross-section. Second, light bulbs are to be placed at the randomly selected corners. A 15 degree ramp is placed at the center of the Container.

Procedure

Test 1:

- 1. Operator teleoperate the robot to the center of the Container and on the ramp.
- 2. Administrator turn on the light bulbs located at the randomly pre-selected corners for 5 seconds. Operator to report the number of identified source.

Test 2:

1. Operator identify all the pre-located objects in terms of all the color and size settings, in dark.

Underpass Search

Sensing Suite

Underpass Search

Sensing Suite

Purpose

The purpose of this test method is to quantitatively evaluate robot's ability to provide video, in a dark environment that possesses minimal features, to facilitate operator's ability to gain spatial awareness and to conduct teleoperated search in the ceiling area.

Metrics

Number of holes visited; whether reaching the end point or not; time used; number of targets correctly and incorrectly identified, missed, or multiply identified.

Purpose

The purpose of this test method is to quantitatively evaluate robot's ability to provide video, in a dark environment that possesses minimal features, to facilitate operator's ability to gain spatial awareness and to conduct teleoperated search in the ceiling area.

Metrics

Number of holes visited; whether reaching the end point or not; time used; number of targets correctly and incorrectly identified, missed, or multiply identified.

Test Methods

Apparatus

This test apparatus is a enclosed space of $6 \times 2.4 \times 0.6$ m (20 x 8 x 2 ft) that is made from the OSB plywood boards for ceiling and floor that are separated with 10 x 5 cm (4 x 2 in) solid wood posts. The ceiling and internal wall are further covered with black felt for enhanced textual uniformity, thus providing minimal visual clues. The ceiling is implemented with N randomly-spaced holes of 15 cm diameter and hinged doors. A gallon-size metal paint container is used behind the hinged door for a sensory targets (HAZMAT signs, Snell Charts) to be placed for the search and identification testing purposes. All the material is inexpensive and commonly available.

Procedure

- 1. Operator to teleoperate the robot to the starting point.
- 2. Conduct search in the ceiling. Open the hinged door upon detecting one. Identify the object.
- 3. Conduct systematic traverse and repeat 2.
- 4. Complete the test once the end point is reached.

Apparatus

This test apparatus is a enclosed space of $6 \times 2.4 \times 0.6$ m (20 x 8 x 2 ft) that is made from the OSB plywood boards for ceiling and floor that are separated with 10 x 5 cm (4 x 2 in) solid wood posts. The ceiling and internal wall are further covered with black felt for enhanced textual uniformity, thus providing minimal visual clues. The ceiling is implemented with N randomly-spaced holes of 15 cm diameter and hinged doors. A gallon-size metal paint container is used behind the hinged door for a sensory targets (HAZMAT signs, Snell Charts) to be placed for the search and identification testing purposes. All the material is inexpensive and commonly available.

- 1. Operator to teleoperate the robot to the starting point.
- 2. Conduct search in the ceiling. Open the hinged door upon detecting one. Identify the object.
- 3. Conduct systematic traverse and repeat 2.
- 4. Complete the test once the end point is reached.

One/Two Way Audio Sensing Suite

One/Two Way Audio Sensing Suite

Purpose

The purpose of this test method is to quantitatively evaluate robot's ability to provide the operator with audio in teleoperation.

Metrics

Number of the words that are correctly identified in the 5 minute time limit.

Purpose

The purpose of this test method is to quantitatively evaluate robot's ability to provide the operator with audio in teleoperation.

<u>Metrics</u>

Number of the words that are correctly identified in the 5 minute time limit.

This test apparatus consists of sets of pre-recorded audio pronunciation of standardized rhyming words. Software program on a laptop is used to randomly select the words to be played. a speaker installed at near the door and at the other end of an 240 x 1600 cm (8'x40') ISO container, in which the robot is tested. A word sheet consisting 25 groups of 6 words.

Procedure

- 1. Robot is to be teleoperated to the center of the ISO container and stationed in the marked area.
- Operator executes the software by hitting a key for a word to be randomly chosen, played, and transmitted back to the teleoperation station.
- The operator is to circle correct word of a six words grouping on the sheet
- 4. Repeat 2 until the time expires.
- 5. Operator compare the answers to the record and mark correct/incorrect.

Apparatus

This test apparatus consists of sets of pre-recorded audio pronunciation of standardized rhyming words. Software program on a laptop is used to randomly select the words to be played. a speaker installed at near the door and at the other end of an 240 x 1600 cm (8'x40') ISO container, in which the robot is tested. A word sheet consisting 25 groups of 6 words.

- 1. Robot is to be teleoperated to the center of the ISO container and stationed in the marked area.
- Operator executes the software by hitting a key for a word to be randomly chosen, played, and transmitted back to the teleoperation station.
- 3. The operator is to circle correct word of a six words grouping on the sheet
- 4. Repeat 2 until the time expires.
- 5. Operator compare the answers to the record and mark correct/incorrect.

Mapping Sensing Suite

Mapping Sensing Suite

Purpose

The purpose of this test method is to quantitatively evaluate robot's ability to acquire spatial awareness and develop maps for the areas that it is teleoperated to traverse.

Metrics

Completeness of the maps that the robot builds.

<u>Purpose</u>

The purpose of this test method is to quantitatively evaluate robot's ability to acquire spatial awareness and develop maps for the areas that it is teleoperated to traverse.

Metrics

Completeness of the maps that the robot builds.

This test apparatus is composed of a set of courses with designed characteristics. The first one, called Distinctive Features, is shared with the HSI-Random Maze Search test method. The second course, called Minimum Features, is a tunnel that is made from the OSB plywood boards and further covered with black felt for enhanced textual uniformity, thus providing minimal visual clues. The third one, called Occluded Features, is a continuous ramp field (to introduce orientation complexity) with plastic pipes of random lengths that are vertically planted at randomly selected locations. The pipes are to provide challenging features.

Procedure

- 1. Robot to be teleoperated to the starting point of the test curse.
- Robot to be teleoperated through out the entire course. The internal software is to build up the map of the test course as the robotic sensors detected.
- 3. Repeat 1 2 for the next test course until all courses are completed.

<u>Apparatus</u>

This test apparatus is composed of a set of courses with designed characteristics. The first one, called Distinctive Features, is shared with the HSI-Random Maze Search test method. The second course, called Minimum Features, is a tunnel that is made from the OSB plywood boards and further covered with black felt for enhanced textual uniformity, thus providing minimal visual clues. The third one, called Occluded Features, is a continuous ramp field (to introduce orientation complexity) with plastic pipes of random lengths that are vertically planted at randomly selected locations. The pipes are to provide challenging features.

Test Methods

Procedure

- 1. Robot to be teleoperated to the starting point of the test curse.
- 2. Robot to be teleoperated through out the entire course. The internal software is to build up the map of the test course as the robotic sensors detected.
- 3. Repeat 1 2 for the next test course until all courses are completed.

53

Flat Dash and Tow Mobility Suite

Purpose

The purpose of this test method is to quantitatively evaluate a robot's speed on a flat surface, with or without a towing load and based on teleoperation.

Metrics

Complete or fail the traverse; the number of segments completed if fails; time spent to succeed each path

Flat Dash and Tow Mobility Suite

Purpose

The purpose of this test method is to quantitatively evaluate a robot's speed on a flat surface, with or without a towing load and based on teleoperation.

<u>Metrics</u>

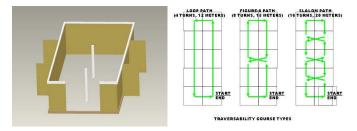
Complete or fail the traverse; the number of segments completed if fails; time spent to succeed each path

This test apparatus is flat-surface, straight path of 20m long, made either of concrete or the flat floor elements which, themselves, are made from $1200 \times 1200 \times 15$ mm (or $48 \times 48 \times 19/32$ in) oriented strand board (OSB) plywood boards. The OSB boards are inexpensive, commonly available, also provides a frictional surface similar to dust covered concrete.

A loading truck of 2.2 kg (5 lbs) with bottom fully in contact with the floor is used for towing . A set of standard weights of X kg

Procedure

- 1. Operator teleoperate the robot at the starting point.
- 2. Traverse straight with full speed until the entire footprint passes the end point. Note time.
- 3. Optionally, repeat 1-2 for 5 continuous trials. Note time.
- Administrator and operator to put the tow truck and an increment of X kg load on the back of the robot. Repeat 1-3 until robot unsuccessful.

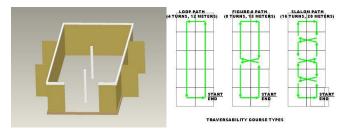

Apparatus

This test apparatus is flat-surface, straight path of 20m long, made either of concrete or the flat floor elements which, themselves, are made from $1200 \times 1200 \times 15$ mm (or $48 \times 48 \times 19/32$ in) oriented strand board (OSB) plywood boards. The OSB boards are inexpensive, commonly available, also provides a frictional surface similar to dust covered concrete.

A loading truck of 2.2 kg (5 lbs) with bottom fully in contact with the floor is used for towing . A set of standard weights of X kg

- 1. Operator teleoperate the robot at the starting point.
- 2. Traverse straight with full speed until the entire footprint passes the end point. Note time.
- 3. Optionally, repeat 1-2 for 5 continuous trials. Note time.
- Administrator and operator to put the tow truck and an increment of X kg load on the back of the robot. Repeat 1-3 until robot unsuccessful.

Slalom: Flat Flooring Mobility Suite


Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse required paths with challenging floor types and tight space.

<u>Metric</u>

Complete or incomplete the path, time spent to succeed the traverse.

Slalom: Flat Flooring Mobility Suite

Purpose

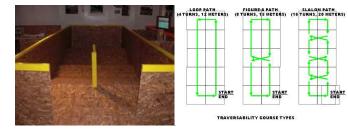
The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse required paths with challenging floor types and tight space.

<u>Metric</u>

Complete or incomplete the path, time spent to succeed the traverse.

This test apparatus is flat-floor concrete course which is enclosed by wall to form an inside area of 2.4 x 12 m. The wall is made of OSB plywood boards.

Procedure

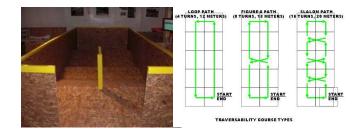

- 1. Place the robot the specified starting point.
- 2. Follow the path as specified.
- 3. If successful, repeat 1-2 for the next instructed path until completes all paths or when incompletes.

Apparatus

This test apparatus is flat-floor concrete course which is enclosed by wall to form an inside area of 2.4 x 12 m. The wall is made of OSB plywood boards.

- 1. Place the robot the specified starting point.
- 2. Follow the path as specified.
- 3. If successful, repeat 1-2 for the next instructed path until completes all paths or when incompletes.

Slalom: Continuous Ramp Mobility Suite


Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse required paths with challenging floor types and tight space.

Metric

Succeed or fail the path and time spent to succeed the traverse

Slalom: Continuous Ramp Mobility Suite

Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse required paths with challenging floor types and tight space.

<u>Metric</u>

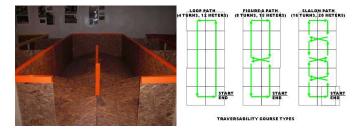
Succeed or fail the path and time spent to succeed the traverse

<u>Apparatus</u>

This test apparatus is made of 15 degree ramps and the enclosing wall. The ramps are placed in a single row on the floor with the pitch direction along the direction of the long wall. The high end connects to the next ramp's high end and the low end connects to the previous ramp's low end, thus form a continuous, saw-tooth shape terrain. The floor is enclosed by wall made of the OSB plywood boards. The encloses area has the size of $2.4 \times 12 \text{ m}$ (8 x 40 ft).

Procedure

- 1. Place the robot the specified starting point.
- 2. Follow the path as specified.
- 3. If successful, repeat 1-2 for the next instructed path until completes all paths or when incompletes.

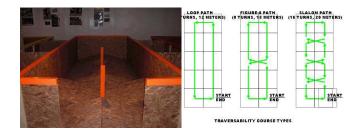

<u>Apparatus</u>

This test apparatus is made of 15 degree ramps and the enclosing wall. The ramps are placed in a single row on the floor with the pitch direction along the direction of the long wall. The high end connects to the next ramp's high end and the low end connects to the previous ramp's low end, thus form a continuous, saw-tooth shape terrain. The floor is enclosed by wall made of the OSB plywood boards. The encloses area has the size of $2.4 \times 12 \text{ m}$ (8 x 40 ft).

Test Methods

- 1. Place the robot the specified starting point.
- 2. Follow the path as specified.
- If successful, repeat 1-2 for the next instructed path until completes all paths or when incompletes.

Slalom: Crossing Ramp Mobility Suite


Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse required paths with challenging floor types and tight space.

<u>Metric</u>

Succeed or fail the path and time spent to succeed the traverse

Slalom: Crossing Ramp Mobility Suite

Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse required paths with challenging floor types and tight space.

<u>Metric</u>

Succeed or fail the path and time spent to succeed the traverse

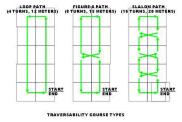
<u>Apparatus</u>

This test apparatus is made of 15 degree ramps and the enclosing wall. The ramps are placed on the floor with the pitch direction along the direction of the short wall. There are two ramps per row, interchanging from connecting on the high ends and on the low ends (Figure A), thus form a discontinuous, crossing terrain. The floor is enclosed by wall made of the OSB plywood boards. The encloses area has the size of 2.4 x 12 m (8 x 40 ft).

Procedure

- 1. Place the robot the specified starting point.
- 2. Follow the path as specified.
- 3. If successful, repeat 1-2 for the next instructed path until completes all paths or when incompletes.

Apparatus

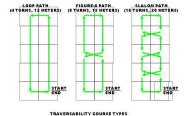

This test apparatus is made of 15 degree ramps and the enclosing wall. The ramps are placed on the floor with the pitch direction along the direction of the short wall. There are two ramps per row, interchanging from connecting on the high ends and on the low ends (Figure A), thus form a discontinuous, crossing terrain. The floor is enclosed by wall made of the OSB plywood boards. The encloses area has the size of 2.4 x 12 m (8 x 40 ft).

Test Methods

- 1. Place the robot the specified starting point.
- 2. Follow the path as specified.
- If successful, repeat 1-2 for the next instructed path until completes all paths or when incompletes.

Slalom: Symmetric Step Fields Mobility Suite

Purpose


The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse required paths with challenging floor types and tight space.

Metric

Succeed or fail the path and time spent to succeed the traverse

Slalom: Symmetric Step Fields Mobility Suite

Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse required paths with challenging floor types and tight space.

<u>Metric</u>

Succeed or fail the path and time spent to succeed the traverse

This test apparatus is made of symmetrical step fields and the enclosing wall. The step fields are placed on the floor in order to cover the whole floor. The floor is enclosed by wall made of the OSB plywood boards. The encloses area has the size of $2.4 \times 12 \text{ m}$ ($8 \times 40 \text{ ft}$).

Procedure

- 1. Place the robot the specified starting point.
- 2. Follow the path as specified.
- 3. If successful, repeat 1-2 for the next instructed path until completes all paths or when incompletes.

Apparatus

This test apparatus is made of symmetrical step fields and the enclosing wall. The step fields are placed on the floor in order to cover the whole floor. The floor is enclosed by wall made of the OSB plywood boards. The encloses area has the size of 2.4 x 12 m (8 x 40 ft).

Test Methods

- 1. Place the robot the specified starting point.
- 2. Follow the path as specified.
- 3. If successful, repeat 1-2 for the next instructed path until completes all paths or when incompletes.

Gap Crossing Mobility Suite

Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to cross horizontal gaps while traversing in tight space.

Metrics

Widest successful crossing (cm) for 5 continuous repetitions within a time limit (5 min)

Gap Crossing Mobility Suite

Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to cross horizontal gaps while traversing in tight space.

Metrics

Widest successful crossing (cm) for 5 continuous repetitions within a time limit (5 min)

This test apparatus is made of two <u>flat floor elements</u> that are placed side by side to form the gap, which is adjustable from 10cm through 100cm in 10cm increments.

Procedure

- 1. Place the robot on the starting platform facing the gap.
- 2. Cross the gap fully so that the entire robot is on the ending platform.
- 3. Return to the starting platform fully and at the starting position to complete one repetition.
- 4. Repeat 1-3 until all repetitions are completed.
- Increase the gap until unsuccessful in one of the repetitions. Note the last fully successful gap crossing as the maximum.

Apparatus

This test apparatus is made of two <u>flat floor elements</u> that are placed side by side to form the gap, which is adjustable from 10cm through 100cm in 10cm increments.

- 1. Place the robot on the starting platform facing the gap.
- 2. Cross the gap fully so that the entire robot is on the ending platform.
- 3. Return to the starting platform fully and at the starting position to complete one repetition.
- 4. Repeat 1-3 until all repetitions are completed.
- Increase the gap until unsuccessful in one of the repetitions. Note the last fully successful gap crossing as the maximum.

Pipe Step Mobility Suite

Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to surmount vertical obstacles while traversing in limited space. This is a hard-terrain mobility capability that Responders require. Limited edge traction introduced by rotate-able pipes emphasizes how well robot's mobility mechanisms surmount the obstacles.

Metrics

Maximum successful elevation (cm) for 5 continuous repetitions within a time limit (5 min)

Pipe Step Mobility Suite

Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to surmount vertical obstacles while traversing in limited space. This is a hard-terrain mobility capability that Responders require. Limited edge traction introduced by rotate-able pipes emphasizes how well robot's mobility mechanisms surmount the obstacles.

<u>Metrics</u>

Maximum successful elevation (cm) for 5 continuous repetitions within a time limit (5 min)

This test apparatus is made from two stacks of <u>flat floor</u> <u>elements</u>. Each stack has overall dimensions of 1.2m (4ft) square. They are placed side by side to form a step. Additional <u>flat floor elements</u> increase the step level by 10 cm (4in) increments. Plastic pipes with a diameter of 10 cm (4in) are stacked along with each platform to reduce the edge traction. The plastic pipes are constrained against the elevated platforms but should be free to rotate.

Procedure

- 1. Place the robot on the lower platform facing the step obstacle.
- 2. Surmount the obstacle fully so that the entire robot is on the elevated platform, not overhanging the pipes.
- Descend the step obstacle to the lower platform and return to starting position to complete one repetition.
- 4. Repeat 1-3 until all repetitions are completed.
- Increase the elevation of the obstacle until unsuccessful in one of the repetitions. Note the last fully successful step elevation as the maximum.

Apparatus

This test apparatus is made from two stacks of <u>flat floor</u> <u>elements</u>. Each stack has overall dimensions of 1.2m (4ft) square. They are placed side by side to form a step. Additional <u>flat floor elements</u> increase the step level by 10 cm (4in) increments. Plastic pipes with a diameter of 10 cm (4in) are stacked along with each platform to reduce the edge traction. The plastic pipes are constrained against the elevated platforms but should be free to rotate.

- 1. Place the robot on the lower platform facing the step obstacle.
- 2. Surmount the obstacle fully so that the entire robot is on the elevated platform, not overhanging the pipes.
- 3. Descend the step obstacle to the lower platform and return to starting position to complete one repetition.
- 4. Repeat 1-3 until all repetitions are completed.
- Increase the elevation of the obstacle until unsuccessful in one of the repetitions. Note the last fully successful step elevation as the maximum.

Stairs Mobility Suite

Purpose

The purpose of this test method is to quantitatively evaluate robot's ability to be teleoperated to traverse specified sets of stairs in a limited space.

Metrics

Within the allowed 20 min time limit: total time spent for 5 continuous repetitions of ascending and descending of each set of the stairs OR sets of stairs, numbers of repetitions, and numbers of steps traversed within the time limit

Purpose

The purpose of this test method is to quantitatively evaluate robot's ability to be teleoperated to traverse specified sets of stairs in a limited space.

Metrics

Within the allowed 20 min time limit: total time spent for 5 continuous repetitions of ascending and descending of each set of the stairs OR sets of stairs, numbers of repetitions, and numbers of steps traversed within the time limit

This test apparatus is composed of three sets of stairs, with 30, 35, 40, and 45 degree slopes, respectively. Each contains L steps of M x N x L cm (m x n in) in size and is made from OSB plywood boards. 50x100 mm (2x4 in) solid wood posts are used to sufficiently support the OSB boards.

Procedure

- 1. Place the robot on the lower platform of the 30 degree stairs.
- 2. Complete the surmounting and descending for one repetition.
- 3. Repeat 1-2 for five continuous repetitions.
- 4. Move to the next steeper stairs. Repeat 2-3.
- 5. Repeat 2-4 until either completing all stairs or unsuccessful.

Apparatus

This test apparatus is composed of three sets of stairs, with 30, 35, 40, and 45 degree slopes, respectively. Each contains L steps of M x N x L cm (m x n in) in size and is made from OSB plywood boards. 50x100 mm (2x4 in) solid wood posts are used to sufficiently support the OSB boards.

- 1. Place the robot on the lower platform of the 30 degree stairs.
- 2. Complete the surmounting and descending for one repetition.
- 3. Repeat 1-2 for five continuous repetitions.
- 4. Move to the next steeper stairs. Repeat 2-3.
- 5. Repeat 2-4 until either completing all stairs or unsuccessful.

Inclined Plane Mobility Suite

Inclined Plane Mobility Suite

Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse specified paths on specified inclined planes with limited sizes.

Metrics

Complete or fail the traverse; the number of segments completed if fails; time spent to succeed each path

Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse specified paths on specified inclined planes with limited sizes.

<u>Metrics</u>

Complete or fail the traverse; the number of segments completed if fails; time spent to succeed each path

<u>Apparatus</u>

This test apparatus is made from OSB plywood boards and 50x100 mm (2x4 in) solid wood posts . The wood posts are used to sufficiently support the OSB boards to form the specified angles, 30° or 45° . Four key points are marked on center of each of the boards , with the lower, right mark, point A as the starting and ending positions. Multiple paths are devised for the test.

Procedure

- 1. Place the robot point A of the 30 degree plane.
- 2. Follow the path as specified.
- 3. If succeeds, follow the second path as specified.
- 4. If succeeds, place the robot point A of the 45 degree plane. Repeat 2-3 or until fails.

<u>Apparatus</u>

This test apparatus is made from OSB plywood boards and 50x100 mm (2x4 in) solid wood posts . The wood posts are used to sufficiently support the OSB boards to form the specified angles, 30° or 45° . Four key points are marked on center of each of the boards , with the lower, right mark, point A as the starting and ending positions. Multiple paths are devised for the test.

- 1. Place the robot point A of the 30 degree plane.
- 2. Follow the path as specified.
- 3. If succeeds, follow the second path as specified.
- 4. If succeeds, place the robot point A of the 45 degree plane. Repeat 2-3 or until fails.

Tow: Hitch Trailer Mobility Suite

Tow: Hitch Trailer Mobility Suite

Purpose

Purpose

Metrics

Metrics

Test Methods

Apparatus

Procedure

Apparatus

Tow: Hitch Drag Mobility Suite Tow: Hitch Drag Mobility Suite

Purpose

Purpose

Metrics

Metrics

Test Methods

Apparatus

Procedure

Apparatus

Procedure

75

Tow: End-Effector Drag Mobility Suite

Tow: End-Effector Drag Mobility Suite

Purpose

Purpose

Metrics

Metrics

Test Methods

Apparatus

Procedure

Apparatus

Confined Space Mobility Suite

Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse in a tight spaces with challenging terrains and ceilings. This is a hard-terrain mobility capability that Responders require. This test method allows direct comparisons across different robot models and particular configurations of similar robot models.

Metrics

the heights of elevated terrain ridges on both floor and roof pallets; time and total pallets traversed

Confined Space Mobility Suite

<u>Purpose</u>

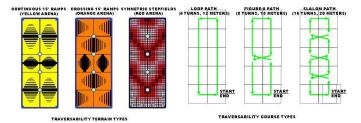
The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse in a tight spaces with challenging terrains and ceilings. This is a hard-terrain mobility capability that Responders require. This test method allows direct comparisons across different robot models and particular configurations of similar robot models.

Metrics

the heights of elevated terrain ridges on both floor and roof pallets; time and total pallets traversed

This test apparatus is straight path of 20m long, assembled with ten 1200 x 1200 cm (48 x 48 in) pallets for floor and ceiling. The pallets are made of OSB plywood boards and 5 x 10 cm (2 x 4") wood posts of 10, 20, 30, and 40 cm heights, randomly placed to tighten up the passage way.

Procedure


- 1. Place the robot at the starting point.
- 2. Traverse through the end and back or until fails.
- 3. Optionally, repeat 1-2 for 5 continuous trials. Note best time.

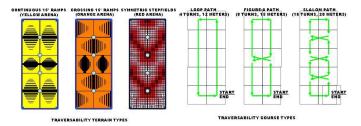
Apparatus

This test apparatus is straight path of 20m long, assembled with ten 1200 x 1200 cm (48 x 48 in) pallets for floor and ceiling. The pallets are made of OSB plywood boards and 5 x 10 cm (2 x 4") wood posts of 10, 20, 30, and 40 cm heights, randomly placed to tighten up the passage way.

- 1. Place the robot at the starting point.
- 2. Traverse through the end and back or until fails.
- 3. Optionally, repeat 1-2 for 5 continuous trials. Note best time.

Terrain Traversability Mobility

Purpose


The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse required paths with challenging floor types and tight space. This is a hard-terrain mobility capability that Responders require. This test method allows direct comparisons across different robot models and particular configurations of similar robot models.

<u>Metric</u>

1. Convention:

- a. A <u>traverse</u> of a specified terrain is when the robot is teleoperated from the starting point toward the end point. Such a <u>traverse</u> is <u>complete</u> or <u>successful</u> when the entire footprint of the robot performs the specified path and the footprint lands on the end point; also called a <u>complete/successful repetition</u>.
- b. Five continuous <u>complete/successful repetitions</u> are required to pass a path type. Completing all three path types passes a terrain type. A <u>complete/successful</u> <u>terrain traversability test</u> is when the robot succeeds all terrain types that it can.
- Timing Constraint: different time limits are given for specified paths and floor types with different levels of difficulty. 2 minute incremental time limit are given for each added level of difficulty.
- 3. Metrics:
 - a. succeed or fail the path
 - b. Time spent to succeed the traverse

Terrain Traversability Mobility

Purpose

The purpose of this test method is to quantitatively evaluate a robot's ability to be teleoperated to traverse required paths with challenging floor types and tight space. This is a hard-terrain mobility capability that Responders require. This test method allows direct comparisons across different robot models and particular configurations of similar robot models.

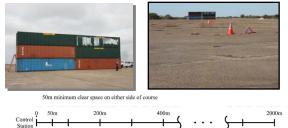
<u>Metric</u>

- 1. Convention:
 - a. A <u>traverse</u> of a specified terrain is when the robot is teleoperated from the starting point toward the end point. Such a <u>traverse</u> is <u>complete</u> or <u>successful</u> when the entire footprint of the robot performs the specified path and the footprint lands on the end point; also called a <u>complete/successful repetition</u>.
 - b. Five continuous <u>complete/successful repetitions</u> are required to pass a path type. Completing all three path types passes a terrain type. A <u>complete/successful</u> <u>terrain traversability test</u> is when the robot succeeds all terrain types that it can.
- Timing Constraint: different time limits are given for specified paths and floor types with different levels of difficulty. 2 minute incremental time limit are given for each added level of difficulty.
- 3. Metrics:
 - a. succeed or fail the path
 - b. Time spent to succeed the traverse

<u>Apparatus</u>

This test apparatus is composed of two major floor types: 15 degree ramps and step fields. Ramp based floors are further subtyped as continuous, continuous but half and cross . Step field based floors contains types of diagonal, saddle, and corner . The material contains 1200 x 2400 x 15 mm (or 48 x 96 x 19/32 in) oriented strand board (OSB) plywood boards and 10x10 cm (4"x4" in) solid wood posts of 10, 20, 30, and 40 cm high. The material is inexpensive and commonly available. The OSB boards provides a frictional surface similar to dust covered concrete.

Procedure


- 1. Operator teleoperate the robot the starting point of a specified terrain type.
- 2. Follow the path as specified.
- If successful, repeat 1-2 for the different path and floor types as instructed.

Apparatus

This test apparatus is composed of two major floor types: 15 degree ramps and step fields. Ramp based floors are further subtyped as continuous, continuous but half and cross. Step field based floors contains types of diagonal, saddle, and corner . The material contains 1200 x 2400 x 15 mm (or 48 x 96 x 19/32 in) oriented strand board (OSB) plywood boards and 10x10 cm (4"x4" in) solid wood posts of 10, 20, 30, and 40 cm high. The material is inexpensive and commonly available. The OSB boards provides a frictional surface similar to dust covered concrete.

- 1. Operator teleoperate the robot the starting point of a specified terrain type.
- 2. Follow the path as specified.
- If successful, repeat 1-2 for the different path and floor types as instructed.

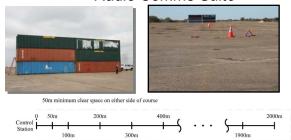
Line of Sight (LOS) Radio Comms Suite

300m

Purpose

100m

The purpose of this test method is to quantitatively evaluate a robot's radio (wireless) communication systems within a long range LOS or NLOS propagation environment during teleoperation.


1900m

Metrics

LOS: Distance downrange at which robot operation (video or control) fails.

Standoff distance of operator station from metal wall based on LOS performance.

Line of Sight (LOS) Radio Comms Suite

<u>Purpose</u>

The purpose of this test method is to quantitatively evaluate a robot's radio (wireless) communication systems within a long range LOS or NLOS propagation environment during teleoperation.

Metrics

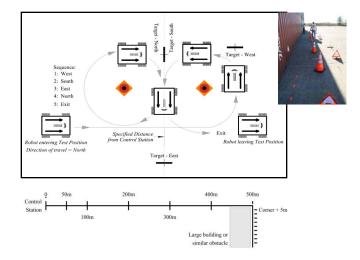
LOS: Distance downrange at which robot operation (video or control) fails.

Standoff distance of operator station from metal wall based on LOS performance.

- The test apparatus for the LOS test is a straight flat section of airstrip, roadway or similar surface at least 1 km long (longer if possible). The surface shall be consistent (e.g. asphalt or concrete) and be free of reflective objects at least 50 meters on either side of the centerline. A figure-8 path with 2.4 m (4 ft) diameter lobes and 4 visual charts, facing four directions, shall be located at test distances of 50 m, 100 m, 200 m, 300 m ... through the entire range of the test course.
- Operator station antennas shall be limited to a maximum of 2 m (6.5 ft) elevation above the ground.

Procedure

- 1. The radio systems shall be evaluated indirectly by monitoring video and control system relative to a reference LOS distance of 50 meters.
- From the starting point of the test apparatus, the robot shall traverse the course in the prescribed direction and, at each test distance, navigate a figure-8 path and perform a nose-on visual chart read in each of the 4 compass directions relative to the direction of travel. The figure-8 shall allow 1.2 meters of clearance.


Apparatus

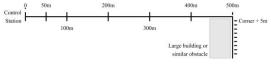
- The test apparatus for the LOS test is a straight flat section of airstrip, roadway or similar surface at least 1 km long (longer if possible). The surface shall be consistent (e.g. asphalt or concrete) and be free of reflective objects at least 50 meters on either side of the centerline. A figure-8 path with 2.4 m (4 ft) diameter lobes and 4 visual charts, facing four directions, shall be located at test distances of 50 m, 100 m, 200 m, 300 m ... through the entire range of the test course.
- Operator station antennas shall be limited to a maximum of 2 m (6.5 ft) elevation above the ground.

- 1. The radio systems shall be evaluated indirectly by monitoring video and control system relative to a reference LOS distance of 50 meters.
- From the starting point of the test apparatus, the robot shall traverse the course in the prescribed direction and, at each test distance, navigate a figure-8 path and perform a nose-on visual chart read in each of the 4 compass directions relative to the direction of travel. The figure-8 shall allow 1.2 meters of clearance.

Non-Line of Sight (NLOS)

Radio Comms Suite

Purpose


The purpose of this test method is to quantitatively evaluate a robot's radio (wireless) communication systems within a long range LOS or NLOS propagation environment during teleoperation.

Metrics

NLOS: Distance behind metal wall at which robot operation (video or control) fails.

Non-Line of Sight (LOS) Radio Comms Suite

Sequence: 1: West 2: South 3: East 4: North 5: Exit *Evolution of travel = North Target - East Target - East*

Purpose

The purpose of this test method is to quantitatively evaluate a robot's radio (wireless) communication systems within a long range LOS or NLOS propagation environment during teleoperation.

Metrics

NLOS: Distance behind metal wall at which robot operation (video or control) fails.

- The test apparatus for the NLOS test is identical to the LOS except at a distance of 500 meters there is a wall made of ISO containers (7.3 m high x 24.4 m wide) with one edge aligned with the test course centerline and the long face perpendicular to the direction of robot travel. Three additional figure-8 paths are also located behind and tangent to the metal wall to test robot operations in the radio shadow.
- Operator station antennas shall be limited to a maximum of 2 m (6.5 ft) elevation above the ground.

Procedure

- From the starting point of the test apparatus, the robot shall traverse the course in the prescribed direction and, at each test distance, navigate a figure-8 path and perform a nose-on visual chart read in each of the 4 compass directions relative to the direction of travel. The figure-8 shall allow 1.2 meters of clearance.
- 2. For the NLOS test, the LOS part is 500 meters or half the maximum distance achieved in the LOS test. At 500 meters (the back edge of the metal wall) the test point shall be defined as 1 meter from each surface at the corner or 1.414 meters diagonally from the container corner. The robot will then turn behind the container and proceed to a figure-8 test at 2, 5, and 12 meters from the corner. The 12 meter position is the center of the stack.

Apparatus

- The test apparatus for the NLOS test is identical to the LOS except at a distance of 500 meters there is a wall made of ISO containers (7.3 m high x 24.4 m wide) with one edge aligned with the test course centerline and the long face perpendicular to the direction of robot travel. Three additional figure-8 paths are also located behind and tangent to the metal wall to test robot operations in the radio shadow.
- Operator station antennas shall be limited to a maximum of 2 m (6.5 ft) elevation above the ground.

- From the starting point of the test apparatus, the robot shall traverse the course in the prescribed direction and, at each test distance, navigate a figure-8 path and perform a nose-on visual chart read in each of the 4 compass directions relative to the direction of travel. The figure-8 shall allow 1.2 meters of clearance.
- 2. For the NLOS test, the LOS part is 500 meters or half the maximum distance achieved in the LOS test. At 500 meters (the back edge of the metal wall) the test point shall be defined as 1 meter from each surface at the corner or 1.414 meters diagonally from the container corner. The robot will then turn behind the container and proceed to a figure-8 test at 2, 5, and 12 meters from the corner. The 12 meter position is the center of the stack.

Structure & Tunnel Penetration

Radio Comms Suite

Structure & Tunnel Penetration

Radio Comms Suite

Purpose

Purpose

Metrics

Metrics

Apparatus

Procedure

Urban Canyon Radio Comms Suite Urban Canyon Radio Comms Suite

Purpose

Purpose

Metrics

Metrics

Apparatus

Procedure

Directed Perception Manipulation

Purpose

The purpose of this test method is to quantitatively evaluate the robot's work volume in terms of providing video for certain specific locations where visual obstructions must be cleared.

Metrics

Number of perception tasks completed at tested levels; number of levels completed; average time/task within time limits, which are 30 min for the 0cm level and no barrier, 40 min with a barrier; increment 15 min per next higher level (i.e., 45/55 min for the 50cm level, without/with a barrier).

Directed Perception Manipulation

Purpose

The purpose of this test method is to quantitatively evaluate the robot's work volume in terms of providing video for certain specific locations where visual obstructions must be cleared.

Metrics

Number of perception tasks completed at tested levels; number of levels completed; average time/task within time limits, which are 30 min for the 0cm level and no barrier, 40 min with a barrier; increment 15 min per next higher level (i.e., 45/55 min for the 50cm level, without/with a barrier).

The apparatus for this test method contains two stacks of shelves made from OSB boards to partition the working volume around the robot into discrete cells in which the perception tasks are to be performed. Each stack has shelves at the prescribed levels (0cm, 50cm, 100cm, 150cm, 200cm in heights). Each shelf is subdivided into four guadrants. The guadrants contain vertically accessible circular holes of 15 cm diameter with hinged doors that are painted in blue . All but the ground level shelves also have two horizontally accessible front holes. A sensory target (visual, chemical, radiological) is placed on the wall inside a door. Three different barrier conditions are tested at each level: open above the shelf, reaching under a shelf barrier, or reaching over a façade barrier. Non-flat flooring conditions, either 15 degree roll ramps or symmetric stepfields pallets, provide complexity in robot orientation. The start/end line is at the end of the second flooring pallet from the testing pallet.

Procedure

Administrator:

- 0. Insert 15 degree roll ramps with the high sides toward the right shelves
- 0. Set the shelves and barriers to the next lowest elevation (0, 50, 100, 150, 200 cm) to be tested, starting at 0cm elevation.
- 0. Close all access doors.

Start with the robot behind start/end line

- Enter the test and identify sensory targets in the holes at the tested level, return to behind start/end line.
- 3. Repeat (0-1) with shelf barrier above the test surface.
- 4. Repeat (0-1) with façade barrier in front of the test surface.
- Repeat (0-3) at the next higher level until all levels have been tested or the robot is no longer able to complete the next perception task.
- 6. Repeat (0-4) with symmetric stepfield pallets as flooring.

<u>Apparatus</u>

Test Methods

The apparatus for this test method contains two stacks of shelves made from OSB boards to partition the working volume around the robot into discrete cells in which the perception tasks are to be performed. Each stack has shelves at the prescribed levels (0cm, 50cm, 100cm, 150cm, 200cm in heights). Each shelf is subdivided into four guadrants. The guadrants contain vertically accessible circular holes of 15 cm diameter with hinged doors that are painted in blue . All but the ground level shelves also have two horizontally accessible front holes. A sensory target (visual, chemical, radiological) is placed on the wall inside a door. Three different barrier conditions are tested at each level: open above the shelf, reaching under a shelf barrier, or reaching over a façade barrier. Non-flat flooring conditions, either 15 degree roll ramps or symmetric stepfields pallets, provide complexity in robot orientation. The start/end line is at the end of the second flooring pallet from the testing pallet.

Test Methods

Procedure

Administrator:

- 0. Insert 15 degree roll ramps with the high sides toward the right shelves
- 0. Set the shelves and barriers to the next lowest elevation (0, 50, 100, 150, 200 cm) to be tested, starting at 0cm elevation.
- 0. Close all access doors.

Start with the robot behind start/end line

- Enter the test and identify sensory targets in the holes at the tested level, return to behind start/end line.
- 3. Repeat (0-1) with shelf barrier above the test surface.
- 4. Repeat (0-1) with façade barrier in front of the test surface.
- Repeat (0-3) at the next higher level until all levels have been tested or the robot is no longer able to complete the next perception task.
- 6. Repeat (0-4) with symmetric stepfield pallets as flooring.

Grasping Dexterity Manipulation

Purpose

The purpose of this test method is to quantitatively evaluate the working volume in terms of providing video to allow teleoperating the manipulator to grasp objects and place them in specified locations.

Metrics

Number of grasping tasks completed at tested levels; number of levels completed; average time/task within time limits, which are 30 min for the 0cm level and no barrier, 40 min with a barrier; increment 15 min per next higher level (i.e., 45/55 min for the 50cm level, without/with a barrier).

Grasping Dexterity Manipulation

Purpose

The purpose of this test method is to quantitatively evaluate the working volume in terms of providing video to allow teleoperating the manipulator to grasp objects and place them in specified locations.

Metrics

Number of grasping tasks completed at tested levels; number of levels completed; average time/task within time limits, which are 30 min for the 0cm level and no barrier, 40 min with a barrier; increment 15 min per next higher level (i.e., 45/55 min for the 50cm level, without/with a barrier).

The apparatus for this test method contains two stacks of shelves made from OSB boards to partition the working volume around the robot into discrete cells in which specified tasks are to be performed. Each stack has shelves at prescribed levels (0cm, 50cm, 100cm, 150cm, 200cm) with each shelf sub-divided into four guadrants. The quadrants contain vertically accessible circular holes of 15 cm diameter with hinged doors that are painted in blue . All but the ground level shelves also have two horizontally accessible front holes. An object of 10 cm block, made of solid wood post is to be placed in each hole for the tasking. Three different barrier conditions are tested while working at each level: open above the shelf, reaching under a shelf barrier, or reaching over a façade barrier. Non-flat flooring, either 15 degree roll ramps or symmetric stepfields pallets are used to provides complexity in robot orientation. The start/end line is at the end of the second flooring pallet from the testing pallet .

Procedure

Administrator:

- 0. Insert <u>15 degree roll ramps</u> with the high sides toward the right shelves.
- 0. Set the shelves and barriers to the next lowest elevation (0, 50, 100, 150, 200 cm) to be tested, starting at 0cm elevation.
- 0. Close all access doors and replace blocks to initial conditions.
- Start with the robot behind start/end line
- 1. Enter the test and pick and place blocks into holes within their quadrants.
- 2. Repeat (0-1) with shelf barrier above the test surface.
- 3. Repeat (0-1) with <u>façade barrier</u> in front of the test surface.
- 4. Repeat (0-3) at the next higher level until all levels have been tested or the robot is no longer able to complete the next grasping task.
- 5. Repeat (0-4) with symmetric stepfield pallets as flooring.

Apparatus

Methods

Test

The apparatus for this test method contains two stacks of shelves made from OSB boards to partition the working volume around the robot into discrete cells in which specified tasks are to be performed . Each stack has shelves at prescribed levels (0cm, 50cm, 100cm, 150cm, 200cm) with each shelf sub-divided into four quadrants. The quadrants contain vertically accessible circular holes of 15 cm diameter with hinged doors that are painted in blue . All but the ground level shelves also have two horizontally accessible front holes. An object of 10 cm block, made of solid wood post is to be placed in each hole for the tasking. Three different barrier conditions are tested while working at each level: open above the shelf, reaching under a shelf barrier, or reaching over a facade barrier. Non-flat flooring, either 15 degree roll ramps or symmetric stepfields pallets are used to provides complexity in robot orientation. The start/end line is at the end of the second flooring pallet from the testing pallet .

Procedure

Administrator:

- 0. Insert <u>15 degree roll ramps</u> with the high sides toward the right shelves.
- 0. Set the shelves and barriers to the next lowest elevation (0, 50, 100, 150, 200 cm) to be tested, starting at 0cm elevation.
- 0. Close all access doors and replace blocks to initial conditions.

Start with the robot behind start/end line

- 1. Enter the test and pick and place blocks into holes within their quadrants.
- 2. Repeat (0-1) with shelf barrier above the test surface.
- 3. Repeat (0-1) with <u>façade barrier</u> in front of the test surface.
- 4. Repeat (0-3) at the next higher level until all levels have been tested or the robot is no longer able to complete the next grasping task.
- 5. Repeat (0-4) with symmetric stepfield pallets as flooring.

Door Opening

Manipulation

Purpose

The purpose of this test method is to evaluate the robot's ability to be teleoperated to perform the door opening and traversing tasks.

Metrics

Completion of two subtasks: unlatching the door and traversing through it within the time limits; time spent to succeed the task; different time limits are given for different door mechanism types, starting at 30 sec and increment by 30 sec for each added level of difficulty.

F

Purpose

The purpose of this test method is to evaluate the robot's ability to be teleoperated to perform the door opening and traversing tasks.

Door Opening

Manipulation

<u>Metrics</u>

Completion of two subtasks: unlatching the door and traversing through it within the time limits; time spent to succeed the task; different time limits are given for different door mechanism types, starting at 30 sec and increment by 30 sec for each added level of difficulty.

<u>Apparatus</u>

The apparatus for this test method uses a set of common household 90cm (36") entry doors that are installed on corresponding frames. The doors are to have the following types of handles and locks for opening: lever and knob. The opening task is to be performed at both the sides. The doors are not locked. The latches can be on either left or right side of the door. The starting line will be marked on the floor at 1m from and parallel to the door.

Procedure

Administrator:

- 0. Ensure that the door is latched.
- Start with the robot behind start/end line
- 1. Teleoperate robot to open the specified door.
- 2. If succeeds, teleoperate to the starting line for next door. Repeat 0-1.
- 3. Repeat 2 until fails or complete all the doors.

Apparatus

The apparatus for this test method uses a set of common household 90cm (36") entry doors that are installed on corresponding frames. The doors are to have the following types of handles and locks for opening: lever and knob. The opening task is to be performed at both the sides. The doors are not locked. The latches can be on either left or right side of the door. The starting line will be marked on the floor at 1m from and parallel to the door.

Test Methods

Procedure

Administrator:

- 0. Ensure that the door is latched. Start with the robot behind start/end line
- 1. Teleoperate robot to open the specified door.
- 2. If succeeds, teleoperate to the starting line for next door. Repeat 0-1.
- 3. Repeat 2 until fails or complete all the doors.

95

Washdown Decontamination Safety/Environment

Purpose

The purpose of this test method is to evaluate a robot's washdown vulnerabilities and identify specific design issues that hinder complete decontamination.

Metrics

Pass/Fail within a time limit of 5 minutes.

Washdown Decontamination Safety/Environment

Purpose

The purpose of this test method is to evaluate a robot's washdown vulnerabilities and identify specific design issues that hinder complete decontamination.

Metrics

Pass/Fail within a time limit of 5 minutes.

This test apparatus uses a simulated contaminant administered in a controlled location along with a washdown tub, a rinsing tub, and an adjoining bridge. Low pressure water supply and a set of typical brushes and additional tools used by the emergency responder community, a hand-held ultra-violet light source (black light) is also used.

Procedure

- 1. Contaminate the robot with powder and/or liquid stimulants in a controlled space.
- 2. Transfer the robot onto the washdown stand for 5 minutes.
- 3. Administrator use the black light to examine the existence of the contaminants.

Apparatus

This test apparatus uses a simulated contaminant administered in a controlled location along with a washdown tub, a rinsing tub, and an adjoining bridge. Low pressure water supply and a set of typical brushes and additional tools used by the emergency responder community, a hand-held ultra-violet light source (black light) is also used.

- 1. Contaminate the robot with powder and/or liquid stimulants in a controlled space.
- 2. Transfer the robot onto the washdown stand for 5 minutes.
- 3. Administrator use the black light to examine the existence of the contaminants.

Endurance Energy/Power

Purpose

The purpose of this test method is to quantitatively evaluate a robot's battery capacity per charge cycle within a specified test apparatus and environmental condition.

TART

Metrics

Distance per charge tested to inoperability (before and after benchtop cycling); time per charge tested to inoperability (before and after benchtop cycling); change in capacity in percent after 100 benchtop battery cycles.

Endurance Energy/Power

Purpose

The purpose of this test method is to quantitatively evaluate a robot's battery capacity per charge cycle within a specified test apparatus and environmental condition.

Metrics

Distance per charge tested to inoperability (before and after benchtop cycling); time per charge tested to inoperability (before and after benchtop cycling); change in capacity in percent after 100 benchtop battery cycles.

<u>Apparatus</u>

This test apparatus is a figure-8 course constructed of OSB plywood boards . The overall dimensions are 6×2.4 m (20 x 8 ft). The wall is 1.2m (4ft) tall to constrain the robot path. There flooring is continuous 15° pitch/roll ramps in a prescribed configuration. One figure-8 lap is nominally 20m (66ft) long. This apparatus also includes an environmental chamber to house the figure-8 course to test for temperature at -20, 20, and 50 °C. The apparatus includes lighting control for testing at both ambient light and dark conditions. Several targets will be installed to provide a timed dwell task to provide a reconnaissance task. A beam break sensor can be used to count laps.

Procedure

- Place the robot at the starting point. Traverse the course in the prescribed direction turning at every intersection to follow a figure-8 path until the batteries are depleted. Contact with the walls is allowed.
- Every 10 laps (200 m) the operator shall dwell at the center point of the test apparatus for 1 minute while pointing cameras at known target locations. Each set of 10 laps will be conducted alternately in ambient light and near darkness.
- Power/energy data logged over the first 20 laps (400 m) will be used to perform 100 benchtop depletion cycles unless the battery fails prior to that point.
- 4. Benchtop cycled batteries will be re-installed into the robot to perform one final battery depletion test.
- 5. Maintenance and repairs of the robot are allowed, but must be done in-situ within the test apparatus. Elapsed time for the repair will be noted and subtracted from the overall test duration. The repair time will be used to compute the mean-time-before-failure and time-to-repair data. The tools used to repair the robot will also be noted.

Apparatus

Test Methods This test apparatus is a figure-8 course constructed of OSB plywood boards . The overall dimensions are 6×2.4 m (20 x 8 ft). The wall is 1.2m (4ft) tall to constrain the robot path. There flooring is continuous 15° pitch/roll ramps in a prescribed configuration. One figure-8 lap is nominally 20m (66ft) long. This apparatus also includes an environmental chamber to house the figure-8 course to test for temperature at -20, 20, and 50 °C. The apparatus includes lighting control for testing at both ambient light and dark conditions. Several targets will be installed to provide a timed dwell task to provide a reconnaissance task. A beam break sensor can be used to count laps.

Procedure

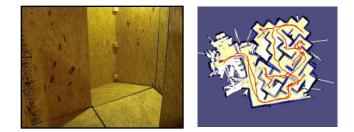
- Place the robot at the starting point. Traverse the course in the prescribed direction turning at every intersection to follow a figure-8 path until the batteries are depleted. Contact with the walls is allowed.
- Every 10 laps (200 m) the operator shall dwell at the center point of the test apparatus for 1 minute while pointing cameras at known target locations. Each set of 10 laps will be conducted alternately in ambient light and near darkness.
- Power/energy data logged over the first 20 laps (400 m) will be used to perform 100 benchtop depletion cycles unless the battery fails prior to that point.
- 4. Benchtop cycled batteries will be re-installed into the robot to perform one final battery depletion test.
- 5. Maintenance and repairs of the robot are allowed, but must be done in-situ within the test apparatus. Elapsed time for the repair will be noted and subtracted from the overall test duration. The repair time will be used to compute the mean-time-before-failure and time-to-repair data. The tools used to repair the robot will also be noted.

tructed of is are 6 x 2.4 strain the

Random Maze Search

Human System Interaction

Purpose


The purpose of this test method is to quantitatively evaluate an operator's ability to teleoperate a robot to completely negotiate and search an enclosed area with repetitive structural units that may be randomly arranged but contains minimum features otherwise.

Metrics

Number of corners visited, multiply visited, and missed; whether returning to the starting point; time used; number of targets correctly identified, incorrectly identified (visual acuity), or multiply identified (loss of spatial awareness, or SA) or missed (field of view, loss of SA)

Random Maze Search

Human System Interaction

<u>Purpose</u>

The purpose of this test method is to quantitatively evaluate an operator's ability to teleoperate a robot to completely negotiate and search an enclosed area with repetitive structural units that may be randomly arranged but contains minimum features otherwise.

Metrics

Number of corners visited, multiply visited, and missed; whether returning to the starting point; time used; number of targets correctly identified, incorrectly identified (visual acuity), or multiply identified (loss of spatial awareness, or SA) or missed (field of view, loss of SA)

This test apparatus is a random maze constructed with the OSB boards. The overall dimensions are nominally 15m (50ft) x 10m (33ft). The walls are 2.4m (8ft) tall forming 1.2m (4ft) hallways to constrain the robot path. The flooring is made of continuous ramps. Targets to identify are visual acuity charts and hazardous materials labels which are distributed throughout the maze in quantities unknown to the operator.

Procedure

- 1. Place the robot to the starting point.
- 2. Traverse the maze in directions to Operator's best judgment based on the video that the robot provides.
- Along the traverse, operator is to find, identify, and map all visual acuity and hazardous materials labels. Note also the corners visited.
- 4. Robot return to the original starting point at the end of the test.

Apparatus

This test apparatus is a random maze constructed with the OSB boards. The overall dimensions are nominally 15m (50ft) x 10m (33ft). The walls are 2.4m (8ft) tall forming 1.2m (4ft) hallways to constrain the robot path. The flooring is made of continuous ramps. Targets to identify are visual acuity charts and hazardous materials labels which are distributed throughout the maze in quantities unknown to the operator.

- 1. Place the robot to the starting point.
- Traverse the maze in directions to Operator's best judgment based on the video that the robot provides.
- Along the traverse, operator is to find, identify, and map all visual acuity and hazardous materials labels. Note also the corners visited.
- 4. Robot return to the original starting point at the end of the test.

Navigation Human System Interaction

Purpose

The purpose of this test method is to quantitatively evaluate an robot's ability to be teleoperated to negotiate and find an exit in an enclosed area filled with repetitive structural units that may be randomly arranged but contains minimum features otherwise. It allows direct performance comparisons across different robot models and particular configurations of similar robot models.

Metrics

- Convention: the end point shall be different from the starting point in this test method. Contact with the wall is allowed. Maintenance and repairs of the robot are not allowed during the test
- 2. Timing Constraint: 20 min time limit is allowed.
- 3. Metrics:
 - a. whether traversing to the end point
 - b. time that is used

Navigation Human System Interaction

Purpose

The purpose of this test method is to quantitatively evaluate an robot's ability to be teleoperated to negotiate and find an exit in an enclosed area filled with repetitive structural units that may be randomly arranged but contains minimum features otherwise. It allows direct performance comparisons across different robot models and particular configurations of similar robot models.

Metrics

- Convention: the end point shall be different from the starting point in this test method. Contact with the wall is allowed. Maintenance and repairs of the robot are not allowed during the test
- 2. Timing Constraint: 20 min time limit is allowed.
- 3. Metrics:
 - a. whether traversing to the end point
 - b. time that is used

This test apparatus is a random maze constructed with oriented strand board (OSB) to provide an inexpensive and common frictional surface similar to dust covered concrete. The overall dimensions are roughly 15m (50ft) x 10m (33ft) . The walls are 2.4m (8ft) tall forming 1.2m (4ft) hallways to constrain the robot path. The flooring is made of continuous 15° pitch/roll ramps in a prescribed configuration .

Procedure

- 1. Operator teleoperate the robot to the starting point of the test apparatus. Administrator close the opening.
- Operator teleoperate the robot to traverse the maze, in directions to her/his best judgment based on the video that the robot provides, until she/he traverses to the end point or when time expires.

Apparatus

This test apparatus is a random maze constructed with oriented strand board (OSB) to provide an inexpensive and common frictional surface similar to dust covered concrete. The overall dimensions are roughly 15m (50ft) x 10m (33ft) . The walls are 2.4m (8ft) tall forming 1.2m (4ft) hallways to constrain the robot path. The flooring is made of continuous 15° pitch/roll ramps in a prescribed configuration .

- 1. Operator teleoperate the robot to the starting point of the test apparatus. Administrator close the opening.
- Operator teleoperate the robot to traverse the maze, in directions to her/his best judgment based on the video that the robot provides, until she/he traverses to the end point or when time expires.

Check List Human System Interaction

Check List Human System Interaction

<u>Purpose</u>

Purpose

Metrics

Metrics

Procedure

Apparatus

Procedure

Test Methods

Vertical Take-Off and Landing VTOL/Robot Station Keeping

Maneuvering Aerial

Purpose

The purpose of this test method is to quantitatively evaluate a VTOL robot's ability to be teleoperated to conduct aerial surveys and searches by navigating specified paths, performing station keepings at required locations, and providing sufficient video for the operator perception requirements. It allows direct performance comparisons across different robot models and particular configurations of similar robot models.

Metrics

Number of targets that the operator correctly identified; time spent

Vertical Take-Off and Landing VTOL/Robot Station Keeping

Maneuvering Aerial

Purpose

The purpose of this test method is to quantitatively evaluate a VTOL robot's ability to be teleoperated to conduct aerial surveys and searches by navigating specified paths, performing station keepings at required locations, and providing sufficient video for the operator perception requirements. It allows direct performance comparisons across different robot models and particular configurations of similar robot models.

Metrics

Number of targets that the operator correctly identified; time spent

The apparatus of this test method is a vertical structure that is used to hang sensory targets (HAZMAT signs, Snell Charts, or objects such as those used in the Spatial Awareness test method) at the levels of height of 0m, 3m, 6m, 9m, 12m, and 15m. At each level, at least two visually mutually exclusive locations are used for hanging the targets. The starting location is a 2m diameter circle 5m away from the target structure.

Procedure

- 1. Operator teleoperate the robot to take off. Do not leave the vertical area until she/he gain full control of robot.
- 2. Operator teleoperate the robot to next station-keeping location on the specified path, identify the target.
- 3. Repeat 2 for all locations at the level.
- 4. Repeat 2-3 for the next level.
- 5. Repeat 2-4 until completing the highest level.

<u>Apparatus</u>

The apparatus of this test method is a vertical structure that is used to hang sensory targets (HAZMAT signs, Snell Charts, or objects such as those used in the Spatial Awareness test method) at the levels of height of 0m, 3m, 6m, 9m, 12m, and 15m. At each level, at least two visually mutually exclusive locations are used for hanging the targets. The starting location is a 2m diameter circle 5m away from the target structure.

- 1. Operator teleoperate the robot to take off. Do not leave the vertical area until she/he gain full control of robot.
- 2. Operator teleoperate the robot to next station-keeping location on the specified path, identify the target.
- 3. Repeat 2 for all locations at the level.
- 4. Repeat 2-3 for the next level.
- 5. Repeat 2-4 until completing the highest level.

Underwater Navigation and Search

Maneuvering Aquatic


Purpose

The purpose of this test method is to quantitatively evaluate robot's ability to provide video of a underwater environment to facilitate operator's ability to gain spatial awareness and to conduct teleoperated search. This test method allows direct comparisons across different robot models and particular configurations of similar robot models.

Metrics

Whether reaching the end point or not; time used; number of targets correctly and incorrectly identified, missed, or multiply identified

Underwater Navigation and Search Maneuvering Aquatic

<u>Purpose</u>

The purpose of this test method is to quantitatively evaluate robot's ability to provide video of a underwater environment to facilitate operator's ability to gain spatial awareness and to conduct teleoperated search. This test method allows direct comparisons across different robot models and particular configurations of similar robot models.

Metrics

Whether reaching the end point or not; time used; number of targets correctly and incorrectly identified, missed, or multiply identified

Apparatus

This test apparatus is implemented in lake or river . A set of standardized objects is used and individual objects can be randomly ordered.

Procedure

- 1. Operator place the robot at the starting point.
- Teleoperate robot underwater and search the pre-placed objects until all the objects are identified, time expires, or for any other reason when the robot is not able to continue the search.

Apparatus

This test apparatus is implemented in lake or river . A set of standardized objects is used and individual objects can be randomly ordered.

Procedure

- 1. Operator place the robot at the starting point.
- Teleoperate robot underwater and search the pre-placed objects until all the objects are identified, time expires, or for any other reason when the robot is not able to continue the search.

Ground Robots

Ground Robots

EyeBall R1

O.D.F. Optronics www.odfopt.com 336-302-9309/ilanit Gedalyoviche

3.25" (8.25 cm)

1.25 lbs (.566kg)

rotates 4 RPM

eyes-on, remote teleop

0"

battery

3 hours

camera

N/A

N/A

none

Manufacturer's Specs:

- Circumference
- Weight:
- Turning Diam:
- Max Speed:
- Power Source:
- Endurance:
- Tether:

٠

- Control:
- Sensors:
- Payload:
- Manipulator:

EyeBall R1

Ó.D.F. Optronics www.odfopt.com 336-302-9309/ilanit Gedalyoviche

•

.

•

Manufacturer's Specs:

Circumference	3.25" (8.25 cm)
Weight:	1.25 lbs (.566kg)
Turning Diam:	0"
Max Speed:	rotates 4 RPM
Power Source:	battery
Endurance:	3 hours
Tether:	none
Control:	eyes-on, remote teleop
Sensors:	camera
Payload:	N/A
Manipulator:	N/A

 Radio Tx:
 2400 MHz, 902-928MHz (RF)

 Radio Rx:
 2400 MHz, 902-928MHz (RF)

 Radio Tx:
 2400 MHz, 902-928MHz (RF)

 Radio Rx:
 2400 MHz, 902-928MHz (RF)

EyeBall R1

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac	-	Right		(Ne	<u>ar)</u> Right	 (Far	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	x x	x x x x	X X X X X	x x x	x	x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

To	p (Near)		Тор	(Mid)		Тор	(Far)		Time 0	Contacts
Ov	er Unde	r Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs Pallets
Weights:	Shipping	Deployed	Setup Time: X min. Tools: standard

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

	Face Left		Right		op(Ne eft C	ar) Right		o(Far ∶ C	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	S SS
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

<u>T</u> (op (Ne	ar)		Top (/lid)		Top (F	ar)		Time C	Contacts
0	ver U	nder	Open	Over	Under 0	Open	Over	Under	Open		
Level 4: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 3: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 2: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 1: >	ĸ	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

EyeBall R1

Recon Scout

ReconRobotics, Inc. http://www.reconrobotics.com

3 in (7.6 cm)

Manufacturer's Specs: Width:

width:	3 In (7.6 Cm)
Length:	7.36 in (18.7 cm)
Height:	3 in (7.6 cm)
Weight:	1.2 lbs (544 g)
Locomotion:	Wheeled
Steering:	Two-wheel independent
Turning Diam:	0 in (0 cm)
Max Speed:	1 fps (0.3 mps)
Power Source:	11.4 V DC Lithium Polymer
Endurance:	60 minutes
Tether:	Wireless
Control:	Remote teleop
Sensors:	InfraRed, camera
Payload:	N/A
Manipulator:	N/A

* Has not attended any exercises to date

Radio Tx: 433 MHz / 250 mW (video), 75 MHz / 250 mW (command) Radio Rx: 433 MHz / 250 mW (video), 75 MHz / 250 mW (command)

Recon Scout

ReconRobotics, Inc. http://www.reconrobotics.com

Manufacturer's Specs: Width: 3 in (7.6 cm) Length: 7.36 in (18.7 cm) 3 in (7.6 cm) Height: Weight: 1.2 lbs (544 g) Locomotion: Wheeled Steering: Two-wheel independent Turning Diam: 0 in (0 cm) Max Speed: 1 fps (0.3 mps) Power Source: 11.4 V DC Lithium Polymer Endurance: 60 minutes Tether: Wireless Control: Remote teleop Sensors: InfraRed, camera Payload: N/A Manipulator: N/A

* Has not attended any exercises to date

Radio Tx: 433 MHz / 250 mW (video), 75 MHz / 250 mW (command) Radio Rx: 433 MHz / 250 mW (video), 75 MHz / 250 mW (command)

Recon Scout

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac	-	District		p (Ne			(Far	-	Time	Contacts	
Level 4:		U x	Right	Lei		Right	Len		Right x	x min.	#	<u>n</u>
Level 3:		x			x		x		x	x min.	#	round obots
Level 2:			x	x		x			x	x min.	#	202
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	Ŭ -

Grasping Dexterity (shelves with objects):

Top (N	lear)		Тор	(Mid)		Тор	(Far)		Time 0	Contacts
Over	Under	Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Confined Space

Pelicans

Deployed

Minimum Height: _____ Time: _____

Shipping

Cache packaging, weight, setup, tools

Pallets

Weights:

Packages: Ropacks

Directed Perception (boxes with holes):

	Face Left		Right		<u>Top (Near)</u> Left C Right					(Far ∣C∣	<u>)</u> Right	_	Time	Contacts	
Level 4:							0			x	0		min.	#	Ground Robots
Level 3:	х	х	х	х		х	х	>	(х	х	х	min.	#	5 8
Level 2:	х	х	х	х		х	х	>	(х	х	х	min.	#	ดั ชั
Level 1:	х	х	х	x		х	х	>	(х	х	х	min.	#	

Recon Scout

Hardiggs Pallets

Setup Time: X min. Tools: standard

Grasping Dexterity (shelves with objects):

1	Гор (Ne	ear)		Top (Mid)			Top (Far)			Time Contacts		
(Over L	Inder	Open	Over Under Open			Over Under Open					
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

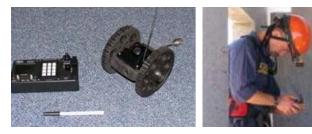
Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:


 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

ToughBot

Omnitech Robotics International LLC www.omnitech.com 303-922-7773/Dave Parish

Manufacturer's Specs:

- Width: 3.14" (8 cm) • Length: 4.3" (11 cm) Height: 4.3" (11 cm) ٠ Weight: 2 lb (.9 kg) • Turning Diam: 0" ٠ Max Speed: TBD ٠ Power Source: battery ٠ Endurance: 1 hour ٠ Tether: ٠ none Control: eyes-on, remote teleop 2 camera (wide and narrow) Sensors:
- Payload: N/A ٠ N/A
- Manipulator: ٠

ToughBot

Omnitech Robotics International LLC www.omnitech.com 303-922-7773/Dave Parish

Manufacturer's Specs:

•

•

٠

Width:	3.14" (8 cm)
Length:	4.3" (11 cm)
Height:	4.3" (11 cm)
Weight:	2 lb (.9 kg)
Turning Diam:	0"
Max Speed:	TBD
Power Source:	battery
Endurance:	1 hour
Tether:	none
Control:	eyes-on, remote teleop
Sensors:	2 camera (wide and narrow)
Payload:	N/A
Manipulator:	N/A

Radio Tx:	2400 MHz, 868MHz
Radio Rx:	2400 MHz, 868MHz

Radio Tx: 2400 MHz, 868MHz Radio Rx: 2400 MHz, 868MHz	
---	--

ToughBot

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Weights: Shipping Deployed Setup Time: X min. Tools: standard

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Face	-	District		<u>Top (Near)</u> Left C Right			<u>Top (Far)</u> Left C Right			Contacts	
	Lett	101	Right	Le	πιιιι	Right	Len	101	Right			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	round obots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	อีฉั
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

Top (N	lear)		Top (Mid)			Top (Far)			Time Contacts	
Over	Under	Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

	Lef	tICI	Right			Right	Left C Right			
Level 4:	х	· x ·	x	х	́х'	x	х	́х ́	x	
Level 3:	х	х	х	х	х	х	х	х	х	
Level 2:	х	х	х	х	х	х	х	х	х	

Directed Perception (boxes with holes):

Time:

Cache packaging, weight, setup, tools

Shipping

х х

х х

Packages: Ropacks

Confined Space Minimum Height:

Face

Weights:

Pallets

Level 1: x

Grasping Dexterity (shelves with objects):

х

<u>T</u> (ar)		Top (Mid)			Top (Far)			Time Contacts		
0	ver U	nder	Open	Over	Under 0	Open	Over	Under	Open		
Level 4: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 3: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 2: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 1: >	ĸ	х	х	х	х	х	х	х	х	x min.	#

Top (Far)

х

х х

х х

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

ToughBot

Hardiggs Pallets

Setup Time: X min. Tools: standard

Time

x min. #

x min. #

x min. x min. #

Contacts

#

Ground Robots

Pelicans

Top (Near)

х х

x x

Deployed

Active Scope Camera

Tohoku University, Tadokoro Laboratory www.rm.is.tohoku.ac.jp

Manufacturer's Specs:

- Width: 1" (2.5cm)
- Length: 320" (80 cm)
- Height: 1" (2.5 cm)
- Weight: 10 lbs (5 kg)
- Turning Dia: 4" 80" (10cm 200 cm)

battery

60 min

teleop

N/A

- Max Speed: .2 fps (6 cmps)
- Power Source:
- Endurance:
- Tether: body is the tether
- Control:
- Sensors: CCD camera
- Payload: N/A
- Manipulator:

Active Scope Camera

Tohoku University, Tadokoro Laboratory www.rm.is.tohoku.ac.jp

Manufacturer's Specs:

•	Width:	1" (2.5cm)
•	Length:	320" (80 cm)
•	Height:	1" (2.5 cm)
•	Weight:	10 lbs (5 kg)
•	Turning Dia:	4" – 80" (10cm – 200 cm)
•	Max Speed:	.2 fps (6 cmps)
•	Power Source:	battery
•	Endurance:	60 min
•	Tether:	body is the tether
•	Control:	teleop
•	Sensors:	CCD camera
•	Payload:	N/A
•	Manipulator:	N/A

Radio TX: Tethered Radio RX: Radio TX: Tethered Radio RX:

118

Active Scope Camera

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac		Right		<u>Top (Near)</u> Left C Right			<u>Top (Far)</u> Left C Right			Contacts	
Level 4: Level 3:	х	x x	x	х	' x '	x	х	'x'	x	x min. x min.	# #	Ground Robots
Level 2:	x	x	x	x x	х	x x	x x	x x	x x	x min.	#	Gro Rot
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

To	Top (Near)				Top (Mid)				Time 0	Contacts
Ov	er Unde	r Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

	Top (Near)		Top	(Mid)		Top (Far)			
	Over	Under	r Open	Ove	r Unde	r Open	Ove	r Unde	r Open	
Level 4:	х	х	х	х	х	х	х	х	х	
Level 3:	х	х	х	х	х	х	х	х	х	
Level 2:	х	х	х	х	х	х	х	х	х	
1 0 1 1	v	v	v	~	v	v	~	v	v	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Active Scope Camera

Cache packaging, weight, setup, tools										
Packages:	Ropacks	Pelicans	Hardiggs	Pallets						
Weights:	Shipping	Deployed	Setup Time: X I	min. Tools: standard						

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

	Fac	Ð		Тор) (Ne	ar)	Тор	(Far)	Time	Contacts	
	Left		Right	Left	C	Right	Left	C	Right			T (0
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	έĸ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

	Top (No	ear)		Top (Mid)			Top (Far)			Time C	contacts
	Over L	Jnder	Open	Over	Under C	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.)

20" (51 cm)

14" (36 cm)

20" (51 cm)

Option

14 lbs (6.3 kg)

6 fps (1.8 mps)

8.5 AH Lithium Polymer

Remote tele-operation

1.2 lb(0.5 kg), drag 20 lb (9 kg)

N/A -future option, existing

boom reach is 18 in (45 cm

Color / IR Cameras

Manufacturer's Specs:

- Width:
- Length:
 - Height: 6.5" (16 cm)
- Weight:
- Turning Diam:
- Max Speed:
- Power Source:
 - Endurance: 60-240 min
- Tether:
- Control:

٠

- Sensors:
- Payload:
- Manipulator:

www.ARA.com 303-795-8106/Andrew Poulter

Pointman (LRV)

Applied Research Associates

Manufacturer's Specs:

- Width:
- Length:
- Height:

.

- Weight:
- Turning Diam:
- Max Speed:
- Power Source:
- Endurance:
- Tether:
- Control:Sensors:
- Sensors
- Payload:
- Manipulator:

20" (51 cm) 14" (36 cm) 6.5" (16 cm) 14 lbs (6.3 kg) 20" (51 cm) 6 fps (1.8 mps) 8.5 AH Lithium Polymer 60-240 min Option Remote tele-operation Color / IR Cameras 1.2 lb(0.5 kg), drag 20 lb (9 kg) N/A –future option, existing boom reach is 18 in (45 cm

Radio Tx: 75MHz(75mW), 900 MHz(100mW),2400MHz(200mW) Radio Rx: 75 MHz , 900 MHz , 2400 MHz Radio Tx: 75MHz(75mW), 900 MHz(100mW),2400MHz(200mW) Radio Rx: 75 MHz , 900 MHz , 2400 MHz

Pointman(LRV)

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Face		Right		(Ne	ar) Right	 (Far	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	x x x x x	x x x x	X X X X X	x x	x x x x	x x x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

Top	(Near)		Top (Mid)			Top (Far)			Time 0	Contacts
Over	Under	Open	Ove	r Unde	r Open	Ove	r Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Ŀ

Grasping Dexterity (shelves with objects):

	Top (N	ear)		Top (Mid)			Top (Far)	Time Contacts		
	Over l	Under	Open	Over	Under	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

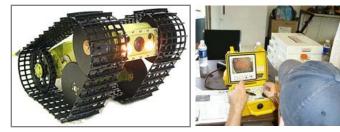
121

				
Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Pointman(LRV)

Confined Space

Minimum Height: Time:


Pallets

Directed Perception (boxes with holes):

	Fac	e		100) (Ne	ar)	100)(⊢ar	2	Time	Contacts	
	Left	C	Right	Left	C	Right	Left	C	Right			7 (0
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	Ĕ Ħ
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

VGTV-Extreme

Inuktun www.inuktun.com/ 1-877-468-5886/ Derek Naughton

10.9" (27.7 cm)

Manufacturer's Specs:

- Width:
- Length: 16.8" (42.7 cm)
- Height: 5.5" (14 cm) Lowered
- Weight: 14-20 lbs(6.2-9.1kg)
- Turning Diam: 0" (0 cm)
- Max Speed: 1.5 fps (.45 mps)
- Power Source: lithium ion battery
- Endurance: >360 min
- Tether: power, comms
- Control: eyes-on, remote teleop
- Sensors: tilt camera 300°
- Payload: 10 lb (4.5 kg)
- Manipulator:

VGTV-Extreme

Inuktun www.inuktun.com/ 1-877-468-5886/ Derek Naughton

Manufacturer's Specs:

•

•

Width:	10.9" (27.7 cm)
Length:	16.8" (42.7 cm)
Height:	5.5" (14 cm) Lowered
Weight:	14-20 lbs(6.2-9.1kg)
Turning Diam:	0" (0 cm)
Max Speed:	1.5 fps (.45 mps)
Power Source:	lithium ion battery
Endurance:	>360 min
Tether:	power, comms
Control:	eyes-on, remote teleop
Sensors:	tilt camera 300°
Payload:	10 lb (4.5 kg)
Manipulator:	N/A

Radio Tx: (tether only) Radio Rx: (tether only) Radio Tx: (tether only) Radio Rx: (tether only)

N/A

VGTV-Extreme

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Face		Right	Top	ar) Right	 (Far	<u>)</u> Right	Time	Contacts		
Level 4: Level 3: Level 2: Level 1:	x x x	x x x x x	x x x x	X X X X X	x x	x x x x	x x x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

Top (N	lear)		Тор	(Mid)		Top (Far)			Time 0	Contacts
Over	Under	Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Level 4: x x x Level 3: x x x Level 2: x x x Level 1: x x x

Grasping Dexterity (shelves with objects):

Cache packaging, weight, setup, tools

Time:

Directed Perception (boxes with holes):

Shipping

Packages: Ropacks

Confined Space Minimum Height:

> Face Left | C | Right

Weights:

Pallets

1	Гор (Ne	ear)		Top (/lid)		Top (F	ar)	Time C	Contacts	
(Over L	Inder	Open	Over	Under 0	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

VGTV-Extreme

Top (Far)

х

х х х

х х х

х

Left | C | Right

х х

х х

Hardiggs Pallets

Setup Time: X min. Tools: standard

Time

x min. #

x min. #

x min. x min. #

#

Contacts

Ground Robots

Pelicans

Top (Near)

х х х

х хх

Left | C | Right

х х

х х

Deployed

Dragon Runner SUGV

Foster-Miller / Automatika www.foster-miller.com/lemming.htm 781-684-3960/Joanne Armstrong

12.2" (31 cm)

16.6" (42 cm)

14 lbs (6.4 kg)

battery (Li Ion)

10 lb (4.5 kg)

none

Zero-Turn; Swept

7.5 - 29 fps (5 - 20 mph)

2 hours mph on flat ground

remote teleop, loss-of-comms

thermal (PIR), acoustic, visual

(wide-angle FF lens; IR illuminator)

2 or 3 degree of motion w/gripper

back-tracking, cruise-control

6" (15.2 cm)

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight: ٠
- Turning Diam: ٠
- Max Speed: ٠
 - Power Source:
- ٠ Endurance:
- Tether:
- Control: .

٠

- Sensors: ٠
- Payload:
- Manipulator:

Manufacturer's Specs:

- Width:
- Lenath:
- Height:
- Weight:
- Turning Diam: .
- Max Speed:
- Power Source:
- Endurance: .
- Tether:
- Control:
- Sensors:
- Payload:
- Manipulator:

Dragon Runner SUGV

Foster-Miller / Automatika

www.foster-miller.com/lemming.htm

12.2" (31 cm) 16.6" (42 cm) 6" (15.2 cm) 14 lbs (6.4 kg) Zero-Turn; Swept 7.5 - 29 fps (5 - 20 mph) battery (Li Ion) 2 hours mph on flat ground none remote teleop, loss-of-comms back-tracking, cruise-control thermal (PIR), acoustic, visual (wide-angle FF lens; IR illuminator) 10 lb (4.5 kg) 2 or 3 degree of motion w/gripper

Radio Tx: Low S-Band MHz(1 – 1k mW)L-Band MHz (1–1K mW) Radio Rx: n/a

Radio Tx: Low S-Band MHz(1 – 1k mW)L-Band MHz (1–1K mW) Radio Rx: n/a

Dragon Runner SUGV

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac		Right		<u>Top (Near)</u> Left C Right				<u>)</u> Right	Time	Contacts	
Level 4:		x	-	x		X	X	x	x	x min.	#	क व
Level 3:		x		x	~	x	x	x	x	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	ž 2
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	0 -

Grasping Dexterity (shelves with objects):

Top (N	lear)		Тор	(Mid)		Top (Far)			Time 0	Contacts
Over	Under	Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

	Grasning D
	Level 1: x
ອັນ	Level 2: x
5 ğ	Level 3: x

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Dragon Runner SUGV

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	Fac Left		Right		b (Ne t C	ar) Right		(Far C	' <u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 <u>6</u>
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ዀ፟</u> ፚ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	-

Grasping Dexterity (shelves with objects):

	Top (Ne	ear)		Top (N	<u>/lid)</u>		Top (F	ar)	Time C	Contacts	
	Over L	Inder	Open	Over	Under C	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

BomBot

WVHTC Foundation www.wvhtf.org 304-333-6461/Brian Stolarik

Manufacturer's Specs:

- Width: 18" (45.72 cm)
- Length: 20" (50.8 cm)
- Height: 32" (81.28 cm)
- Weight: 15 lbs (6.8kg)
- Turning Diam: 2ft. (60.96 cm)
- Max Speed: 20 mph (32 km/hr)
- Power Source: battery
- Endurance: 3-4 hrs.
- Tether: none
- Control: eyes-on, remote teleop

N/A

- Sensors: none
- Payload: 10 lbs (4.5kg)
- Manipulator:

BomBot

WVHTC Foundation www.wvhtf.org 304-333-6461/Brian Stolarik

Manufacturer's Specs:

Width:	18" (45.72 cm)
Length:	20" (50.8 cm)
Height:	32" (81.28 cm)
Weight:	15 lbs (6.8kg)
Turning Diam:	2ft. (60.96 cm)
Max Speed:	20 mph (32 km/hr)
Power Source:	battery
Endurance:	3-4 hrs.
Tether:	none
Control:	eyes-on, remote teleop
Sensors:	none
Payload:	10 lbs (4.5kg)
Manipulator:	N/A

Radio Tx: 2400 MHz Radio Rx: 2400 MHz Radio Tx: 2400 MHz Radio Rx: 2400 MHz

BomBot

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac Left	-	Right	 (Ne	<u>ar)</u> Right		(Far	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	x x	x x x	x x x	x	x x x	x x x	x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

Te	op (Ne	ar)		Top (N	(lid)		Top (F	ar)		Time C	ontacts
0	ver U	nder	Open	Over	Under C	Dpen	Over	Under	Open		
Level 4: >	(х	х	х	х	х	х	х	х	x min.	#
Level 3: >	(х	х	х	х	х	х	х	х	x min.	#
Level 2: >	< .	х	х	х	х	х	х	х	х	x min.	#
Level 1: >	<	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

1

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	min. Tools: standard

BomBot

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	Face Left		Right) (Ne	<u>ar)</u> Right		(Far C	' <u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 <u>6</u>
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	ዀፚ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	<u> </u>

Grasping Dexterity (shelves with objects):

1	Γο <u>ρ</u> (Νε	ar)		Top (N	(lid)		Top (F	ar)		Time C	contacts
(Over L	Inder	Open	Over	Under C	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

127

Versatrax 100

SeaTrepid www.inuktun.com Bob Christ

Manufacturer's Specs:

- Width: Inline: 4" (10 cm) • Parallel: 5.5" (14cm)&larger Inline: 34.6" (87.88cm) Length: • Parallel: 9.5" (24cm) • Height: Inline: 4" (10 cm) • Parallel: 5" (12.7 cm) . Weight: 20 lbs (9 kg) ٠ Locomotion: Tracked ٠ Steering: Skid steering • Turning Diam: Various; depending on pipe diameters ٠ Max Speed: 32 fpm (10 mpm) • 88-264 VAC 50/60 Hz Power Source: . Endurance: Continuous . Tether: Power and comms ٠ • Control: Remote teleop Sensors: N/A ٠ • Payload: N/A Manipulator: N/A ٠

Manufacturer's Specs:

•

•

.

•

.

.

•

.

.

•

ialaotaloi o opoool	
Width:	Inline: 4" (10 cm)
	Parallel: 5.5" (14cm)&larger
Length:	Inline: 34.6" (87.88cm)
	Parallel: 9.5" (24cm)
Height:	Inline: 4" (10 cm)
	Parallel: 5" (12.7 cm)
Weight:	20 lbs (9 kg)
Locomotion:	Tracked
Steering:	Skid steering
Turning Diam:	Various; depending on pipe diameters
Max Speed:	32 fpm (10 mpm)
Power Source:	88-264 VAC 50/60 Hz
Endurance:	Continuous
Tether:	Power and comms
Control:	Remote teleop
Sensors:	N/A
Payload:	N/A
Manipulator:	N/A

Versatrax 100

SeaTrepid

www.inuktun.com

Bob Christ

Radio TX: Radio RX:

Radio TX: Radio RX:

Versatrax 100

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Confined Space

Minimum Height:	Time:
# Pallets	

Directed Perception (boxes with holes):

	Fac	-	Right		(Ne	<u>ar)</u> Right	 (Far	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	x x	x x x x	X X X X X	x x x	x	x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

Top (Near)		Top (Mid)			Top (Far)			Time Contacts	
Over	Under	Open	Ove	r Unde	r Open	Over	r Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools

outile par	in a ginig, nongini,	0010p; 10010		
Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X	min. Tools: standard

Versatrax 100

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	Face Left		Right		(Ne	ar) Right		(Far C	' <u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 <u>6</u>
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	-

Grasping Dexterity (shelves with objects):

Top (I	Near)		Top (Mid)			Top (Far)			Time 0	Contacts
Over	Under	Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Marv

Mesa Robotics, Inc. www.mesa-robotics.com 256-464-7252/Mike Cole

Manufacturer's Specs:

- Width: 13.5" (34.29 cm)
- Length: 20.5" (52.07 cm)
- Height: 12" (30.48 cm)
- Weight: 25 lbs (11.33 kg)
- Turning Dia: zero in
- Max Speed: 4 mph (6.4 km/hr)
- Power Source: 12VDC, NiMH battery

none

- Endurance: 60 120 min
- Tether:
- Control: remote teleop
- Sensors: future option
- Payload: 10 lbs (4.5 kg)
- Manipulator: future option

Marv

Mesa Robotics, Inc. www.mesa-robotics.com 256-464-7252/Mike Cole

Manufacturer's Specs:

- Width:Length:
- Height:

•

•

- Weight:
- Turning Dia:
- Max Speed:
- Power Source:
- Endurance:
- Tether:
- Control:
- Sensors:
- Payload:
- Manipulator:

13.5" (34.29 cm) 20.5" (52.07 cm) 12" (30.48 cm) 25 lbs (11.33 kg) zero in 4 mph (6.4 km/hr) 12VDC, NiMH battery 60 – 120 min none remote teleop future option 10 lbs (4.5 kg) future option

Radio TX: 900 MHz control, 2400 MHz video Radio RX: 900 MHz control, 2400 MHz video Radio TX: 900 MHz control, 2400 MHz video Radio RX: 900 MHz control, 2400 MHz video

Marv

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Face	9		Тор	(Ne	ar)	Тор	(Far)	Time	Contacts	
	Left	C	Right	Left	C	Right	Left	C	Right			-
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	68
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

	Top (N	ear)		Top (Mid)			Top (Far)			Time (Contacts
	Over l	Jnder	Open	Over	Under	Open	Over	Under	Open		
Level 4	: x	х	х	х	х	х	х	х	х	x min.	#
Level 3	: x	х	х	х	х	х	х	х	х	x min.	#
Level 2	: x	х	х	х	х	х	х	х	х	x min.	#
Level 1	: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	Face Left		Right		op(Ne eft C	ar) Right		o(Far ∶ C	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	S SS
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

1	Гор (Ne	ear)		Top (Mid)			Top (Far)			Time C	Contacts
(Over L	Inder	Open	Over	Under 0	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Marv

G2Bot

Mesa Robotics. Inc. www.mesa-robotics.com 256.258.2130/Toki Owens

13.5" (34.29 cm)

none

none

Manufacturer's Specs:

- Width:
- Length: 21" (53.34 cm) ٠
- Height: 12" (30.48 cm) •
- 25 lbs (11.33 kg) Weight: •
- Turning Dia: 21" (53.34 cm) .
- Max Speed: 4 mph (6.4 km/hr) ٠
- 12VDC, NiMH battery Power Source: •
- Endurance: 60 – 120 min
- Tether: .
- Control: rf 700 meters ٠
- Sensors: Cameras •
- Payload: 15 lbs (6.80 kg) •
- Manipulator: .

G2Bot

Mesa Robotics. Inc. www.mesa-robotics.com 256.258.2130/Toki Owens

• Width:

- Length: ٠
- •

•

•

•

- Height: Weight:
- Turning Dia:
- Max Speed:
- Power Source: •
- Endurance: •
- Tether: .
- Control: .
- Sensors: .
- Payload:
- Manipulator:

13.5" (34.29 cm) 21" (53.34 cm) 12" (30.48 cm) 25 lbs (11.33 kg) 21" (53.34 cm) 4 mph (6.4 km/hr) 12VDC, NiMH battery 60 – 120 min none rf 700 meters Cameras 15 lbs (6.80 kg) none

Radio TX: 900 MHz control, 2400 MHz video Radio RX: 900 MHz control, 2400 MHz video Radio TX: 900 MHz control, 2400 MHz video Radio RX: 900 MHz control, 2400 MHz video

G2Bot

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Face	9		Тор	(Ne	ar)	Тор	(Far)	Time	Contacts	
	Left	C	Right	Left	C	Right	Left	C	Right			-
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	round obots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	อีฉั
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

	Top (No	ear)		Top (Mid)		Top (Far)			Time Contacts	
	Over L	Jnder	Open	Over	Under 0	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

133

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X I	nin. Tools: standard

G2Bot

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	Face Left		Right		<u>Top (Near)</u> Left C Right			o(Far ∶ C	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	S SS
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

1	Гор (Ne	ear)		Top (Mid) Top (Far)					Time Contacts		
(Over L	Inder	Open	Over Under Open Over Under Open							
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Soryu

International Rescue System Institute www.rescuesystem.org Shigeo Hirose

Manufacturer's Specs:

- Width: 5.9" (15 cm)
- Length: 47.2" (120 cm)
 Height: 5.1" (13 cm)
- Weight: 28.6 lbs (13 kg)
- Turning Diam: 1.0 m
- Max Speed:
- Power Source:
- Endurance:
- · Eliquiance.
- Tether:
- Control:
- Sensors: thermal, camera, GAS(CO, O2, SO, CH)

none

none

0.3 mps

battery

20 min

comms

remote teleop

- Payload:
- Manipulator:

Soryu

International Rescue System Institute www.rescuesystem.org Shigeo Hirose

Manufacturer's Specs:

Width:	5.9" (15 cm)
Length:	47.2" (120 cm)
Height:	5.1" (13 cm)
Weight:	28.6 lbs (13 kg)
Turning Diam:	1.0 m
Max Speed:	0.3 mps
Power Source:	battery
Endurance:	20 min
Tether:	comms
Control:	remote teleop
Sensors:	thermal, camera, GAS(CO, O2, SO, CH)
Payload:	none
Manipulator:	none

Radio Tx: (tether only) Radio Rx: (tether only) Radio Tx: (tether only) Radio Rx: (tether only)

٠

Soryu

Soryu

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height: _	Time:
# Pallets	

Directed Perception (boxes with holes):

	<u>Face</u> Left C Right				Top (Near)			(Far	-	Time	Contacts	
	Lett	101	Right	Le	t C Right Left C Right				Right			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	round obots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	อีฉั
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

Top (N	lear)		Top (Mid) Top (Far)				Time Contacts			
Over	Under	Open	Over Under Open Over Under Open							
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

- ----, j),

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	<u>Face</u> Left C Right				<u>Top (Near)</u> Left C ∣ Right) (Fa i C	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	x	· x	x	х	́х ́	x	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 <u>6</u>
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ዀ፟</u> ፚ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	-

Grasping Dexterity (shelves with objects):

	Top (Ne	ear)		Top (Mid) Top (Far)					Time Contacts		
	Over L	Inder	Open	Over Under Open Over Under Open				Open			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

BomBot 2

WVHTC Foundation www.wvhtf.org 304-333-6461/Brian Stolarik

19.5" (49.5 cm)

24VDC BB2590 or BB390 battery (2

vehicle, 1 OCU); 1.5V AA (4 in OCU)

Remote teleoperation, line-of-sight

Manufacturer's Specs:

Width: ٠

٠

٠

•

٠

- 22.8" (57.8 cm) Length:
- 10"-23" (25.4 -58.4 cm) Height: ٠
- Weight: 30 lbs (13.6 kg)
- Turning Diam: 110 in (280 cm)
- Max Speed: 14.6 fps (4.5 mps)
- Power Source: ٠
- Endurance: •
- Tether: ٠
- Control:
 - Wide-angle surveillance camera Sensors: (modular mission plate to adapt sensors)
- 45 lbs (20.4 kg) on mission plate, 60 Payload: lbs (27.2 kg) towed (optional wagon) N/A

180 mins

none

Manipulator: ٠

BomBot 2

WVHTC Foundation www.wvhtf.org 304-333-6461/Brian Stolarik

Manufacturer's Specs:

- Width: •
- Length:
- Height:
- Weight: .
- Turning Diam:
- Max Speed: .
- Power Source: •
- Endurance: ٠
- Tether:
- Control:
- Sensors: (modular
- Payload: ٠ lbs
- Manipulator: ٠

- 19.5" (49.5 cm)
- 22.8" (57.8 cm)
- 10"-23" (25.4 -58.4 cm)
- 30 lbs (13.6 kg)
- 110 in (280 cm)
- 14.6 fps (4.5 mps)
- 24VDC BB2590 or BB390 battery (2
- vehicle, 1 OCU); 1.5V AA (4 in OCU) 180 mins
- none
- - Remote teleoperation, line-of-sight Wide-angle surveillance camera
 - mission plate to adapt sensors)
 - 45 lbs (20.4 kg) on mission plate, 60 (27.2 kg) towed (optional wagon) N/A

Radio TX: 2.4MHz/430MHz

Radio TX: 2.4MHz/430MHz

BomBot 2

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	<u>Face</u> Left C Right				Top (Near)			(Far	-	Time	Contacts	
	Lett	101	Right	Le	t C Right Left C Right				Right			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	round obots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	อีฉั
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

To	p (Near)		Top (Mid) Top (Far)				Time Contacts			
Ov	er Unde	r Open	Over Under Open Over Under Open							
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Face	Top (Near)
Left I C Right	Left C Right

Directed Perception (boxes with holes):

Cache packaging, weight, setup, tools

Time:

Shipping

Packages: Ropacks

Confined Space Minimum Height:

Weights:

Pallets

	Face Left		Right		op (N eft (a r) Right		p(Fa t∣C	a r) Right	Time	Contacts	
Level 4: Level 3: Level 2:	x x	x x x	x x	x x x	,		x x	x x x	'x x	x	x min. x min. x min.	# # #	Ground Robots
Level 1:		x		x		ĸ		x	X		x min.	#	<u>ں ۳</u>

Grasping Dexterity (shelves with objects):

1	Гор (Ne	ear)		Top (/lid)		Top (Far)			Time Contacts	
(Over L	Inder	Open	Over	Under 0	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

BomBot 2

Hardiggs Pallets

Setup Time: X min. Tools: standard

Pelicans

Deployed

Soryu V

International Rescue System Institute www.rescuesystem.org Shigeo Hirose

Manufacturer's Specs:

- Width: 7.9" (20.2 cm) Length: 45.6" - 54.3" (116 - 138 cm) ٠
- Height: 5.7" (14.5 cm) •
 - 37.47 lbs (17 kg)
- Weight: • .
- Turning Diam: 50.3" (128 cm)
- Max Speed: ٠ Power Source: •

•

0.25 mps battery (14.4V, 7400mAh)

unknown

none

- Endurance: 40 min
- Tether: •
- comms Control: remote teleop ٠
- Sensors: Camera •
- Payload: •
- Manipulator: ٠

Soryu V

International Rescue System Institute www.rescuesystem.org Shigeo Hirose

Manufacturer's Specs:

- Width: Length: ٠
- Height:

•

- Weight: •
- Turning Diam: •
- Max Speed: •
- Power Source: •
- Endurance: ٠
- Tether: ٠
- Control: •
- Sensors: •
- Payload: •
- Manipulator: .

7.9" (20.2 cm) 45.6" - 54.3" (116 - 138 cm) 5.7" (14.5 cm) 37.47 lbs (17 kg) 50.3" (128 cm) 0.25 mps battery (14.4V, 7400mAh) 40 min comms remote teleop Camera unknown none

Radio Tx: (tether only) Radio Rx: (tether only) Radio Tx: (tether only) Radio Rx: (tether only)

Soryu V

Soryu V

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Heig	ht:	Time:	
# Pallets			

Directed Perception (boxes with holes):

	Face	-	District		p (Ne	_		(Far	-	Time	Contacts	
	Lett	101	Right	Le	πιιιι	Right	Len	101	Right			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	round obots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	อีฉั
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

Top (N	lear)		Тор	(Mid)		Top (Far)			Time Contacts	
Over	Under	Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

139

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	Face Left		Right		op(Ne eft C	ar) Right		<u>Top (Far)</u> Left C Right			Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	S SS
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

	Top (Ne	ear)		Top (N	<u>/lid)</u>		Top (Far)			Time Contacts	
	Over L	Inder	Open	Over	Under C	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Jacobs Rugged Robot

Jacobs University, Robotics Group, Bremen, Germany http://robotics.jacobs-university.de Prof. Dr. Andreas Birk

Manufacturer's Specs:

Width:
Length:
Height:
Weight:
Locomotion:
Steering:
Turning Diam:
Max Speed:
Power Source:
Endurance:
Tether:
Control:
Sensors:
Payload:
Manipulator:

20.31" (51.6 cm)
21.06" (53.5 cm) -37.20" (94.5 cm)
19.69" (50 cm)
39.68 lbs (18 kg)
tracked
skid
0
2.8 m/s (10.1 Km/h)
LiPo Batteries, 173 Wh
2 hours
optional, solely for communication
autonomous/teleoperation
Hokuyo/Sick /FLIR
55.12 lbs (25kg)
optional Neuronics Katana arm (6
DOF, 37.4" (95 cm) reach)

Jacobs Rugged Robot

Jacobs University, Robotics Group, Bremen, Germany http://robotics.jacobs-university.de Prof. Dr. Andreas Birk

Antibiation Nacas Lytters 👹 🖬 🛊

Manufacturer's Specs:

Width: Length: Height: Weight: Locomotion: Steering: Turning Diam: Max Speed: Power Source: Endurance: Tether: Control: Sensors: Payload: Manipulator:

20.31" (51.6 cm) 21.06" (53.5 cm) -37.20" (94.5 cm) 19.69" (50 cm) 39.68 lbs (18 kg) tracked skid 0 2.8 m/s (10.1 Km/h) LiPo Batteries, 173 Wh 2 hours optional, solely for communication autonomous/teleoperation Hokuyo/Sick /FLIR 55.12 lbs (25kg) optional Neuronics Katana arm (6 DOF, 37.4" (95 cm) reach)

Radio Tx: 802.11 bg / a (2.4 GHz / 5.0 GHz) Radio Rx: 802.11 bg / a (2.4 GHz / 5.0 GHz) Radio Tx: 802.11 bg / a (2.4 GHz / 5.0 GHz) Radio Rx: 802.11 bg / a (2.4 GHz / 5.0 GHz)

Jacobs Rugged Robot

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height: _	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac	-	District		p (Ne			(Far	-	Time	Contacts	
Level 4:		U x	Right	Lei		Right	Len		Right x	x min.	#	<u>n</u>
Level 3:		x			x		x		x	x min.	#	round obots
Level 2:			x	x		x			x	x min.	#	202
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	Ŭ -

Grasping Dexterity (shelves with objects):

Top (N	lear)		Тор	(Mid)		Тор	(Far)		Time 0	Contacts
Over	Under	Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Jacobs Rugged Robot

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs P	allets
Weights:	Shipping	Deployed	Setup Time: X mir	. Tools: standard

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

	Face) (Nea	_) (Far	-	Time	Contacts	
	Left	C	Right	Left	C	Right	Left	C	Right			T (0
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	έĸ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

	Top (N	ear)		Top (I	Mid)		Top (Far)	Time C	Contacts	
	Over l	Jnder	Open	Over	Under	Open	Over	Under			
Level 4	x	х	х	х	х	х	х	х	х	x min.	#
Level 3	x	х	х	х	х	х	х	х	х	x min.	#
Level 2	x	х	х	х	х	х	х	х	х	x min.	#
Level 1	x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.)

Hero

First-Response Robotics, LLC www.FirstResponseRobotics.com 513-752-6653 /Mike Cardarelli

21" (53 cm)

0 m (0 cm)

battery

45 min

none

none

10 fps (3 mps)

remote teleop

130 lb (59 kg)

radiation, biological

Manufacturer's Specs:

- Width: ٠
 - Length: 36" (91 cm)
- 17" (43 cm) Height: ٠ 42 lbs (19 kg)
- Weight: .
- Turning Diam:
- Max Speed: ٠
- Power Source:
- Endurance: •
- Tether: ٠
- Control: ٠

•

٠

٠

- Sensors: •
- Payload:
- Manipulator: •

Hero

First-Response Robotics, LLC www.FirstResponseRobotics.com 513-752-6653 /Mike Cardarelli

Manufacturer's Specs:

.

•

.

Width:	21" (53
Length:	36" (91
Height:	17" (43
Weight:	42 lbs (
Turning Diam:	0 m (0 d
Max Speed:	10 fps (
Power Source:	battery
Endurance:	45 min
Tether:	none
Control:	remote
Sensors:	radiatio
Payload:	130 lb (

Manipulator: •

cm) cm) cm) (19 kg) cm) (3 mps) teleop on, biological (59 kg) none

Radio TX: 72 MHz controller/1.0W (video), 2.4 MHz 900 MHz/0.5 W (telemetry), 1.2 MHz / 3W (video)

Radio TX: 72 MHz controller/1.0W (video), 2.4 MHz 900 MHz/0.5 W (telemetry), 1.2 MHz / 3W (video)

Hero

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Face	9		Тор	(Ne	ar)	Тор	(Far)	Time	Contacts	
	Left	C	Right	Left	C	Right	Left	C	Right			-
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	68
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

	Top (N	ear)		Top (Mid)		Top (Far)	Time (Contacts	
	Over l	Jnder	Open	Over	Under	Open	Over	Under	Open		
Level 4	: x	х	х	х	х	х	х	х	х	x min.	#
Level 3	: x	х	х	х	х	х	х	х	х	x min.	#
Level 2	: x	х	х	х	х	х	х	х	х	x min.	#
Level 1	: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

	Face Left		Diabl		o (Ne	ar) Right		(Far	<u>')</u> Right	Time	Contacts	
						0			0	v main		ΔŃ
Level 4:					х			х		x min.		5
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 9
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

	Top (Ne	ear)		Top (N	<u>/lid)</u>		Top (F	ar)	Time C	Contacts	
	Over L	Inder	Open	Over	Under C	Open	Over	Under			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Hero

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

Super Kenaf

International Rescue System Institute www.rescuesystem.org Eiji Koyanagi

Manufacturer's Specs:

Width:	16.9 in (43.0 cm)
Length:	37.0 (20.4)in (94.0(52.0) cm)
Height:	6.3 in (16.0 cm)
Weight:	43.3 lbs (19.0 kg)
Locomotion:	2;tracked,4;flipper arm
Steering:	skid
Turning Diam:	diagonal for skid steer 0 in (0 cm)
Max Speed:	11.6 fps (3.5 mps)
Power Source:	battery
Endurance:	40 min
Tether:	none
Control:	remote teleop
Sensors:	None
Payload:	None
Manipulator:	None

Super Kenaf

International Rescue System Institute www.rescuesystem.org Eiji Koyanagi

Manufacturer's Specs:

Width: Length: Height: Weight: Locomotion: Steering: Turning Diam: Max Speed: Power Source: Endurance: Tether: Control: Sensors: Payload: Manipulator:

16.9 in (43.0 cm) 37.0 (20.4)in (94.0(52.0) cm) 6.3 in (16.0 cm) 43.3 lbs (19.0 kg) 2;tracked,4;flipper arm skid diagonal for skid steer 0 in (0 cm) 11.6 fps (3.5 mps) battery 40 min none remote teleop None None

Radio Tx: 802.11A Radio Rx: 802.11A Radio Tx: 802.11A Radio Rx: 802.11A None

Super Kenaf

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Shipping Weights: Deployed Setup Time: X min. Tools: standard

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	<u>Face</u> Left C Right				<u>Top (Near)</u> Left C Right			<u>Top (Far)</u> Left C Right			Contacts	
	Lett	101	Right	Le	πιιιι	Right	Len	101	Right			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	round obots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	อีฉั
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

Top (N	lear)		Тор	(Mid)		Top (Far)			Time Contacts	
Over	Under	Open	Over Under Open			Over Under Open				
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

		Creani				(- h - h	
#		Level 1:	х	х	х	х	
#	ษีพื	Level 2:	х	х	х	х	
#	p og	Level 3:	х	х	х	х	

Grasping Dexterity (shelves with objects):

Time:

Cache packaging, weight, setup, tools

Directed Perception (boxes with holes):

Shipping

Packages: Ropacks

Confined Space Minimum Height:

> Face Left | C | Right

Level 4: x x x

Weights:

Pallets

	Top (N	ear)		Top (Mid)		Top (Far)	Time 0	Contacts	
	Over l	Jnder	Open	Over Under Open			Over Under Open				
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Top (Far)

х х

х х х

х

х

Left | C | Right

х

х х

х х

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Super Kenaf

Hardiggs Pallets

Setup Time: X min. Tools: standard

Time

x min. #

x min. #

x min. x min. #

Contacts

#

Ground Robots

Pelicans

Top (Near)

Left | C | Right

х х

х х

х х

x x

Deployed

Kenaf

International Rescue System Institute www.rescuesystem.org Eiji Koyanagi

Manufacturer's Specs:	
Width:	16.9 in (43.0
Length:	37.0 (20.4)ir
Height:	7.7 in (19.5 d
Weight:	48.9 lbs (22.
Locomotion:	2;tracked,4;f
Steering:	skid
Turning Diam:	diagonal for
Max Speed:	1.2 fps (0.4
Power Source:	battery
Endurance:	120 min
Tether:	none
Control:	remote telec
Sensors:	CCD Camer
	Scanner (20
Payload:	None
Manipulator:	None

146

0 cm) in (94.0(52.0) cm) cm) 2.0 kg) ;flipper arm skid steer 0 in (0 cm) mps) operation era, Fisheye Camera, 3D 2D URG + Pant Tilt base) None

Kenaf

International Rescue System Institute www.rescuesystem.org Eiji Koyanagi

Manufacturer's Specs:

Width: Length: Height: Weight: Locomotion: Steering: Turning Diam: Max Speed: Power Source: Endurance: Tether: Control: Sensors: Payload: Manipulator:

16.9 in (43.0 cm) 37.0 (20.4)in (94.0(52.0) cm) 7.7 in (19.5 cm) 48.9 lbs (22.0 kg) 2;tracked,4;flipper arm skid diagonal for skid steer 0 in (0 cm) 1.2 fps (0.4 mps) battery 120 min none remote teleoperation CCD Camera, Fisheye Camera, 3D Scanner (2D URG + Pant Tilt base) None None

Radio Tx: 802.11A Radio Rx: 802.11A

Radio Tx: 802.11A Radio Rx: 802.11A

Kenaf

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Face	9		Тор	(Ne	ar)	Тор	(Far)	Time	Contacts	
	Left	C	Right	Left	C	Right	Left	C	Right			-
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	68
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

	Top (N	ear)		Top (Mid)		Top (Far)	Time Contacts		
	Over l	Jnder	Open	Over Under Open			Over Under Open				
Level 4	: x	х	х	х	х	х	х	х	х	x min.	#
Level 3	: x	х	х	х	х	х	х	х	х	x min.	#
Level 2	: x	х	х	х	х	х	х	х	х	x min.	#
Level 1	: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

		Face Top (Near) Left C Right Left C Right					o(Far ∶ C	<u>)</u> Right	Time	Contacts	-	
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	S SS
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

1	Гор (Ne	ear)		Top (/lid)		Top (F	ar)	Time C	Contacts	
(Over L	Inder	Open	Over Under Open			Over Under Open				
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Kenaf

PackBot EOD

iRobot www.irobot.com 781-345-0200/Jeff Ostazewski

Manufacturer's Specs:

- 16"-20" (40 50 cm) • Width:
- Length: 27" (69 cm) •
- Height: 7.5" (19 cm) ٠
- 48 lbs (22 kg) Weight: ٠
- Turning Dia: ٠ 34" (86.36 cm)
- Max Speed: Variable 0 - 5 mph (0 - 8 km/hr) .
- Power Source: .
- Endurance: 2-12 hours / 6+ mi (10+ km) •
- Tether: •
- Control: Teleop •
- Sensors: Zoom, FLIR cameras.omni direct mic ٠

arm

battery

optional

- Payload: 8 additional •
- Manipulator: •

PackBot EOD

iRobot www.irobot.com 781-345-0200/Jeff Ostazewski

Manufacturer's Specs: Width:

- 27" (69 cm)
- Height: Weight:
- Turning Dia:
- Max Speed:

Length:

- Power Source:
- Endurance:
- Tether:
- Control:

•

.

- Sensors: •
- Payload: .
- Manipulator:
- 16"-20" (40 50 cm) 7.5" (19 cm) 48 lbs (22 kg) 34" (86.36 cm) Variable 0 - 5 mph (0 - 8 km/hr) battery 2-12 hours / 6+ mi (10+ km) optional Teleop Zoom, FLIR cameras, omni direct mic 8 additional arm

Radio TX: 2400 MHz Radio RX: 2400 MHz Radio TX: 2400 MHz Radio RX: 2400 MHz

PackBot EOD

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Confined Space

Minimum Height:	Time:
# Pallets	

Directed Perception (boxes with holes):

	Fac	-	Right		(Ne	<u>ar)</u> Right	 (Far	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	x x	x x x x	X X X X X	x x x	x	x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

Top (Near)		Top (Mid)			Top	<u>(Far)</u>		Time Contacts		
Over	Under	Open	Ove	r Unde	r Open	Over	r Unde	r Open			
Level 4: x	х	х	х	х	х	х	х	х	x min.	#	
Level 3: x	х	х	х	х	х	х	х	х	x min.	#	
Level 2: x	х	х	х	х	х	х	х	х	x min.	#	
Level 1: x	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

	Left	C	Right	Left	C	Right	Left	C	Right	
Level 4:	х	х	х	х	х	х	х	х	х	
Level 3:	х	х	х	х	х	х	х	х	х	
Level 2:	х	х	х	х	х	х	х	х	х	

Directed Perception (boxes with holes):

Cache packaging, weight, setup, tools

Time:

Shipping

Packages: Ropacks

Confined Space Minimum Height:

> Face Left | C | Right

Level 1: x x x

Weights:

Pallets

Grasping Dexterity (shelves with objects):

<u>T</u> (op (Ne	ar)		Top (/lid)		Top (F	ar)		Time C	Contacts
0	ver U	nder	Open	Over	Under 0	Open	Over	Under	Open		
Level 4: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 3: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 2: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 1: >	ĸ	х	х	х	х	х	х	х	х	x min.	#

Top (Far)

х

х х

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

PackBot EOD

Hardiggs Pallets

Setup Time: X min. Tools: standard

Time

x min. #

x min. #

x min. x min. #

#

Contacts

Ground Robots

Pelicans

Top (Near)

x x x

Left | C | Right

Deployed

PackBot Explorer

iRobot www.irobot.com 781-345-0200/Jeff Ostazewski

16" - 20" (40 - 50 cm)

Zoom & FLIR cameras, omni dirc mic

surveillance head is mounted on a

12" (.3m) mast with a 360° pan and

27"(69 cm)

battery

optional

Teleop

270° tilt

Manufacturer's Specs:

- Width:
- Length:
- Height: 7.5" (19 cm)
- Weight: 48 lbs (22 kg)
- Turning Dia: 34" (86.36 cm)
- Max Speed: Variable 0 5 mph (0 8 km/hr)
- Power Source:
- Endurance: 2-12 hours / 6+ mi (10+ km)
- Tether:

•

- Control:
- Sensors:
- Payload: Supports up to 8
- Manipulator:

PackBot Explorer

iRobot www.irobot.com 781-345-0200/Jeff Ostazewski

Manufacturer's Specs:

• Width:

٠

- Length:
- Height:
- Weight:
- Turning Dia:
- Max Speed:
- Power Source:
- Endurance:
- Tether:
- Control:
- Sensors:
- Payload:
- Manipulator:
- 16" 20" (40 50 cm) 27"(69 cm) 7.5" (19 cm) 48 lbs (22 kg) 34" (86.36 cm) Variable 0 - 5 mph (0 - 8 km/hr) battery 2-12 hours / 6+ mi (10+ km) optional Teleop Zoom & FLIR cameras, omni dirc mic Supports up to 8 surveillance head is mounted on a
- 12" (.3m) mast with a 360° pan and 270° tilt

Radio TX: 2400 MHz Radio RX: 2400 MHz

Radio TX: 2400 MHz Radio RX: 2400 MHz

PackBot Explorer

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Face		Right		(Ne	ar) Right	 (Far	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	x x x x x	x x x x	X X X X X	x x	x x x x	x x x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

Top (N	lear)		Тор	(Mid)		Тор	(Far)		Time 0	Contacts
Over	Under	Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

ĒĦ	Lev
2 ğ	Lev
÷	Lev
0 =	Lev

Grasping Dexterity (shelves with objects):

	Top (N	ear)		Top (I	Mid)		Top (Far)		Time (Contacts
	Over l	Jnder	Open	Over	Under	Open	Over	Under	Open		
Level 4	х	х	х	х	х	х	х	х	х	x min.	#
Level 3	х	х	х	х	х	х	х	х	х	x min.	#
Level 2	х	х	х	х	х	х	х	х	х	x min.	#
Level 1	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x e deg); Tilt (x deg)

Cache pa	<u>ckaging, weight,</u>	setup, tools		
Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X	min. Tools: standard

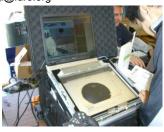
PackBot Explorer

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):


	Fac	e		Тор) (Ne	ar)	Тор) (Fai	<u>)</u>	Time	<u>Contacts</u>	
	Left		Right	Left		Right	Left		Right			
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	2 ă
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	Ϋ́ε
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

(~,,	۰.	~	•
deg);	Ра	n	(х	(

Hibiscus

Toin University of Yokohama Chiba Institute of Technology koyanagi@furo.org

Manufacturer's Specs:

- Width: ٠ .
 - 38.5" (98 cm) Length:
- 7" (18 cm) Height: ٠
- 49.6 lbs (22.5 kg) Weight: ٠ diagonal for skid steer
- Turn Diam: ٠
- Max Speed: ٠
- Power Source: ٠
- Endurance: .

٠

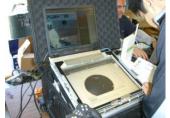
- Tether:
- Control Features: centering
- Sensors: ٠
- Payload: ٠
- Manipulator: ٠

60 min none diagnostics, wall following,

.7 mph (1.2 km/ph)

14.5" (37 cm)

URG,Heat, Voice


battery

- none
 - Sensor arm 4DOF: Length: 14.1" (36cm)

Hibiscus

Toin University of Yokohama Chiba Institute of Technology koyanagi@furo.org

Manufacturer's Specs:

Width:	14.5" (37 cm)
Length:	38.5" (98 cm)
Height:	7" (18 cm)
Weight:	49.6 lbs (22.5 kg)
Turn Diam:	diagonal for skid steer
Max Speed:	.7 mph (1.2 km/ph)
Power Source:	battery
Endurance:	60 min
Tether:	none
Control Features:	diagnostics, wall following, centering
Sensors:	URG,Heat, Voice
Payload:	none
Manipulator:	Sensor arm 4DOF: Length: 14.1" (36cm)

Radio TX: 2400 MHz Radio RX: 2400 MHz

Radio TX: 2400 MHz Radio RX: 2400 MHz

Hibiscus

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac	-	Right		<u>Top (Near)</u> Left C Right			(Far	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	x x	x x x x	X X X X X	x x x	x		x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

To	p (Near)		Тор	(Mid)		Top (Far)			Time 0	Contacts
Ov	er Unde	r Open	Over Under Open			Over Under Open				
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

153

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X I	nin. Tools: standard

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	Face Left		Right		<u>Top (Near)</u> Left C Right			o(Far ∶ C	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	S SS
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

1	Гор (Ne	ear)		Top (/lid)		Top (F	ar)		Time Contacts		
(Over L	Inder	Open	Over Under Open			Over Under Open					
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

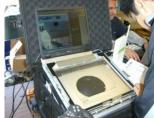
Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)


 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Hibiscus

Cphea

Toin University of Yokohama Chiba Institute of Technology koyanagi@furo.org

Manufacturer's Specs:

- 20" (52 cm) Width: .
- Length: 40" (102 cm)
- Height: 9.4" (24 cm)
- Weight: 49.6 lbs (22.5 kg) ٠ diagonal for skid steer
- Turn Diam:
- Max Speed: .37 mph (0.6 km/ph) ٠
- Power Source: battery ٠
- Endurance:
- Tether:

٠

Control: diagnostics, wall following, centering

60 min

none

- Sensors: URG,Heat, Voice
- Payload:
- none Manipulator: Sensor arm 2DOF: Length (30cm)

Cphea

Toin University of Yokohama Chiba Institute of Technology koyanagi@furo.org

Manufacturer's Specs:

Width:	20" (52 cm)
Length:	40" (102 cm)
Height:	9.4" (24 cm)
Weight:	49.6 lbs (22.5 kg)
Turn Diam:	diagonal for skid steer
Max Speed:	.37 mph (0.6 km/ph)
Power Source:	battery
Endurance:	60 min
Tether:	none
Control:	diagnostics, wall following, centering
Sensors:	URG,Heat, Voice
Payload:	none
Manipulator:	Sensor arm 2DOF: Length (30cm)

Radio TX: 2400 MHz Radio RX: 2400 MHz Radio TX: 2400 MHz Radio RX: 2400 MHz

Cphea

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Weights: Shipping Deployed Setup Time: X min. Tools: standard

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Face Left	-	Right		<u>Top (Near)</u> Left C Right			(Far	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	x x x x x	x x x	x x x x x	× × ×	x	x x x	x x x	x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

To	p (Near)		Тор	(Mid)		Тор	(Far)		Time 0	Contacts
Ov	er Unde	r Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Cphea

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

	Fac) (Ne			(Far	-	Time	Contacts	
	Left	C	Right	Lef	t C	Right	Left	C	Right			77 10
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	έĸ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

Top	(Near)		Top (Mid)			Top	(Far)		Time Contacts		
Over	Under	Open	Ove	r Unde	r Open	Ove	r Unde	r Open			
Level 4: x	х	х	х	х	х	х	х	х	x min.	#	
Level 3: x	х	х	х	х	х	х	х	х	x min.	#	
Level 2: x	х	х	х	х	х	х	х	х	x min.	#	
Level 1: x	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (flat):

Robbie 6

University of Koblenz-Landau, Germany Johannes Pellenz, pellenz@uni-koblenz.de www.uni-koblenz.de/agas

Manufacturer's Specs:

- Width: 19.3 in (49 cm)
- Length: 21.3 in (54 cm) ٠ •
 - Height: 29.5 in (75 cm) 55 lbs (25 kg)
- Weight: ٠ wheeled
- Locomotion: .
- Steering: ٠
- Min Turn Diam: 26.77 (68 cm) ٠
- Max Speed: 2.52 kmph •
- Power Source: battery •
- Endurance: about 150 min ٠ none
- Tether: •

•

- Control Features: •
- none Sonar, LRF, 3 FireWire Cameras, Sensors: Compass none

none

skid

- Payload: •
- Manipulator:

Robbie 6

University of Koblenz-Landau, Germany Johannes Pellenz, pellenz@uni-koblenz.de www.uni-koblenz.de/agas

Manufacturer's Specs:

anulacialer 3 opecs.	
Width:	19.3 in (49 cm)
Length:	21.3 in (54 cm)
Height:	29.5 in (75 cm)
Weight:	55 lbs (25 kg)
Locomotion:	wheeled
Steering:	skid
Min Turn Diam:	26.7 (68 cm)
Max Speed:	2.52 kmph
Power Source:	battery
Endurance:	about 150 min
Tether:	none
Control Features:	none
Sensors:	Sonar, LRF, 3 FireWire Cameras,
	Compass
Payload:	none
Manipulator:	none

Radio TX: 802.11 a Radio RX: 802.11 a

Radio TX: 802.11 a Radio RX: 802.11 a

Robbie 6

Robbie 6

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height: _	Time:
# Pallets	

Directed Perception (boxes with holes):

	Fac		Right	Top		<u>ar)</u> Right		(Far	<u>)</u> Right	Time	Contacts	
Level 4:		x	-	x		X	X	x	x	x min.	#	क व
Level 3:		x		x	~	x	x	x	x	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	ž 2
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	0 -

Grasping Dexterity (shelves with objects):

To	p (Near)		Тор	(Mid)		Тор	(Far)		Time 0	Contacts
Ov	er Unde	r Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	Face Left		Right		op(Ne eft C	ar) Right		o(Far ∶ C	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	S SS
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

1	Гор (Ne	ear)		Top (/lid)		Top (F	ar)		Time C	Contacts
(Over L	Inder	Open	Over	Under 0	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Shinobi

15.74" (40 cm)

31.49" (80 cm)

57.32 lbs (26 kg)

15-74" - 31.49" (40cm- 80cm)

Univ Electo-Communications www.hi.mce.uec.ac.jp/matsuno-lab/matsuno_eng.html

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight:
- Turning Dia:
- Max Speed: .21 mps (.33 kms)
- Power Source:
- Endurance: 60 min
- Tether:
- Control:
- Sensors: thermal , chemical (cO2)

0

battery

none

teleop

none

none

- Payload:
- Manipulator:

Shinobi

Univ Electo-Communications www.hi.mce.uec.ac.jp/matsuno-lab/matsuno_eng.html

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight:
- Turning Dia:
- Max Speed:
- Power Source:
- Endurance:
- Tether:
- Control:
- Sensors:
- Payload:
- Manipulator:

15. 74" (40 cm) 31.49" (80 cm) 15-74" - 31.49" (40cm- 80cm) 57.32 lbs (26 kg) 0 .21 mps (.33 kms) battery 60 min none teleop thermal , chemical (cO2) none

Radio TX: 5200 MhZ (10mW) Radio RX: 5200 MhZ (10mW) Radio TX: 5200 MhZ (10mW) Radio RX: 5200 MhZ (10mW)

none

Shinobi

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac	<u>e</u>		Тор	Top (Near)			(Far)	Time	Contacts	
	Left	C	Right	Left	Left C Right			C	Right			-
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	58
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

To	p (Near)		Тор	(Mid)		Тор	(Far)		Time Contacts		
Ov	er Unde	r Open	Ove	r Unde	r Open	Over	Unde	r Open			
Level 4: x	х	х	х	х	х	х	х	х	x min.	#	
Level 3: x	х	х	х	х	х	х	х	х	x min.	#	
Level 2: x	х	х	х	х	х	х	х	х	x min.	#	
Level 1: x	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	Face Left		Right		op(Ne eft C	ar) Right		o(Far ∶ C	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	S SS
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

1	Гор (Ne	ear)		Top (/lid)		Top (F	ar)	Time C	Contacts	
(Over L	Inder	Open	Over	Under 0	Open	Over	Under			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Shinobi

Matilda

Mesa Robotics, Inc. www.mesa-robotics.com 256-258-2130/Toki Owens

Manufacturer's Specs:

•

٠

•

.

- Width: 21" (53.34 cm)
- Length: 30" 34" (76.2cm- 86.36cm)

zero

- Height: 12" (30.48 cm)
- Weight: 61 lbs (27.66 kg)
- Turning Dia:
- Max Speed:
- Power Source: 12VCD battery, NiMH
- Endurance: 360 480 min
- Tether: fiber optic cable (data,video, audio)

2.0 mph

- Control: remote teleop
- Sensors: biological, chemical, radiological
- Payload: 125 lbs
- Manipulator: 5 DOF with 44 in reach (adds 45lbs/20.4kg to weight)

Matilda

Mesa Robotics, Inc. www.mesa-robotics.com 256-258-2130/Toki Owens

Manufacturer's Specs:

.

•	Width:	21" (53.34 cm)
•	Length:	30" – 34" (76.2cm- 86.36cm)
•	Height:	12" (30.48 cm)
•	Weight:	61 lbs (27.66 kg)
•	Turning Dia:	zero
•	Max Speed:	2.0 mph
•	Power Source:	12VCD battery, NiMH
•	Endurance:	360 – 480 min
•	Tether:	fiber optic cable (data,video, audio)
•	Control:	remote teleop
•	Sensors:	biological, chemical, radiological
•	Payload:	125 lbs
•	Manipulator:	5 DOF with 44 in reach (adds 45lbs/20.4kg to weight)

Radio TX: 900 MHz control, 1800 MHz video, 469 MHz audio Radio RX: 900 MHz control, 1800 MHz video, 469 MHz audio

Radio TX: 900 MHz control, 1800 MHz video, 469 MHz audio Radio RX: 900 MHz control, 1800 MHz video, 469 MHz audio

Matilda

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac	-	Right		(Ne	<u>ar)</u> Right	 (Far	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	x x	x x x x	X X X X X	x x x	x	x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

To	p (Near)		Тор	(Mid)		Тор	(Far)		Time Contacts		
Ov	er Unde	r Open	Ove	r Unde	r Open	Over	Unde	r Open			
Level 4: x	х	х	х	х	х	х	х	х	x min.	#	
Level 3: x	х	х	х	х	х	х	х	х	x min.	#	
Level 2: x	х	х	х	х	х	х	х	х	x min.	#	
Level 1: x	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

161

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X I	nin. Tools: standard

Matilda

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	<u>Face</u> Left C Right					C	ar) Right		(Far C	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x		х	x	x	х	x	x	x min.	#	Ground Robots
Level 3:	х	х	х		х	х	х	х	х	х	x min.	#	5 <u>6</u>
Level 2:	х	х	х		х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х		х	х	х	х	х	х	x min.	#	-

Grasping Dexterity (shelves with objects):

1	Гор (Ne	ear)		Top (/lid)		Top (F	ar)	Time C	Contacts	
(Over L	Inder	Open	Over	Under 0	Open	Over	Under			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Matilda II

Mesa Robotics, Inc. www.mesa-robotics.com 256-258-2130/Toki Owens

Manufacturer's Specs:

Width:

•

٠

•

Length: 30" – 34" (76.2cm- 86.36cm)

21" (53.34 cm)

- Height: 12" (30.48 cm)
- Weight: 61 lbs (27.66 kg)
- Turning Dia:
- Max Speed: 2.0 mph
- Power Source: 12VCD battery, NiMH
- Endurance: 360 480 min
- Tether: fiber optic cable (data,video, audio)

zero

- Control: remote teleop
- Sensors: biological, chemical, radiological
 - Payload: 125 lbs
- Manipulator: 5 DOF with 44 in reach (adds 45lbs/20.4kg to weight)

Matilda II

Mesa Robotics, Inc. www.mesa-robotics.com 256-258-2130/Toki Owens

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight:
- Turning Dia:
- Max Speed:
- Power Source:
- Endurance:
- Tether:
- Control:
- Sensors:
- Payload:
- Manipulator:

- 21" (53.34 cm) 30" – 34" (76.2cm- 86.36cm)
- 12" (30.48 cm)
- 61 lbs (27.66 kg)
- zero
- 2.0 mph
- 12VCD battery, NiMH
- 360 480 min
- fiber optic cable (data,video, audio)
- remote teleop
- biological, chemical, radiological
- 125 lbs
- 5 DOF with 44 in reach (adds 45lbs/20.4kg to weight)

Radio TX: 900 MHz control, 1800 MHz video, 469 MHz audio Radio RX: 900 MHz control, 1800 MHz video, 469 MHz audio Radio TX: 900 MHz control, 1800 MHz video, 469 MHz audio Radio RX: 900 MHz control, 1800 MHz video, 469 MHz audio

Matilda II

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac	-	District		p (Ne			(Far	-	Time	Contacts	
Level 4:		U x	Right	Lei		Right	Len		Right x	x min.	#	<u>n</u>
Level 3:		x			x		x		x	x min.	#	round obots
Level 2:			x	x		x			x	x min.	#	202
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	Ŭ -

Grasping Dexterity (shelves with objects):

To	p (Near)		Тор	(Mid)		Тор	(Far)		Time Contacts			
Ov	er Unde	r Open	Ove	r Unde	r Open	Over	Unde	r Open				
Level 4: x	х	х	х	х	х	х	х	х	x min.	#		
Level 3: x	х	х	х	х	х	х	х	х	x min.	#		
Level 2: x	х	х	х	х	х	х	х	х	x min.	#		
Level 1: x	х	х	х	х	х	х	х	х	x min.	#		

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Minimum Height:	Time:	
-----------------	-------	--

Pelicans

Deployed

Pallets

Weights:

Packages: Ropacks

Confined Space

Directed Perception (boxes with holes):

Cache packaging, weight, setup, tools

Shipping

	FaceTop (Near)Left C RightLeft C Right						х х х х			Contacts		
Level 4:					x				0	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 2
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	ดั ชั
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

1	Гор (Ne	ear)		Top (/lid)		Top (F	ar)		Time Contacts		
(Over L	Inder	Open	Over Under Open Over Under Open								
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Matilda II

Hardiggs Pallets

Setup Time: X min. Tools: standard

NuTech-R4

Nagaoka Univ. of Tech. / Nagaoka TEKKO-SEIKEN (Joint Team) http://sessyu.nagaokaut.ac.jp/~kimuralab/ Tetsuya KIMURA, kimura@mech.nagaokaut.ac.jp

16.93" (43 cm)

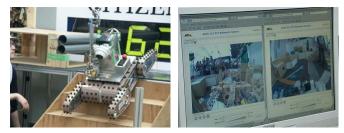
17.72" (45 cm)

77 lbs (35 kg)

24.41 (62 cm) 35.43 (90 cm with

crawler with sub-crawler (flippers)

Manufacturer's Specs:


- Width: •
- Lenath: • flipper extension)
- Height:
- Weight: •
- Locomotion: ٠
- Steering: •

•

- skid Turning Diam: 29.53 (75 cm)
- Max Speed:
- 0.3 mps Power Source: battery .
 - Endurance: 30 min
- Tether: .
- communication (optional) Control: ٠
- remote tele-operation Sensors: ٠
- thermal, sound, arm camera • Payload: 3 kg (body), 300 g (manipulator)
- Manipulator: 5 DOFs, reach 39.37" (100 cm) ٠

NuTech-R4

Nagaoka Univ. of Tech. / Nagaoka TEKKO-SEIKEN (Joint Team) http://sessyu.nagaokaut.ac.jp/~kimuralab/ Tetsuya KIMURA, kimura@mech.nagaokaut.ac.jp

Manufacturer's Specs:

- Width:
- Lenath: flipper extension)
- Height:
- Weight:
- Locomotion:
- Steering:
- Turning Diam: •
- Max Speed:
- Power Source: .
- Endurance:
- Tether:
- Control: .
- Sensors: .
- Payload:
- Manipulator: •
- 16.93" (43 cm) 24.41 (62 cm) 35.43 (90 cm with 17.72" (45 cm) 77 lbs (35 kg) crawler with sub-crawler (flippers) skid 29.53 (75 cm) 0.3 mps battery 30 min communication (optional) remote tele-operation thermal, sound, arm camera 3 kg (body), 300 g (manipulator) 5 DOFs, reach 39.37" (100 cm)

Radio TX: 802.11 a /g/n Radio RX: 802.11 a /g/n Radio TX: 802.11 a /g/n Radio RX: 802.11 a /g/n

NuTech-R4

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Confined Space

Minimum Height:	Time:
# Pallets	

Directed Perception (boxes with holes):

	Fac Left	-	Right	t Left C Right				(Far ∣C∣	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	× × ×	x	x x x x x	x x x	x x x x	х	x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

To	p (Near)		Тор	(Mid)		Тор	(Far)		Time Contacts			
Ov	er Unde	r Open	Ove	r Unde	r Open	Over	Unde	r Open				
Level 4: x	х	х	х	х	х	х	х	х	x min.	#		
Level 3: x	х	х	х	х	х	х	х	х	x min.	#		
Level 2: x	х	х	х	х	х	х	х	х	x min.	#		
Level 1: x	х	х	х	х	х	х	х	х	x min.	#		

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

_ _ _

Directed Perception	(boxes with holes):

Pelicans

Deployed

	Face								(Far)	Time	Contacts	
	Left	C	Right		Left C Right			Left	C	Right			T (0
Level 4:	х	х	х		х	х	х	х	х	х	x min.	#	Ground Robots
Level 3:	х	х	х		х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х		х	х	х	х	х	х	x min.	#	ចដ
Level 1:	х	х	х		х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

Cache packaging, weight, setup, tools

Shipping

Minimum Height: Time:

Packages: Ropacks

Confined Space

Weights:

Pallets

	Top (Ne	ear)		Top (N	<u>/lid)</u>		Top (F	ar)		Time Contacts		
	Over L	Inder	Open	Over Under Open			Over Under Open					
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

NuTech-R4

Hardiggs Pallets

Setup Time: X min. Tools: standard

Versatrax 150

SeaTrepid www.inuktun.com Bob Christ

Manufacturer's Specs:

- Width:
- •
- Length: ٠
- Height:

•

.

- Weight: •
- Locomotion: ٠
- Steering: •
- Turning Diam: •
- Max Speed: .
- Power Source: ٠
 - Endurance:
- Tether: Power and comms
- Control: .
- Sensors: •
- Payload: •
- Manipulator: •

Radio TX:

Radio RX:

Inline: 4.5" (11.43 cm)

- Parallel: 11.5" (29.21cm) and larger
- Inline: 64" (162.5 cm)
 - Parallel: 24" (61cm)
- Inline: 8.57" (21.8 cm) and larger
- 88 lbs (40 kg)
 - Tracked
- Skid steering
- Various; depending on pipe diameters
- 30 fpm (9 mpm)
- 88-264 VAC 50/60Hz
 - Continuous
- Remote teleop Sonar, sonde
- N/A

Versatrax 150 SeaTrepid

www.inuktun.com Bob Christ

Manufacturer's Specs:

- Width: •
- Length:
- Heiaht:
- Weight:
- Locomotion:
- Steering:
- Turning Diam:
- Max Speed:
- Power Source:
- Endurance: .
- . Tether:
- Control: •
- Sensors: .
- Payload: .
- Manipulator:

Inline: 4.5" (11.43 cm) Parallel: 11.5" (29.21cm) and larger Inline: 64" (162.5 cm) Parallel: 24" (61cm) Inline: 8.57" (21.8 cm) and larger 88 lbs (40 kg) Tracked Skid steering Various; depending on pipe diameters 30 fpm (9 mpm) 88-264 VAC 50/60Hz Continuous Power and comms Remote teleop Sonar, sonde N/A N/A

Radio TX: Radio RX:

166

N/A

Versatrax 150

Versatrax 150

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	<u>Face</u> Left C Right				<u>Top (Near)</u> Left C Right			(Far	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	x x	x x x x	X X X X X	x x x	x		x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

To	p (Near)		Top (Mid)			Top (Far)			Time Contacts		
Ov	er Unde	r Open	Over Under Open			Over Under Open					
Level 4: x	х	х	х	х	х	х	х	х	x min.	#	
Level 3: x	х	х	х	х	х	х	х	х	x min.	#	
Level 2: x	х	х	х	х	х	х	х	х	x min.	#	
Level 1: x	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

167

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	<u>Face</u> Left C Right				<u>Top (Near)</u> Left C Right			o(Far ∶ C	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	S SS
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

	Top (Ne	ear)		Top (N	<u>/lid)</u>		Top (F	ar)		Time Contacts		
	Over L	Inder	Open	Over Under Open			Over Under Open					
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Chaos

Autonomous Solutions. www.autonomoussolutions.com Omar Salas

Manufacturer's Specs:

- Width: 28" (70 cm)
- Length: 28" (71 cm)
- Height: 8" (20 cm)
- Weight: 120 lbs (55 kg) .
- Turning Dia: 39" (100) ٠ TBD
- Max Speed: ٠
- Power Source: Lithium battery .
- Endurance: •
- Tether: ٠
- Control: remote teleop •
- 2 Cams Sensors: ٠
- Payload: TBD .
- Manipulator: None ٠

Chaos

Autonomous Solutions. www.autonomoussolutions.com

Omar Salas

Manufacturer's Specs: Width

 anaotaror o opocor	
Width:	28" (70 cm)
Length:	28" (71 cm)
Height:	8" (20 cm)
Weight:	120 lbs (55 kg)
Turning Dia:	39" (100)
Max Speed:	TBD
Power Source:	Lithium battery
Endurance:	240 min
Tether:	None
Control:	remote teleop
Sensors:	2 Cams
Payload:	TBD
Manipulator:	None

Radio TX: 2400 MHz/1000 mW (Video) 900 MHZ/1000 mW (data) Radio RX: 2400 MHz/1000 mW (Video) 900 MHZ/1000 mW (data)

240 min

None

Radio TX: 2400 MHz/1000 mW (Video) 900 MHZ/1000 mW (data) Radio RX: 2400 MHz/1000 mW (Video) 900 MHZ/1000 mW (data)

Chaos

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Face			Тор	Top (Near)			(Far)	Time	Contacts	
	Left	C	Right	ight Left C Right				C	Right			-
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	68
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

	Top (No	ear)		Top (Mid)			Top (Far)			Time Contacts		
	Over L	Jnder	Open	Over Under Open			Over Under Open					
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

	Over L	Jnder	Open	Over Under Open			Over Under Open				
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Chaos

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

	Fac Left		Right) (Ne	<u>ar)</u> Right		(Fa n	' <u>)</u> Right	Time	Contacts	
Level 4:	х	x	x	х	́х'	x	х	`x`	x	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 5
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	15 A
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	-

Grasping Dexterity (shelves with objects):

	Top (Ne Over L		Open	Top (I Over	<u>/lid)</u> Under (Open	Top (I Over	ar) Under	Open	<u>Time</u> (Contacts
Level 4:	x	x	x	x	x	x	x	x	x	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
	v	v	×	×	v	v	v	v	v	v min	#

Incline Plane:

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

ATRV mini

Idaho National Lab www.inl.gov/adaptiverobotics 208-526-8659 /Curtis Nielsen

Manufacturer's Specs:

- 22" (55.8 cm) Width:
- 27" (68.6 cm) Length:
- Height: 25" (63.5 cm)
- 125 lbs (56.7 kg) Weight: .
- Turning Diam: 0 (turns on center off robot) •
- Max Speed: 6.5 fps (2 mps) •
- Power Source: battery .
- Endurance: 30-45 min ٠
- Tether: none ٠

٠

•

- eyes-on, remote teleop, waypoints, go to landmarks, drive intent Control:
- Sensors: color video, laser range scanner, sonar sensor. ultrasonic
- Payload:
- 35 lb (15.9 kg) none •
- Manipulator:

ATRV mini

Idaho National Lab www.inl.gov/adaptiverobotics 208-526-8659 /Curtis Nielsen

.

•

Manufacturer's Specs:

Width:	22" (55.8 cm)
Length:	27" (68.6 cm)
Height:	25" (63.5 cm)
Weight:	125 lbs (56.7 kg)
Turning Diam:	0 (turns on center off robot)
Max Speed:	6.5 fps (2 mps)
Power Source:	battery
Endurance:	30-45 min
Tether:	none
Control:	eyes-on, remote teleop, waypoints, go to landmarks, drive intent
Sensors:	color video, laser range scanner,
ultrasonic	sonar sensor.
Payload:	35 lb (15.9 kg)
Manipulator:	none

Radio TX: 900 MHz (500 mW), 2400 MHz (500 mW) Radio RX: 900 MHz (500 mW), 2400 MHz

Radio TX: 900 MHz (500 mW), 2400 MHz (500 mW) Radio RX: 900 MHz (500 mW), 2400 MHz

170

ATRV mini

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Face	-	District		p (Ne	_		(Far	-	Time	Contacts	
	Lett	101	Right	Le	πιιιι	Right	Len	101	Right			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	round obots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	อีฉั
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

Top (Near)		Top (Mid)			Top (Far)			Time Contacts		
Over	Under	Open	Ove	r Unde	r Open	Over	r Unde	r Open			
Level 4: x	х	х	х	х	х	х	х	х	x min.	#	
Level 3: x	х	х	х	х	х	х	х	х	x min.	#	
Level 2: x	х	х	х	х	х	х	х	х	x min.	#	
Level 1: x	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

	<u>Graspi</u>	ng I	Dexte	erity	(shelve
<u> </u>	Level 1:	х	х	х	х

To	p (Near	<u>)</u>	Top	Top (Mid)			Top (Far)			Contacts
O	er Und	ler Open	Ove	r Unde	r Open	Ove	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	x	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	x	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

ATRV mini

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

	Fac Left		Right) (Ne	<u>ar)</u> Right		o (Fan : C	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	ts n
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 <u>6</u>
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 1:	х	x	х	х	x	х	х	x	х	x min.	#	-

es wit<u>h objects):</u>

Modular Logistics Platform

Segway, Inc. www.segway.com Will Pong/603-222-6000

Manufacturer's Specs:

- 33" (84 cm) • Width:
 - Length: 26.5" (67 cm)
- Height: xxx" (xxx cm)
- Weight: 120 lbs (55 kg) ٠
- 42" (107 cm) Turning Dia: •
- 12.5 mph (20 km/h) Power Source: Max Speed: . Two lithium-ion battery packs

dynamically stabilized, ride

onboard, remote teleoperative or

- 12 miles (19 km) off pavement • Endurance: None
- Tether: ٠

٠

.

.

- Control: .
- autonomous
 - Sensors: gyros, wheel encoders, camera

None

- 260 lb (118 kg) Payload: ٠
- Manipulator:

Modular Logistics Platform

Segway, Inc. www.segway.com Will Pong/603-222-6000

Manufacturer's Specs:

.

.

Width:	33" (84 cm)
Length:	26.5" (67 cm)
Height:	xxx" (xxx cm)
Weight:	120 lbs (55 kg)
Turning Dia:	42" (107 cm)
Max Speed:	12.5 mph (20 km/h) Power Source: Two lithium-ion battery packs
Endurance:	12 miles (19 km) off pavement
Tether:	None
Control:	dynamically stabilized, ride onboard, remote teleoperative or
autonomous	
Sensors:	gyros, wheel encoders, camera
Payload: Manipulator:	260 lb (118 kg) None

Radio TX: 2400 MHz/XXXmW (Video) 2400 MHZ/xxx mW (data)

Radio TX: 2400 MHz/XXXmW (Video) 2400 MHZ/xxx mW (data)

Modular Logistics Platform

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac Left	-	Right		(Ne	<u>ar)</u> Right	<u>Top (Far)</u> Left C Right			Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	× × ×	x	x x x x x	x x x	x x x x	х	x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

Top (N	lear)		Тор	(Mid)		Тор	(Far)		Time Contacts		
Over	Under	Open	Ove	r Unde	r Open	Over	Unde	r Open			
Level 4: x	х	х	х	х	х	х	х	х	x min.	#	
Level 3: x	х	х	х	х	х	х	х	х	x min.	#	
Level 2: x	х	х	х	х	х	х	х	х	x min.	#	
Level 1: x	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Modular Logistics Platform

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	min. Tools: standard

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

	FaceTop (Near)Left C RightLeft C Right					o(Far ∶ C	<u>)</u> Right	Time	Contacts	-		
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	S SS
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

To	p (Near)		Тор	(Mid)		Тор	(Far)		Time 0	Contacts
0\	er Unde	er Open	Ove	r Unde	r Open	Ove	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Talon Gen IV

Foster-Miller/Qinetig North America www.foster-miller.com/lemming.htm 781-684-3960/Joanne Armstrong

22" (56.88 cm)

34" (86.36 cm)

turns in place

11"-52" (27.9 c m - 132 cm)

0 to 5.2 mph (0-8.3 km/hr

Lead-Acid Battery Pack

4.5 hr (7.2 km/hr)

115 to 140 lb (52kg to 64 kg)

Single Lithium-ion Battery or Dual

Optional 300 or 500 m buffered fiber

Manufacturer's Specs:

- Width:
- Lenath:
- Heiaht:
- Weight: ٠
- Turning Dia: ٠
- Max Speed:
- Power Source: ٠
- Endurance:
- Tether:
- Control:
 - digital/analog, 500-800 m LOS High Gain antenna range to 1200m LŎS
- Chemsentry 150 C, ADP 2000, RAE System MultiRAE, Canberra AN-Sensors: UDR-14. RavTek temp. probe. targeting laser

optic cable

- Pavload:
- Manipulator:
- 100 lb (45 ka) 30 in-lb of gripping strength, 6 in wide opening, manual 340 degree wrist, OCU controllable 360 degree rotating wrist (optional)

Radio TX: Data 2400MHz / Video 1700-1800MHz Radio RX: Data 2400MHz / Video 1700-1800MHz

Talon Gen IV

Foster-Miller/Qinetig North America www.foster-miller.com/lemming.htm 781-684-3960/Joanne Armstrong

Manufacturer's Specs:

- Width:
- Lenath:
- Height:
- Weiaht:
- Turning Dia:
- Max Speed:
- Power Source:
- Endurance:
- Tether:
- Control:
- Sensors:
- Pavload:
- Manipulator:

- 22" (56.88 cm) 34" (86.36 cm) 11"-52" (27.9 c m - 132 cm) 115 to 140 lb (52kg to 64 kg) turns in place
- 0 to 5.2 mph (0-8.3 km/hr Single Lithium-ion Battery or Dual Lead-Acid Battery Pack
- 4.5 hr (7.2 km/hr)
- Optional 300 or 500 m buffered fiber optic cable
- digital/analog. 500-800 m LOS High Gain antenna range to 1200m LOS
- Chemsentry 150 C, ADP 2000, RAE System MultiRAE, Canberra AN-UDR-14. RavTek temp. probe. targeting laser 100 lb (45 ka)
 - 30 in-lb of gripping strength, 6 in wide opening, manual 340 degree wrist, OCU controllable 360 degree rotating wrist (optional)
- Radio TX: Data 2400MHz / Video 1700-1800MHz Radio RX: Data 2400MHz / Video 1700-1800MHz

Talon Gen IV

Talon Gen IV

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac Left	_	Right	<u>Top</u> Left		<u>ar)</u> Right				Time	Contacts	
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	S S
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	58
Level 1:	х	х	х	х	х	х	х	х	x	x min.	#	

Grasping Dexterity (shelves with objects):

To	p (Near)		Top (Mid)			Тор	(Far)		Time Contacts		
Ov	er Unde	r Open	Over Under Open			Over Under Open					
Level 4: x	х	х	х	х	х	х	х	х	x min.	#	
Level 3: x	х	х	х	х	х	х	х	х	x min.	#	
Level 2: x	х	х	х	х	х	х	х	х	x min.	#	
Level 1: x	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

	Face Top (Near) Left C Right Left C Right					(Far	-	Time	Contacts			
	Left	C	Right	Le	ett C	Right	Left		Right			77 (0
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	έĸ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

	Top (Ne	ear)		Top (Mid)			Top (F	ar)	Time C	Contacts	
	Over L	Jnder	Open	Over	Under C	Open	Over	Under			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat):

Talon-Hazmat

Foster-Miller/Qinetig North America www.foster-miller.com/lemming.htm 781-684-3960/Joanne Armstrong

Manufacturer's Specs:

- Width: 22.5 in (57.2 cm) .
 - Length: 34 in (86.4 cm)
 - Height: 11 in (27.9 cm)
- 115 to 140 lb (52kg to 64 kg) Weight: ٠
- Turning Dia: . On axis
- Max Speed: .
- 7.6 fps (1.8mps) Power Source: Battery Pack .
- Endurance: ٠
- 4.5 hr (7.2 km/hr) Tether: Fiber Optics (option) ٠
- Control: ٠
- Sensors: •

٠

- Pavload:
- Manipulator:

Talon-Hazmat

Foster-Miller/Qinetig North America www.foster-miller.com/lemming.htm 781-684-3960/Joanne Armstrong

Manufacturer's Specs:

- Width: •
- Length:
- Height:
- Weight:
- Turning Dia: Max Speed:
- Power Source: .
- Endurance:
- Tether:
- Control: .
- Sensors:
- Pavload:
- Manipulator:

22.5 in (57.2 cm) 34 in (86.4 cm) 11 in (27.9 cm) 115 to 140 lb (52kg to 64 kg) On axis 7.6 fps (1.8mps) Battery Pack 4.5 hr (7.2 km/hr) Fiber Optics (option) remote teleop chemical warfare agents (blood, nerve, blister), TIC, radiation 100 lb (45 kg) reach 52 in (1.3 m)

Radio TX: 1650-1900 MHz / 2000 mW (video), 148-174 MHz/ 600 mW (audio), 2.3-2.4 MHz / 5-500 mW (commands)

remote teleop

100 lb (45 kg)

reach 52 in (1.3 m)

chemical warfare agents (blood,

nerve, blister), TIC, radiation

Radio TX: 1650-1900 MHz / 2000 mW (video), 148-174 MHz/ 600 mW (audio), 2.3-2.4 MHz / 5-500 mW (commands)

Talon-Hazmat

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac	-			o (Ne			(Far	-	Time	Contacts	
	Left	C	Right	Lef	t C	Right	Left	C	Right			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	ŭ ŝ
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	round obots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	อีฉั
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

To	p (Near)		Тор	(Mid)		Тор	(Far)		Time 0	Contacts
Ov	er Unde	r Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

# Pallets	
Directed Perception (boxes with holes):	

Pelicans

Deployed

Cache packaging, weight, setup, tools

Shipping

Minimum Height: Time:

Packages: Ropacks

Confined Space

Weights:

	<u>Fac</u> Left		Right		p (Ne ft C	<u>ar)</u> Right) (Fan C	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	Ϋ́ε
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

<u>T</u> (op (Ne	ar)		Top (/lid)		Top (F	ar)	Time C	Contacts	
0	ver U	nder	Open	Over	Under 0	Open	Over	Under	Open		
Level 4: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 3: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 2: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 1: >	ĸ	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Talon-Hazmat

Hardiggs Pallets

Setup Time: X min. Tools: standard

Robotic Mobility Platform (RMP 200/INL)

Segway, Inc. www.segway.com/Will Pong/603-222-6000

Manufacturer's Specs:

- 29.5" (75 cm) Width: • 25" 64 cm) ٠
- Length:
- Height: 24" (61 cm) ٠
- 140 lbs (64 kg) Weight: ٠
- Turning Dia: 39" (99 cm) •
- Max Speed: 10 mph (16 km/h) •
- Power Source: Two lithium-ion battery packs ٠ 15 miles (24 km)
- Endurance:
- Tether: ٠
- dynamically stabilized, remote teleoperative or Control: •
 - autonomous
- Sensors: gyros, wheel encoders, camera, laser scanner for ٠ mapping

None

- Payload: 200 lb (91 kg)
- Barrett Technology WAM Manipulator:

Robotic Mobility Platform (RMP 200/INL)

Segway, Inc. www.segway.com/Will Pong/603-222-6000

Manufacturer's Specs:

.

Width:	29.5" (75 cm)
Length:	25" 64 cm)
Height:	24" (61 cm)
Weight:	140 lbs (64 kg)
Turning Dia:	39" (99 cm)
Max Speed:	10 mph (16 km/h)
Power Source:	Two lithium-ion battery packs
Endurance:	15 miles (24 km)
Tether:	None
Control:	dynamically stabilized, remote teleoperative or autonomous
Sensors:	gyros, wheel encoders, camera, laser scanner for mapping
Payload:	200 lb (91 kg)
Manipulator:	Barrett Technology WAM

Radio TX: 2400 MHz/XXXmW (Video) 900 MHZ/xxx mW (data)

Radio TX: 2400 MHz/XXXmW (Video) 900 MHZ/xxx mW (data)

Robotic Mobility Platform (RMP 200/INL)

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac	-	Right	Top	•	<u>ar)</u> Right		(Far	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	' x '	x x x	x x x x x	x x x	x x x x	х	x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

Top (N	lear)		Тор	(Mid)		Тор	(Far)		Time 0	Contacts
Over	Under	Open	Ove	r Unde	r Open	Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

179

Robotic Mobility Platform (RMP 200/INL)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X I	nin. Tools: standard

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

	Face Left		Right		(Ne	ar) Right		(Far C	' <u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 <u>6</u>
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	-

Grasping Dexterity (shelves with objects):

Top (Near)				Top (Mid)			Top (Far)			Time Contacts	
Over Under Open				Over Under Open			Over Under Open				
Level 4: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 3: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 2: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 1: >	ĸ	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

teleMAX

telerob GmbH www.telerob.de

Manufacturer's Specs:

- Width: .
- Length: 31.5" - 63" (80 cm - 160 cm)
- Height: 29.53" (75 cm) (stowed)
- Weight: ٠
- Turning Dia: •
- Max Speed:
- tracks 2.16 mph (3.5 kmh), wheels 2.92 mph (4.7 kmh) Power Source: NiMh. 24V DC 2 hours
- Endurance: ٠
- Tether: none, fiber with video and ٠ comms
- Control: eyes-on, remote teleop ٠
- Sensors: optional chemical, radiation, . gas, GPS
 - Payload:
- Manipulator: ٠

•

22 lbs (10kg) 7 DOFs, reach 92,52 in to 102,36" (235 cm to 260 cm)

15.75" (40 cm)

175 lbs (79.4 kg)

39.37" (100cm)

teleMAX

telerob GmbH www.telerob.de

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight:
- Turning Dia: .
- Max Speed: •

Source:

- Endurance: . Tether: .
- Control: .
- Sensors:
- Payload: .
- Manipulator: .

15.75" (40 cm) 31.5" - 63" (80 cm - 160 cm) 29.53" (75 cm) (stowed) 175 lbs (79.4 kg) 39.37" (100cm) tracks 2.16 mph (3.5 kmh), wheels 2.92 mph (4.7 kmh) Power NiMh. 24V DC 2 hours none, fiber with video and comms eyes-on, remote teleop optional chemical, radiation, gas, GPS 22 lbs (10kg) 7 DOFs, reach 92,52 in to 102,36" (235 cm to 260 cm)

Radio TX: Data 433-435MHz/500mW, Video 2300 MHz/3W Radio RX:

Radio TX: Data 433-435MHz/500mW, Video 2300 MHz/3W Radio RX:

teleMAX

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac	e		Тор	(Ne	ar)	Тор	(Far)	Time	Contacts	
	Left	C	Right	Left	C	Right	Left	C	Right			-
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	58
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

Te	op (Ne	ar)		Top (N	(lid)		Top (F	ar)		Time C	ontacts
0	ver U	nder	Open	Over	Under C	Dpen	Over	Under	Open		
Level 4: >	(х	х	х	х	х	х	х	х	x min.	#
Level 3: >	(х	х	х	х	х	х	х	х	x min.	#
Level 2: >	< .	х	х	х	х	х	х	х	х	x min.	#
Level 1: >	<	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools Packages: Ropacks Pelicans Weights: Shipping Deployed

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

	Face Left		Right		op (ar) Right			(Far ∣C∣	<u>)</u> Right	_	Time	Contacts	
Level 4:							0			x	0		min.	#	Ground Robots
Level 3:	х	х	х	х		х	х	>	(х	х	х	min.	#	5 8
Level 2:	х	х	х	х		х	х	>	(х	х	х	min.	#	ดั ชั
Level 1:	х	х	х	x		х	х	>	(х	х	х	min.	#	

Grasping Dexterity (shelves with objects):

	Top (N	ear)		Top (Mid)		Top (I	Far)		Time (Contacts
	Over l	Jnder	Open	Over	Under	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

teleMAX

Hardiggs Pallets

Setup Time: X min. Tools: standard

HD-1J

REMOTEC. Inc. www.remotec-andros.com 865-483-0228/Jim Daniels

Manufacturer's Specs:

- Width:
- Length:
- Height:

•

٠

.

- Weight: ٠
- Turning Dia: •
- Max Speed: •
- Power Source:
 - Endurance:
- Tether:
- Control: •
- Sensors: •
- Payload: •
- Manipulator:

- 26" (66 cm) 47.5" (120.65 cm) 30" (76cm) with antenna 70"(177.8)
- 200 lbs (90.72 kg)
- Lithium Polymer Battery
- Fiber-Optic Cable
- tethered/Radio Control

- 4.3mph
- 3-6 hr
- - Color Camera/LED lighting/
 - TBD
 - 72" (182.88 cm)Max. Gripper Height 6" (15.2 cm) Gripper with 360 degree rotation, weapons with gripper capable

HD-1J

REMOTEC. Inc. www.remotec-andros.com 865-483-0228/Jim Daniels

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight: •
- Turning Dia: •
- Max Speed: ٠
- Power Source: ٠ •
- Endurance:
- Tether: ٠
- Control:
- Sensors: .
- Payload:
- Manipulator:

- 26" (66 cm)
- 47.5" (120.65 cm)
- 30" (76cm) with antenna 70"(177.8) 200 lbs (90.72 kg)

4.3mph

Lithium Polymer Battery

- Fiber-Optic Cable
- tethered/Radio Control
- Color Camera/LED lighting/ TBD
- 72" (182.88 cm)Max. Gripper Height 6" (15.2 cm) Gripper with 360 degree rotation, weapons with gripper capable

Radio TX RX: Control 464.5 Mhz/Video 2.4Mhz/Audio 151.9Mhz

Radio TX RX: Control 464.5 Mhz/Video 2.4Mhz/Audio 151.9Mhz

182

HD-1J

HD-1J

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Setup Time: X min. Tools: standard Weights: Shipping Deployed

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac	-	District		p (Ne			(Far	-	Time	Contacts	
Level 4:		U x	Right	Lei		Right	Len		Right x	x min.	#	<u>n</u>
Level 3:		x			x		x		x	x min.	#	round obots
Level 2:			x	x		x			x	x min.	#	202
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	Ŭ -

Grasping Dexterity (shelves with objects):

	Top (No	ear)		Top (Mid)		Top (I	ar)		Time C	Contacts
	Over L	Jnder	Open	Over	Under 0	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

183

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Confined Space

Minimum Height: Time:

Pallets

Directed Perception (boxes with holes):

	Face Left		Right	_	o(Nea t C	ar) Right		(Far C	<u>)</u> Right	Time	Contacts	
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	2 <u>2</u>
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	15 A
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	-

Grasping Dexterity (shelves with objects):

<u>T</u> (op (Ne	ar)		Top (/lid)		Top (F	ar)		Time C	Contacts
0	ver U	nder	Open	Over	Under 0	Open	Over	Under	Open		
Level 4: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 3: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 2: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 1: >	ĸ	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (flat): Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Mini-Andros II

REMOTEC, Inc. www.remotec-andros.com 865-483-0228/Jim Daniels

Manufacturer's Specs:

- Width:
- Length:
- Height:

٠

.

.

.

- Weight:
- Turning Dia:
- Max Speed: 1.1 mph(1.7 km/hr)
- Power Source:
- Endurance:
- Tether: Fiber-Optic Cable or hard tether cable

Battery

3-6 hr

24.5" (62 cm)

53" (134c m)

225 lbs (102.6 kg)

24VDC - gel cell battery pack

length of vehicle

27" (68 cm)

- Control: tethered,Radio Control
- Sensors: Color Camera
- Payload: 15 lbs (6.8 kg)
 - Manipulator: 78" (2 m) telescoping arm with four degrees of freedom

Mini-Andros II

REMOTEC, Inc. www.remotec-andros.com 865-483-0228/Jim Daniels

Manufacturer's Specs:

Width:

•

.

- Length:
- Height:
- Weight:
- Turning Dia:
- Max Speed:
- Power Source:
- Endurance:
- Tether:
- Control:
- Sensors:
- Payload:
- Manipulator:

24.5" (62 cm) 53" (134 cm) 27" (68 cm) 225 lbs (102.6 kg) length of vehicle 1.1 mph(1.7 km/hr) 24VDC - gel cell battery pack Battery 3-6 hr Fiber-Optic Cable or hard tether cable tethered,Radio Control Color Camera 15 lbs (6.8 kg) 78" (2 m) telescoping arm with four degrees of freedom

Radio TX: tethered or RF Radio RX: tethered or RF Radio TX: tethered or RF Radio RX: tethered or RF

184

Mini-Andros II

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height	Time:	
# Pallets		

Directed Perception (boxes with holes):

	Fac	-	Right		(Ne	<u>ar)</u> Right	 (Far	<u>)</u> Right	Time	Contacts	
Level 4: Level 3: Level 2: Level 1:	x x x	x x	x x x x	X X X X X	x x x	x	x x x	x x x x x	x min. x min. x min. x min.	# # #	Ground Robots

Grasping Dexterity (shelves with objects):

Te	op (Ne	ar)		Top (Mid) Top (Far)						Time Contacts		
0	ver U	nder	Open	Over	Under C	Dpen	Over	Under	Open			
Level 4: >	(х	х	х	х	х	х	х	х	x min.	#	
Level 3: >	(х	х	х	х	х	х	х	х	x min.	#	
Level 2: >	< .	х	х	х	х	х	х	х	х	x min.	#	
Level 1: >	<	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Minimum Height:	Time:
# Pallets	

Pelicans

Deployed

Directed Perception (boxes with holes):

Cache packaging, weight, setup, tools

Shipping

Packages: Ropacks

Confined Space

Weights:

	<u>Face</u> Left C Right				<u>Top (Near)</u> Left C Right				(Far	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x		х	x	x	х	x	x	x min.	#	Ground Robots
Level 3:	х	х	х		х	х	х	х	х	х	x min.	#	5 <u>6</u>
Level 2:	х	х	х		х	х	х	х	х	х	x min.	#	<u>ዀ፟</u> ፚ
Level 1:	х	х	х		х	х	х	х	х	х	x min.	#	-

Grasping Dexterity (shelves with objects):

1	Гор (Ne	ear)		Top (Mid) Top (F				ar)		Time C	Contacts		
(Over L	Inder	Open	Over	Under 0	Open	Over	Under	Open				
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#		
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#		
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#		
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#		

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Mini-Andros II

Hardiggs Pallets

Setup Time: X min. Tools: standard

Robotic Mobility Platform (RMP 400/INL)

Segway, Inc. www.segway.com/Will Pong/603-222-6000

Four lithium-ion battery packs

Manufacturer's Specs:

- 30" (76 cm) Width: •
- 44" (112 cm) Length:
- Height: 24" (61 cm) .
- Weight: 240 lbs (109 kg) .
- Turning Dia: 53" (135 cm)
- 18 mph (29 km/h) Max Speed: •
- Power Source: .
- Endurance: 15 miles (24 km) ٠
- Tether: ٠
- Control: .
- Statically stabilized, remote teleoperative or

None

- autonomous Sensors: avros, wheel encoders.
- 400 lb (180 kg)
- Payload: Barrett Technology WAM
- Manipulator:

Robotic Mobility Platform (RMP 400/INL)

Segway, Inc. www.segway.com/Will Pong/603-222-6000

Manufacturer's Specs:

•

.

.

- Width: Length: Height: Weight: Turning Dia: Max Speed: Power Source: Endurance: Tether: Control: Sensors:
- Payload:
- Manipulator:

30" (76 cm) 44" (112 cm) 24" (61 cm) 240 lbs (109 kg) 53" (135 cm) 18 mph (29 km/h) Four lithium-ion battery packs 15 miles (24 km) None Statically stabilized, remote teleoperative or autonomous avros, wheel encoders. 400 lb (180 kg) Barrett Technology WAM

Radio TX: 75 MHz/XXXmW (Video) 2400 MHZ/xxx mW (data)

Radio TX: 75 MHz/XXXmW (Video) 2400 MHZ/xxx mW (data)

Robotic Mobility Platform (RMP 400/INL)

Cache packaging, weight, setup, tools

 Packages:
 Ropacks
 Pelicans
 Hardiggs
 Pallets

 Weights:
 Shipping
 Deployed
 Setup Time: X min. Tools: standard

Confined Space

Minimum Height:	Time:
# Pallets	

Directed Perception (boxes with holes):

	Fac Left	_	Right		(Ne	<u>ar)</u> Right		(Far	<u>)</u> Right	Time	Contacts	T 10
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	ы e
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	58
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	0 -

Grasping Dexterity (shelves with objects):

To	p (Near)		Top (Mid) Top (Far)						Time Contacts		
Ov	er Unde	r Open	Ove	r Unde	r Open	Over	Unde	r Open			
Level 4: x	х	х	х	х	х	х	х	х	x min.	#	
Level 3: x	х	х	х	х	х	х	х	х	x min.	#	
Level 2: x	х	х	х	х	х	х	х	х	x min.	#	
Level 1: x	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

407

Robotic Mobility Platform (RMP 400/INL)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	Face Left		Right	t Left C Right				o(Far ∶ C	<u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	S SS
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

<u>T</u> (op (Ne	ar)		Top (Mid) Top (Far)					Time C	Contacts			
0	ver U	nder	Open	Over	Under 0	Open	Over	Under	Open				
Level 4: >	ĸ	х	х	х	х	х	х	х	х	x min.	#		
Level 3: >	ĸ	х	х	х	х	х	х	х	х	x min.	#		
Level 2: >	ĸ	х	х	х	х	х	х	х	х	x min.	#		
Level 1: >	ĸ	х	х	х	х	х	х	х	х	x min.	#		

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Andros F6A

REMOTEC, Inc. www.remotec-andros.com 865-483-0228/Jim Daniels

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight: ٠
- Turning Dia: ٠
- Max Speed:
- Power Source: ٠

•

- 24VDC 35 amp-hr gel-cell battery pack
- Endurance:
- Interchangeable Fiber Optic Cable reel, RF system, or Hard-line cable Tether: reel system

29" (73 cm

52" (132 cm)

56.5" (140 cm)

485 lb (219.99kg)

3.5 mph (5.6 km/hr)

within the length of vehicle

- Control: tethered or RF
- Sensors: Color camera with low-light
- Pavload: 45 lbs (20.4 kg)
- Arm -Vertical reach 109" (2.76 m) with tracks down and arm fully Manipulator: extended. Horizontal reach 56" (1.42 m) from front of vehicle

188

3-6 hr

Andros F6A

REMOTEC, Inc. www.remotec-andros.com 865-483-0228/Jim Daniels

Manufacturer's Specs:

- Width:
- Lenath:
- Height:
- Weight:
- Turning Dia:
- Max Speed:
- Power Source:
- Endurance:
- Tether:
- Control:
- Sensors:
- Pavload:
- Manipulator:

29" (73 cm

- 52" (132 cm)
- 56.5" (140 cm)
- 485 lb (219.99kg)

within the length of vehicle

- 3.5 mph (5.6 km/hr)
- 24VDC 35 amp-hr gel-cell battery pack

3-6 hr

Interchangeable Fiber Optic Cable reel, RF system, or Hard-line cable reel system

tethered or RF

- Color camera with low-light
- 45 lbs (20.4 kg)
- Arm -Vertical reach 109" (2.76 m) with tracks down and arm fully extended. Horizontal reach 56" (1.42 m) from front of vehicle

Radio TX: tethered or RF Radio RX: tethered or RF Radio TX: tethered or RF Radio RX: tethered or RF

Andros F6A

Andros F6A

Hardiggs Pallets

Setup Time: X min. Tools: standard

Time

x min. #

x min. #

x min.

x min. #

#

Contacts

Ground Robots

Pelicans

Top (Near)

Left | C | Right

х х

х х

Deployed

Cache packaging, weight, setup, tools

Packages: Ropacks Pelicans Hardiggs Pallets Weights: Shipping Deployed Setup Time: X min. Tools: standard

Confined Space

Minimum Height:	Time:	
# Pallets		

Directed Perception (boxes with holes):

	<u>Face</u> Left C Right			<u>Top (Near)</u> Left C Right			(Far	-	Time	Contacts		
Level 4:		U x	•	Lei		0	Len		Right x	x min.	#	<u>n</u>
Level 3:		x			x		x		x	x min.	#	round obots
Level 2:			x	x		x			x	x min.	#	202
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	Ŭ -

Grasping Dexterity (shelves with objects):

Top (N	lear)		Top (Mid)			Top (Far)			Time 0	Contacts
Over	Under	Open	Over Under Open			Over	Unde	r Open		
Level 4: x	х	х	х	х	х	х	х	х	x min.	#
Level 3: x	х	х	х	х	х	х	х	х	x min.	#
Level 2: x	х	х	х	х	х	х	х	х	x min.	#
Level 1: x	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Grasping Dexterity (shelves with objects):

х х х

х х х

Time:

Cache packaging, weight, setup, tools

Directed Perception (boxes with holes):

Shipping

Packages: Ropacks

Confined Space Minimum Height:

Face

Left | C | Right

х х

хх

хх

хх

Weights:

Pallets

Level 4: x

Level 3: x

Level 2: x

Level 1: x

	Top (N	ear)		Top (Mid)			Top (Far)			Time C	Contacts
	Over l	Jnder	Open	Over	Under	Open	Over	Under	Open		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Top (Far)

х х

х х х

х

х

Left | C | Right

х

х х

х х

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF; (x hrs.), Field maint, (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Dark (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x) Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

BOZ I

BOZ Robotics www.bozrobot.com 847-574-0168/Jamie Alvarez

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight:
- Turning Dia:
- Max Speed:
- Power Source:
- Endurance:
- Tether:

٠

- Control:
- Sensors: the cm) 5
- Payload: w/arm
- Manipulator:

360 degrees 6.7 km/h battery

26.4 in (67 cm)

67.3 in (171 cm)

53.2 in (135 cm)

1,300 lbs (600 kg)

- ce: 3 4 hrs to continuous w/generator
- er: 100 meter; 1 km remote los
 - computer w/case and joystick ultra sound distance sensors (to
 - cameras; 3 infrared 265 lb (120 kg) lifting capacity
 - 265 lb (120 kg) lifting capacity straight; 441 lbs (200 kg) arm bent Hydraulic gripper w/12 717 lbs
 - Hydraulic gripper w/12,717 lbs (5,770 kg) of opening force, reach 11.5 ft (350 cm) and four joints independently operated to tear off car doors, trunks, & dexterity to pour a soda bottle in a glass

BOZ I

BOZ Robotics www.bozrobot.com 847-574-0168/Jamie Alvarez

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight:
- Turning Dia:
- Max Speed:
- Power Source:
- Endurance:
- Tether:
- Control:
- Sensors: the cm) 5
- Payload: w/arm
- Manipulator:

26.4 in (67 cm) 67.3 in (171 cm) 53.2 in (135 cm) 1,300 lbs (600 kg)

- 360 degrees 6.7 km/h battery
- 3 4 hrs to continuous w/generator 100 meter; 1 km remote los

computer w/case and joystick ultra sound distance sensors (to

- cameras; 3 infrared
- 265 lb (120 kg) lifting capacity straight; 441 lbs (200 kg) arm bent Hydraulic gripper w12,717 lbs (5,770 kg) of opening force, reach 11.5 ft (350 cm) and four joints independently operated to tear off car doors, trunks, & dexterity to pour a soda bottle in a glass

Radio TX: 2400 MHz Radio RX: 2400 MHz

Radio TX: 2400 MHz Radio RX: 2400 MHz

BOZ I

BOZ I

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	min. Tools: standard

Confined Space

Minimum Heig	ht:	Time:	
# Pallets			

Directed Perception (boxes with holes):

	Face		_	Top				(Far	-	Time	Contacts	
	Left	C	Right	Left	C	Right	Left		Right			
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#	ŭ ŝ
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 ğ
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	Ground Robots
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	

Grasping Dexterity (shelves with objects):

Top (I	lear)		Top	(Mid)		Top	<u>(Far)</u>		Time Contacts		
Over	Under	r Open	Over Under Open			Ove	r Unde	r Open			
Level 4: x	х	х	х	х	х	х	х	х	x min.	#	
Level 3: x	х	х	х	х	х	х	х	х	x min.	#	
Level 2: x	х	х	х	х	х	х	х	х	x min.	#	
Level 1: x	х	х	х	х	х	х	х	х	x min.	#	

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Confined Space

Minimum Height: _____ Time: _____

Pallets

Directed Perception (boxes with holes):

	Face Left		Right		(Ne	ar) Right		(Far C	' <u>)</u> Right	Time	Contacts	-
Level 4:	х	x	x	х	x	x	х	x	x	x min.	#	Ground Robots
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#	5 <u>6</u>
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#	<u>ም</u> እ
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#	-

Grasping Dexterity (shelves with objects):

<u>T</u> (op (Ne	ar)		Top (Mid)			Top (Far)			Time C	Contacts
0	ver U	nder	Open	Over Under Open			Over Under Open				
Level 4: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 3: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 2: >	ĸ	х	х	х	х	х	х	х	х	x min.	#
Level 1: >	ĸ	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Mobility/Endurance (single charge):

Terrain (flat): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (ramps): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.) Terrain (stepfields): # pallets, time (x hrs.), MTBF: (x hrs.), Field maint. (x min.)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Random Maze:

Coverage: (x%), Time: (x min), Targets: (x of x)

Stairs:

Max. Degrees: 30 / 45 / 60: Time (Ascend: x min., Descend (Time: x min.)

Visual Acuity:

 Ambient (x lumens): Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Dark (x lumens):
 Near: normal (x.x); zoom (x.x), Far: normal (x.x); zoom (x.x)

 Var. illumination: (yes/no); Field of View (x deg); Pan (x deg); Tilt (x deg)

Wall Climbers

Wall Climbers

VMRP

Vortex HC LLC. www.vortexhc.com 919-462-8828

A 11

8.5" (21.5 cm)

Manufacturer's Specs:

- Width:
- Length: 6.5" (16.5 cm)
- Height: 4" (10 cm)
- Weight: 1.87 lbs (.84kg)
- Turning Dia: TBD
- Max Speed: 6"/sec. (.154m/sec)
- Power Source:
- Endurance: 20- 40 minutes
- Tether:

•

٠

•

•

- Control:
- Sensors: 2 color camera (boom pan drive camera)

n/a

battery

none

teleoped

1 lbs (.45kg) (scalable)

- Payload:
- Manipulator:

VMRP

Vortex HC LLC. www.vortexhc.com 919-462-8828

A 11

Manufacturer's Specs:

•

•

٠

٠

•

•

.

•

.

.

•

•

.

Width: 8.5" (21.5 cm) Length: 6.5" (16.5 cm) Height: 4" (10 cm) 1.87 lbs (.84kg) Weight: Turning Dia: TBD Max Speed: 6"/sec. (.154m/sec) Power Source: battery Endurance: 20-40 minutes Tether: none Control: teleoped Sensors: 2 color camera (boom pan drive camera) 1 lbs (.45kg) (scalable) Payload: Manipulator: n/a

Radio TX: 2400 MHz (Bluetooth) video 1200 MHz Radio RX: 2400 MHz (Bluetooth) Radio TX: 2400 MHz (Bluetooth) video 1200 MHz Radio RX: 2400 MHz (Bluetooth)

194

VMRP

VMRP

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	HardiggsI	Pallets
Weights:	Shipping	Deployed	Setup Time: X m	in. Tools: standard

Directed Perception (boxes with holes):

	Fac	e		Top) (Ne	<u>ar)</u>	Top	(Far)	Time	Contacts
	Left		Right	Left		Right	Left		Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no) Wall Climbers

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	min. Tools: standard

Directed Perception (boxes with holes):

	Face Left	-	Right		p (Ne t C	<u>ar)</u> Right		(Far C	<u>')</u> Right	Time	Contacts
Level 4:	х	x	x	х	· x ·	x	х	΄ x ΄	x	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no) Wall Climbers

NanoMag

Inuktun www.inuktun.com/ 1-877-468-5886

Manufacturer's Specs:

- Width: 17 " (43.1cm) •
- 12" (30.4 cm) Length: •
- 3.5" (8.8 cm) Height: ٠
- Weight: 5 lbs (2.26kg) ٠
- Turning Dia: TBD ٠
- Max Speed: 0-5 ft/min (0-1.5 m/min) • TBD

TBD

- Power Source: ٠
- Endurance: ٠
- 100ft (30m) Tether: ٠ teleoped
- Control: .
- Sensors: TBD ٠
- TBD Payload: ٠ n/a
- Manipulator: •

NanoMag

Inuktun www.inuktun.com/ 1-877-468-5886

Manufacturer's Specs:

•	Width:	17 " (43.1cm)
•	Length:	12" (30.4 cm)
•	Height:	3.5" (8.8 cm)
•	Weight:	5 lbs (2.26kg)
•	Turning Dia:	TBD
•	Max Speed:	0-5 ft/min (0-1.5 m/min)
•	Power Source:	TBD
•	Endurance:	TBD
•	Tether:	100ft (30m)
•	Control:	teleoped
•	Sensors:	TBD
•	Payload:	TBD
•	Manipulator:	n/a

Radio Tx: (tether only) Radio Rx: (tether only) Radio Tx: (tether only) Radio Rx: (tether only)

NanoMag

NanoMag

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	_Pallets
Weights:	Shipping	Deployed	Setup Time: X	min. Tools: standard

Directed Perception (boxes with holes):

Contacts
#
#
#
#
#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	HardiggsPallets
Weights:	Shipping	Deployed	Setup Time: X min. Tools: standard

Directed Perception (boxes with holes):

	Face Left	-	Right		p(Ne) ft C	<u>ar)</u> Right		(Far C	<u>')</u> Right	Time	Contacts
Level 4:	x	x	x	х	· x ·	x	х	x	x	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Incline Plane:

Max. Operating Angle: Grnd. (20, 30, 40, 50, 60, 70, 80), Wall: (90), Inverted: (100, 135, 180)

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no) Wall Climbers **Aerial Robots**

Micro-Drone 200

BCB International, Ltd. www.taccsc4i.com/www.bcbin.com Barry Davies/Edward J. Schmitt

Manufacturer's Specs:

•	Width:	36" (95 cm)
•	Weight:	1.5 lbs (680 gm)

1.5 mi (3 km) Radius of Operation Range:

VTOL

- Avg Speed: 15 mph (35kmph)
- Launch:
- Recovery: deep stall vertical
- Propulsion: electric motors
- Altitude: 0-1500 ft (30-500 m)
- Orbit Direction: Left
- @200ft AGL= <3 ft, @400ft AGL= <3 Orbit Diameter:
- Endurance:
- Sensors: fwd/side color, zoom, Night Vision, Thermal Imaging, chem .44 lbs (200g)

20 min

- Payload:
 - Other Features: waypoint following, Autonomous flight. Hi-Res Photo cameras, Infrared Camera, Thermal Camera, Laser rangefinder, GSM Jammer, IED detection, CBRN detection, Communication (repeater), RFID Long Range detectionPayload: small camera
- * Has not attended any exercises to date

Radio TX: 2.3-2.5 GHz / 10 mW (video), 2.3-2.5GHz / 10 mW (audio), 2.3-2.5 GHz / 200 mW (commands), 2.4 GHz / xxx mW (other),

Micro-Drone 200

BCB International, Ltd. www.taccsc4i.com/www.bcbin.com Barry Davies/Edward J. Schmitt

Manufacturer's Specs:

- 36" (95 cm) Width:
- 1.5 lbs (680 gm) Weight:
- 1.5 mi (3 km) Radius of Operation Range:
- Ava Speed: 15 mph (35kmph)
- VTOL Launch:
- Recovery: deep stall vertical
- Propulsion: electric motors
- Altitude: 0-1500 ft (30-500 m)
- Orbit Direction: Left
 - @200ft AGL= <3 ft, @400ft AGL= <3 Orbit Diameter:
- 20 min Endurance:
- Sensors: fwd/side color, zoom, Night Vision, Thermal Imaging, chem .44 lbs (200g)
- Payload:
 - Other Features: waypoint following, Autonomous flight. Hi-Res Photo cameras, Infrared Camera, Thermal Camera, Laser rangefinder, GSM Jammer, IED detection, CBRN detection, Communication (repeater), RFID Long Range detectionPayload: small camera

* Has not attended any exercises to date

Radio TX: 2.3-2.5 GHz / 10 mW (video), 2.3-2.5GHz / 10 mW (audio), 2.3-2.5 GHz / 200 mW (commands), 2.4 GHz / xxx mW (other),

Micro-Drone 200

Micro-Drone 200

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	HardiggsPallet	S
Weights:	Shipping	Deployed	Setup Time: X min. T	ools: standard

Directed Perception (boxes with holes):

	Fac				(Ne			(Far		Time	Contacts
	Left	: C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Directed Perception (boxes with holes):

	Fac	<u>e</u>		Top	(Ne	ar)	Тор	(Far)	Time	Contacts
	Left	C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

AirRobot

AirRobot GmbH www.AirRobot.com 49 2932 54 77 40/info@airrobot.de

Manufacturer's Specs:

- Rotor span: 36" (91.4 cm)
- 36" (91.4 cm) diameter Length:
- Weight: less than 2.2 lbs (less than 1 kg)
- Range: up to 1640 ft (up to 500 m)
- Speed: • approximate 25 mph
- Launch: vertical ٠
- Recovery: vertical ٠
- Propulsion: electric, LiPo Battery 14.8 V, 2.05 Ah ٠
- Altitude: up to 492 ft (150m) .
- Endurance: 20-25 min •
- video glasses or Tablet PC Control: •
- Payload: 0.44 lb (0.2 kg) ٠

AirRobot

AirRobot GmbH www.AirRobot.com 49 2932 54 77 40/info@airrobot.de

Manufacturer's Specs:

- Rotor span: •
 - 36" (91.4 cm) 36" (91.4 cm) diameter Length:
 - less than 2.2 lbs (less than 1 kg)
 - Weight: up to 1640 ft (up to 500 m)
- Range: Speed: •

•

٠

٠

.

•

٠

- approximate 25 mph vertical
- Launch:
- Recovery: vertical
 - Propulsion: electric, LiPo Battery 14.8 V, 2.05 Ah
- Altitude: up to 492 ft (150m)
- Endurance: 20-25 min •
 - video glasses or Tablet PC Control:
 - Payload: 0.44 lb (0.2 kg)

Radio TX: 35 MHz (200 mW) Radio RX: 35 MHz Video 1420 MHz Radio TX: 35 MHz (200 mW) Radio RX: 35 MHz

AirRobot

AirRobot

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Directed Perception (boxes with holes):

	Fac	_	_		(Ne			(Far		Time	Contacts
	Left	: C	Right	Left		Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Directed Perception (boxes with holes):

	Face	-			(Nea			(Far		Time	Contacts
	Left	C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Nighthawk

Applied Research Associates, Inc www.ara.com Adam Sloan/asloan@ara.com

1.65 lbs (0.750 kg)

6.2 miles (10 km)

28 mph (44 kmph)

100-500 ft (30.48m-

auto waypoint following

color camera, infrared

hand

skid land

electric motor

152.4m) AGL

60-90 min

Manufacturer's Specs:

- Wingspan: 2.2 ft (0.66 m)
 Length: 1.7 ft (0.51 m)
- Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control:
- · Payload:

Nighthawk

Applied Research Associates, Inc www.ara.com Adam Sloan/asloan@ara.com

Manufacturer's Specs:

- Wingspan:
- Length:
- Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control:
- Payload:

2.2 ft (0.66 m) 1.7 ft (0.51 m) 1.65 lbs (0.750 kg) 6.2 miles (10 km) 28 mph (44 kmph) hand skid land electric motor 100-500 ft (30.48m-152.4m) AGL 60-90 min auto waypoint following color camera, infrared

Radio TX:915-928 MHz / 650 mW/2409-2469 MHz / 600 mW Radio RX:

Radio TX:915-928 MHz / 650 mW/2409-2469 MHz / 600 mW Radio RX:

Nighthawk

Nighthawk

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	HardiggsPallet	S
Weights:	Shipping	Deployed	Setup Time: X min. T	ools: standard

Directed Perception (boxes with holes):

	Fac	_			(Ne			(Far		Time	Contacts
	Left	: C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Directed Perception (boxes with holes):

	Face Left		Right		(Ne) C	<u>ar)</u> Right		(Far	' <u>)</u> Right	Time	Contacts
Level 4:	х	'x'	x	х	'x'	x	х	'x'	x	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Raven

AeroVironment Inc. www.avsuav.com 626-357-9983

Manufacturer's Specs:

- Wingspan: 4.5 ft (1.4 m)
 - Length: 3 ft (0
- Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsión:Altitude:
- Annuac.
- Endurance:
- Control:
- Payload:

- 3 ft (0.9 m) 4.2 lbs (1.9 kg) 6.2 miles (10 km) 20-50 mph (32-82 km/hr)
- hand
- deep stall vertical electric motor 100-500 ft (30.48m-152.4m) AGL
 - 80-110 min
- auto waypoint following
- color camera, infrared

Raven

AeroVironment Inc. www.avsuav.com 626-357-9983

Manufacturer's Specs:

- Wingspan:
- Length:
- Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control:
- Payload:

4.5 ft (1.4 m) 3 ft (0.9 m) 4.2 lbs (1.9 kg) 6.2 miles (10 km) 20-50 mph (32-82 km/hr) hand deep stall vertical electric motor 100-500 ft (30.48m-152.4m) AGL 80-110 min auto waypoint following color camera, infrared

Radio TX: Radio RX: Radio TX: Radio RX:

Raven

Raven

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Directed Perception (boxes with holes):

	Fac	_	_		(Ne			(Far		Time	Contacts
	Left	: C	Right	Left		Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Directed Perception (boxes with holes):

	Face	-			(Nea			(Far		Time	Contacts
	Left	C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Dragon Eye AeroVironment Inc.

www.avsuav.com 626-357-9983

3.1 mile (5 km)

electric motor

152.4m) AGL

45-60 min

bungee

21.7 mph (35 km/hr

horizontal landing

100-500 ft (30.48m-

auto waypoint following

color camera, infrared

Manufacturer's Specs:

- Wingspan: 3 ft (0.9 m)
- Length: 3 ft (0.9 m) Weight: 5.9 lbs (2.7kg)
- Range:
- Speed:

•

- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control:
- Payload:

Dragon Eye

AeroVironment Inc. www.avsuav.com 626-357-9983

Manufacturer's Specs:

- Wingspan:
- Length:
- Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control:
- Payload:

3 ft (0.9 m) 3 ft (0.9 m) 5.9 lbs (2.7kg) 3.1 mile (5 km) 21.7 mph (35 km/hr bungee horizontal landing electric motor 100-500 ft (30.48m-152.4m) AGL 45-60 min auto waypoint following color camera, infrared

Radio TX: Radio RX:

Radio TX: Radio RX:

Dragon Eye

Dragon Eye

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Directed Perception (boxes with holes):

	Fac	_	_		(Ne			(Far		Time	Contacts
	Left	: C	Right	Left		Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Directed Perception (boxes with holes):

	Fac	<u>e</u>		Top	(Ne	ar)	Тор	(Far)	Time	Contacts
	Left	C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Cyberbug

CyberDefense Systems www.cyberdefensesystems.com/ Billy Robinson/727-577-0878

Manufacturer's Specs:

- Wingspan:
- Length:
- Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control: Payload:

3.5 ft (1.1 m) 3.5 ft (1.1 m) 7 lbs (3.2 kg) 6.2 miles (10 km) 24.85 mph (40 km/hr) hand horizontal landing electric motor 100-500 ft (30.48m-152.4m) AGL

- 45 min
- auto waypoint following color camera, infrared

Cyberbug

CyberDefense Systems www.cyberdefensesystems.com/ Billy Robinson/727-577-0878

Manufacturer's Specs:

- Wingspan:
- Length:
- Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control: Payload:

3.5 ft (1.1 m) 3.5 ft (1.1 m) 7 lbs (3.2 kg) 6.2 miles (10 km) 24.85 mph (40 km/hr) hand horizontal landing electric motor 100-500 ft (30.48m-152.4m) AGL 45 min auto waypoint following color camera, infrared

Radio TX: 900 MHz – 2400 MHz Radio RX: Radio TX: 900 MHz – 2400 MHz Radio RX:

210

CyberBug

CyberBug

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	_Pallets
Weights:	Shipping	Deployed	Setup Time: X	min. Tools: standard

Directed Perception (boxes with holes):

	Fac			Top				(Far		Time	Contacts
	Left	C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Directed Perception (boxes with holes):

	Face Left	-	Right		b (Nea t C	<u>ar)</u> Right		(Far	<u>)</u> Right	Time	Contacts
Level 4:	х	'x'	x	х	'x'	x	х	'x'	x	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Evolution-XTS

BAI Aerosystems Kirk Jenkins/ 410-820-8500

Manufacturer's Specs:

- Wingspan:
- Length:
- · Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control:
- Payload:

5.4 ft (1.6 m) 3.2 ft (1.0 m)

- 8.2 lbs (3.7 kg)
- 10000 m LOS
- 30-50mph (48-81 kmph)
 - hand
 - horizontal landing electric motor
 - 100-500 ft (30.48m-
 - 152.4m) AGL
 - 90 min [′]
 - auto waypoint following color camera, infrared
 - bio/chemical

Evolution-XTS

BAI Aerosystems Kirk Jenkins/ 410-820-8500

Manufacturer's Specs:

- Wingspan:
- Length:
- Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control:
- · Payload:

5.4 ft (1.6 m) 3.2 ft (1.0 m) 8.2 lbs (3.7 kg) 10000 m LOS 30-50mph (48-81 kmph) hand horizontal landing electric motor 100-500 ft (30.48m-152.4m) AGL 90 min auto waypoint following color camera, infrared bio/chemical

Radio TX: 399.37 MHz / 1500 mW Radio RX: Radio TX: 399.37 MHz / 1500 mW Radio RX:

212

Evolution-XTS

Evolution-XTS

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X	min. Tools: standard

Directed Perception (boxes with holes):

	Fac			Top				(Far		Time	Contacts
	Left	C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Directed Perception (boxes with holes):

	Fac	<u>e</u>		Top	(Ne	ar <u>)</u>	Тор	(Far)	Time	Contacts
	Left	C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Flying Bassett

University of Alabama in Huntsville (UAH) Gary Maddux/gary.maddux@us.army.mil

6 ft (1.8 m)

45 lbs (20.4 kg)

Further with GCS

5 mph (8.1km/hr)

vertical takeoff

vertical landing

500 ft (152 m)

20 min

ylinder, Gasoline

0.5 mi (0.81km) LOS,

Zenoah 80cc 8 hp Twin

auto waypoint following

Manufacturer's Specs:

- Rotor span:
 - Length: 7 ft (2.13 m)
- Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control:
- Payload:

Flying Bassett

University of Alabama in Huntsville (UAH) Gary Maddux/gary.maddux@us.army.mil

Manufacturer's Specs:

- Rotor span:
- Length:
- Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control:
- Payload:

6 ft (1.8 m) 7 ft (2.13 m) 45 lbs (20.4 kg) 0.5 mi (0.81km) LOS, Further with GCS 5 mph (8.1km/hr) vertical takeoff vertical landing Zenoah 80cc 8 hp Twin ylinder, Gasoline 500 ft (152 m) 20 min auto waypoint following

Radio TX: 72.230 MHz / 100 mW Radio RX: Radio TX: 72.230 MHz / 100 mW Radio RX:

Flying Bassett

Flying Bassett

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	HardiggsPallets
Weights:	Shipping	Deployed	Setup Time: X min. Tools: standard

Directed Perception (boxes with holes):

	Fac				(Ne			(Far		Time	Contacts
	Left	: C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	min. Tools: standard

Directed Perception (boxes with holes):

	Fac	<u>e</u>		Top	(Ne	ar <u>)</u>	Тор	(Far)	Time	Contacts
	Left	C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Yamaha Helicopter

SkeyesUnlimited Inc. www.skeyesunlimited.com/index.html 412-661-0292

Manufacturer's Specs:

- Rotor span: 10.2 ft (3.1 m) •
- Length: 11.8 ft (3.6 m) ٠
- Weight: 207 lbs (94 kg) ٠
- Range: 492 ft (150 m) LOS

TBD

- Speed: ٠
- Launch: vertical takeoff ٠
- Recovery: vertical landing ٠
- 21 hp, 246 cc, 2-stroke, gas/oil mix Propulsion: ٠ TBD

60 min

- Altitude: ٠
- Endurance: •
- Control: auto waypoint following •
- 3-D laser scanner Payload: ٠

Yamaha Helicopter

SkeyesUnlimited Inc. www.skeyesunlimited.com/index.html 412-661-0292

Manufacturer's Specs:

- Rotor span: 10.2 ft (3.1 m) .
- Length: 11.8 ft (3.6 m)
- Weight: 207 lbs (94 kg)
- Range: 492 ft (150 m) LOS
- Speed: TBD ٠
- Launch: vertical takeoff
- Recovery: vertical landing
- 21 hp, 246 cc, 2-stroke, gas/oil mix Propulsion:
- Altitude:
- Endurance: 60 min
 - Control: auto waypoint following 3-D laser scanner

TBD

- Payload: ٠

•

٠

•

Radio TX: TBD Radio RX: TBD Radio TX: TBD Radio RX: TBD

Yamaha Helicopter

Yamaha Helicopter

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X	min. Tools: standard

Directed Perception (boxes with holes):

	Fac			Top				(Far		Time	Contacts
	Left	C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	min. Tools: standard

Directed Perception (boxes with holes):

	Face Left		Right		(Ne) C	<u>ar)</u> Right		(Far	' <u>)</u> Right	Time	Contacts
Level 4:	х	'x'	x	х	'x'	x	х	'x'	x	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Aerial Robots

Blimp

ARACAR www.aracar.org/index.html 985-845-3774

Manufacturer's Specs:

- Length:
- · Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control:
- · Payload:

10' -20' (3 m-6 m) < 0! lbs (< 0! kg) 150 ft (50 m) tethered 0 km/hr (or tether vehicle speed) vertical pay out of tether vertical retrieval of tether none 150 ft (50 m) TBD none

small camera

Blimp

ARACAR www.aracar.org/index.html 985-845-3774

Manufacturer's Specs:

- Length:
- · Weight:
- Range:
- Speed:
- Launch:
- Recovery:
- Propulsion:
- Altitude:
- Endurance:
- Control:
- Payload:

10' -20' (3 m-6 m) < 0! lbs (< 0! kg) 150 ft (50 m) tethered 0 km/hr (or tether vehicle speed) vertical pay out of tether vertical retrieval of tether none 150 ft (50 m) TBD none small camera

Radio TX: Radio RX:

218

Radio TX: Radio RX:

Blimp

Blimp

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X n	nin. Tools: standard

Directed Perception (boxes with holes):

	Fac	_			(Ne			(Far		Time	Contacts
	Left	: C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Aerial Station Keeping (single charge):

Targets: (flush: x of x), (recessed: x of x), Total: (y of y), Time: (x min.)

Cache packaging, weight, setup, tools

Packages:	Ropacks	Pelicans	Hardiggs	Pallets
Weights:	Shipping	Deployed	Setup Time: X r	nin. Tools: standard

Directed Perception (boxes with holes):

	Fac	<u>e</u>		Top	(Ne	ar)	Тор	(Far)	Time	Contacts
	Left	C	Right	Left	C	Right	Left	C	Right		
Level 4:	х	х	х	х	х	х	х	х	х	x min.	#
Level 3:	х	х	х	х	х	х	х	х	х	x min.	#
Level 2:	х	х	х	х	х	х	х	х	х	x min.	#
Level 1:	х	х	х	х	х	х	х	х	х	x min.	#

Radio Communications:

LOS: (x m, time, near field acuity), BLOS: (x m, time, near field acuity)

Visual Acuity:

Ambient (x lumens): near field (x.x), far field (x.x), zoom (x.x) Dark (x lumens): near field (x.x), far field (x.x), zoom (x.x) – var. illumination: (yes/no)

Aerial Robots

Aquatic Robots

Aquatic Robots

221

VideoRay Pro 3

VideoRay www.videoray.com/index.htm

9" (22.5 cm)

12" (30.5 cm)

Manufacturer's Specs:

- Width:
- Length: .

.

.

.

•

- Height: 8.5" (21 cm)
- Submersible: 8.4 lbs (3.8 kg), Total Weight: ٠
 - System: 90 lbs 500 ft (152 m) Depth Rating
 - Max Speed: 2.6 knots
- Power Source: Battery Pack ٠
- Endurance: ٠ •
- power, comms, 250 ft (75 m) Tether: remote teleop ٠
 - Control:
- Sensors: front/rear camera, scanning sonar • (seasprite) ххх

ΧХ

- Payload:
- 10" (25 cm) gripper accessory Manipulator:

VideoRay Pro 3

VideoRay www.videoray.com/index.htm

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight:
- Depth Rating .
- Max Speed:
- Power Source: ٠
- Endurance: ٠
- Tether:
- Control: .

.

- Sensors: •
- Payload:
- Manipulator:
- 9" (22.5 cm) 12" (30.5 cm) 8.5" (21 cm) Submersible: 8.4 lbs (3.8 kg), Total System: 90 lbs 500 ft (152 m) 2.6 knots Battery Pack ΧХ power, comms, 250 ft (75 m) remote teleop front/rear camera, scanning sonar (seasprite) XXX 10" (25 cm) gripper accessory

LBV200L2

SeaBotix Inc. www.SeaBotix.com Sean Newsome

9.65 in (245 cm)

21 in (530 cm)

10 in (254 cm)

26.5 lbs (12 kg)

Combined Thrust

21 in (530 cm)

110V/220V

5 fps (1.54 mps)

Handheld Controller

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight:
- Locomotion:
- Steering:
- Turning Diam:
- Max Speed:
- Power Source:
- Tether:
- Control:
- Sensors:

Standard: Color and Black/White Cameras, Depth, Heading, Water Temperature Optional: Grabber Attachment, Multi-beam Sonar, Scanning Sonar, Navigation System (USBL), Zoom Camera, High-Definition (HD) Camera, Scaling Lasers, Radiation Detector, Thickness Gauge, Altimeter, LYYN Video Enhancement 1 lb (0.45 kg), (additional floats can accommodate more weight)

4 Brushless Thrusters (1 vertical, 1

lateral & 2 forward/reverse)

Power, Data & Communication

Integrated Control Console with

- Payload in water:
- Manipulator: Grabber (3 jaw, interlocking, parallel & cutting), reach 10 in (25.4 cm)

LBV200L2

SeaBotix Inc. www.SeaBotix.com Sean Newsome

9.65 in (245 cm)

21 in (530 cm)

10 in (254 cm)

26.5 lbs (12 kg)

Combined Thrust

Manufacturer's Specs:

- Width: Length:
- Height:
- Weight: Locomotion:
- Steering:
- Turning Diam:
- Max Speed:
- Power Source:
- Tether:
- Control:
- Sensors:

21 in (530 cm) 5 fps (1.54 mps) 110V/220V Power. Data & Communication Integrated Control Console with Handheld Controller Standard: Color and Black/White Cameras, Depth, Heading, Water Temperature Optional: Grabber Attachment, Multi-beam Sonar, Scanning Sonar, Navigation System (USBL), Zoom Camera, High-Definition (HD) Camera, Scaling Lasers, Radiation Detector, Thickness Gauge, Altimeter, LYYN Video Enhancement

4 Brushless Thrusters (1 vertical, 1 lateral & 2 forward/reverse)

- Payload in water:
- Manipulator: parallel

1 lb (0.45 kg), (additional floats can accommodate more weight) Grabber (3 jaw, interlocking, & cutting), reach 10 in (25.4 cm)

Aquatic Robots

Aquatic Robots

223

LBV150SE-5

SeaBotix Inc. www.SeaBotix.com Sean Newsome

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight:
- Locomotion:
- Steering: Turning Diam:
- Max Speed: . mps)
- Power Source:
- Endurance:
- Tether:
- Sensors: Optional:
- Pavload:

Manipulator:

LBV w/CSA LBV only 19.7 in (50 cm) 19.7 in (50 cm) 20.5 in (52 cm) 20.5 in (52 cm) 15.75 in (40 cm) 8.7 in (22 cm) 61.7 lbs (28 kg) 28.6 lbs (13 kg) Standard 4-axis in-water flight without CSA Attached or combo of wheeled drive with Vortex attach. 5-axis in-water flight in Crawler mode Joystick/var. knob control/Skid ~20 in (51 cm)

- Water: 3 knots/crawler:1.64 fps(0.5
- AC power via shore power. generator, inverter w/true sign wave. Indefinitely with power applied.

Yes

- Video, sonar, depth, temp, heading. Grabber Attachment, Multi-beam Sonar, Scanning Sonar, Navigation System (USBL), Zoom Camera, Scaling Lasers, Rad.Detector, Thickness Gauge, Altimeter, LYYN Video Enhancement
- 3.3 lb (1.5 kg) in water. Single function 3-jaw standard (open/close) w/ optional attachments for cutting, parallel, and interlocking.

LBV150SE-5

SeaBotix Inc. www.SeaBotix.com Sean Newsome

LBV w/CSA

~20 in (51 cm)

Manufacturer's Specs:

- Width:
- Length:
- Height:
- Weight:
- Locomotion:
- Steering: Turning Diam:
- Max Speed: mps)

Power Source:

- Endurance:
- Tether:
- Sensors: Optional:

Pavload:

Manipulator:

Yes

Video, sonar, depth, temp, heading. Grabber Attachment, Multi-beam Sonar, Scanning Sonar, Navigation System (USBL), Zoom Camera, Scaling Lasers, Rad.Detector, Thickness Gauge, Altimeter, LYYN Video Enhancement

LBV only

19.7 in (50 cm) 19.7 in (50 cm)

20.5 in (52 cm) 20.5 in (52 cm)

15.75 in (40 cm) 8.7 in (22 cm)

61.7 lbs (28 kg) 28.6 lbs (13 kg)

without CSA Attached or combo of

Water: 3 knots/crawler:1.64 fps(0.5

generator, inverter w/true sign wave.

5-axis in-water flight in Crawler mode

wheeled drive with Vortex attach.

Standard 4-axis in-water flight

Joystick/var. knob control/Skid

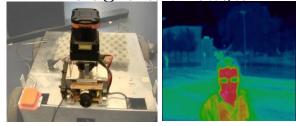
AC power via shore power.

Indefinitely with power applied.

3.3 lb (1.5 kg) in water. Single function 3-jaw standard (open/close) w/ optional attachments for cutting, parallel, and interlocking.

Sensors

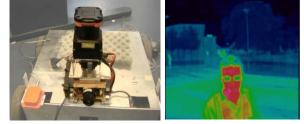
Sensors


225

Sensors

dcMap

University of Freiburg www.informatik.uni-freiburg.de/~kleiner kleiner@informatik.uni-freiburg.de



Manufacturer's Specs: •Width: •Length: •Height: •Weight: •Power Source: •Endurance: •Control: •Sensors:

3.92" (10 cm) 4.3" (11 cm) 9.06" (23 cm) 1.76lbs (0.8 kg) Lith.Polymer battery, 120 min remote teleop Hokuyo UTM30 Laser Range Finder, ThermalEye thermo cam, Xsens IMU

dcMap

University of Freiburg www.informatik.uni-freiburg.de/~kleiner kleiner@informatik.uni-freiburg.de

Manufacturer's Specs: •Width:

•Length: •Height: •Weight: •Power Source: •Endurance: •Control: •Sensors: 3.92" (10 cm) 4.3" (11 cm) 9.06" (23 cm) 1.76lbs (0.8 kg) Lith.Polymer battery, 120 min remote teleop Hokuyo UTM30 Laser Range Finder, ThermalEye thermo cam, Xsens IMU

•The sensor head can be mounted on any robot system without requiring data from the robot, such as wheel odometry data.

•The sensor head can be mounted on any robot system without requiring data from the robot, such as wheel odometry data.

GammaRAE II Responder

RAE Systems, Inc www.raesystems.com

Manufacturer's Specs:

- Width:
- · Length:
- Height:
- · Weight:
- Sensitivity:
- Energy range:
- Exposure rate range:
- Response with angle if incidence:
- Type of detector:
- Data transmission type:
- · Battery type and lifetime:
- Display type:
- Alarm type:
- Control:
- Radio frequency immunity:
- Radiated emission:
- Shock resistance: from 59"

2.7 "(6.8 cm) 4.9 " (12.5 cm) 1.4 "(3.5 cm) 0.625 lbs (0.24 kg) (Cs-137, Co-60, Am-241) 60 keV to 3.0 MeV 1 µR/h to 10 R/h ±20% from 0° for -45° to 45° (Cs-137) CsI(TI)+photodiode & energy-compensated PIN diode Bluetooth 2xAA alkaline, 500hr Backlit LCD Audible, Visual LEDs, Built-in vibration Manual

omplies with FCC Part 15 Passes drop tests (1.5 m)

Sensors

GammaRAE II Responder

RAE Systems, Inc www.raesystems.com

Manufacturer's Specs:

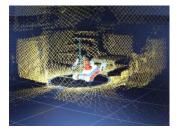
- Width:
- Length:
- Height:
- Weight:
- Sensitivity:
- Energy range:
- Exposure rate range:
- Response with angle if incidence:
- · Type of detector:
- Data transmission type:
- · Battery type and lifetime:
- Display type:
- Alarm type:
- Control:
- · Radio frequency immunity:

227

- Radiated emission:
- Shock resistance: from 59"

4.9 " (12.5 cm) 1.4 "(3.5 cm) 0.625 lbs (0.24 kg) (Cs-137, Co-60, Am-241) 60 keV to 3.0 MeV 1 µR/h to 10 R/h $\pm 20\%$ from 0° for -45° to 45° (Cs-137) CsI(TI)+photodiode & energy-compensated PIN diode Bluetooth 2xAA alkaline, 500hr Backlit LCD Audible, Visual LEDs, Built-in vibration Manual

2.7 "(6.8 cm)


omplies with FCC Part 15 Passes drop tests (1.5 m)

High Speed 3D Scanner

School of Information Sciences, Tohoku University / IRS : Kazunori Ohno/kazunori@rm.is.tohoku.ac.jp

Manufacturer's Specs:

- Width: 5.1 in (13.0 cm)
- Length: 4.1 in (10.5 cm)
- Height: 8.8 in (22.4 cm)
- Weight: 11 lbs (5.0 kg)
- Max Speed: .1fps (Frame Per Second)
- Power Source: battery
- Endurance: N/A
- Tether: LAN
- Control: N/A
- Sensors: 2D LRF + Pan Tilt base
- · Payload: N/A
- Manipulator: N/A
- Radio Tx: Tethered
- Radio Rx: Tethered

High Speed 3D Scanner

School of Information Sciences, Tohoku University / IRS : Kazunori Ohno/kazunori@rm.is.tohoku.ac.jp

Manufacturer's Specs:

- Width: 5.1 in (13.0 cm)
- Length: 4.1 in (10.5 cm)
- Height: 8.8 in (22.4 cm)
- Weight: 11 lbs (5.0 kg)
- Max Speed: .1fps (Frame Per Second)
- Power Source: battery
- Endurance: N/A
- Tether: LAN
- Control: N/A
- Sensors: 2D LRF + Pan Tilt base
- · Payload: N/A
- Manipulator: N/A
- Radio Tx: Tethered
- Radio Rx: Tethered

ICS-4000 Radionuclide Identifier

XRF Corporation www.xrfcorp.com / www.laurussystems.com 410-465-5558

Manufacturer's Specs:

- Width:
- · Length:
- Height:
- · Weight:
- · Sensitivity:
- Energy range:
- Exposure rate range:
- Response with angle if incidence:
- Type of detector:
- · Data transmission type:
- · Battery type and lifetime:
- · Display type:
- Alarm type:
- Control:
- Radio frequency immunity:
- · Radiated emission:
- Shock resistance:

3.4" 10.2" 1 2" 1.75 lbs Cs-137: 90 cps/mR/h, Co-60: 25 cps/mR/h, Am-241: 2900 cps/mR/h 10 keV - 2 MeV 50 mR/h – 1 R/h -3.3% 0° for -45° to 45° (Cs-137) Solid state CdTe for dose rate & radionuclide ID Bluetooth 24 hours LCD w LED backlight Audible & visual Remote / manual Class A per standard EN 61326 (1997) + A1 (1998) + A2 (2001) Class B per standard EN 61326 (1997) + A (1998) + A2 (2001) Sensors Conditional per ANSI N42.34

ICS-4000 Radionuclide Identifier

XRF Corporation www.xrfcorp.com / www.laurussystems.com 410-465-5558

Manufacturer's Specs:

- Width:Length:
- Height:
- Weight:
- Sensitivity:
- Energy range:
- Exposure rate range:
- Response with angle if incidence:
- · Type of detector:
- Data transmission type:
- Battery type and lifetime:
- Display type:
- Alarm type:
- Control:
- Radio frequency immunity:
- · Radiated emission:
 - Shock resistance:

3.4" 10.2" 1 2" 1.75 lbs Cs-137: 90 cps/mR/h, Co-60: 25 cps/mR/h, Am-241: 2900 cps/mR/h 10 keV - 2 MeV 50 mR/h – 1 R/h -3.3% 0° for -45° to 45° (Cs-137) Solid state CdTe for dose rate & radionuclide ID Bluetooth 24 hours LCD w LED backlight Audible & visual Remote / manual Class A per standard EN 61326 (1997) + A1 (1998) + A2 (2001) Class B per standard EN 61326 (1997) + A (1998) + A2 (2001) Sensors Conditional per ANSI N42.34

229

Inspector-1000

Canberra Industries www.canberra.com

- Manufacturer's Specs: • Width: 7.5 in (19 cm) Length: 6.5 in (16.5 cm) Height: 2.5 in (6.4 cm) Weight: 2.2 lbs (1.0 kg) ٠ Sensitivity: ٠ 241) Energy range: 50-3000 keV . 1000 mR/h Exposure rate range: ٠ Response with angle if incidence: ٠ to 45° (Cs-137) Type of detector: ٠ LaBr) with radionuclide ID Data transmission type: USB ٠ Battery type and lifetime: 12. hours Display type: ٠ color display Alarm type: audible. visual ٠ Control: eyes-on, manual Radio frequency immunity: yes ٠ Radiated emission: ٠ yes
 - Shock resistance:

(Cs-137, Co-60, Am-95% from 0° for -45° GM + (either Nal(TI) or LCD 320 x 200 Hi-res

Inspector-1000

Canberra Industries www.canberra.com

Manufacturer's Specs:

- Width: Length: Height: Weight:
- Sensitivity: ٠

•

٠

- Energy range:
- Exposure rate range: ٠
- Response with angle if incidence: ٠
- Type of detector: ٠
- Data transmission type: .
- Battery type and lifetime:
- Display type: ٠ color display
- Alarm type: .
- Control:
- Radio frequency immunity:
- Radiated emission: ٠
- Shock resistance:
- 7.5 in (19 cm) 6.5 in (16.5 cm) 2.5 in (6.4 cm) 2.2 lbs (1.0 kg) (Cs-137, Co-60, Am-241) 50-3000 keV 1000 mR/h 95% from 0° for -45° to 45° (Cs-137) GM + (either Nal(TI) or LaBr) with radionuclide ID USB 12. hours LCD 320 x 200 Hi-res audible. visual eyes-on, manual yes

yes

yes

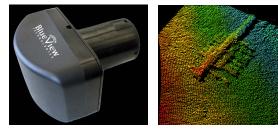
yes

MBI350-45

BlueVeiw Technologies www.blueveiwtech.com

Manufacturer's Specs

- Specifications
 - Field of View: 45°x 1°
 - Max Range: 90 ft
 - True Beam Width: 1°x 1°
 - Number of Beams: 256
 - Beam Spacing: 0.18°
 - Range Resolution: .016"
 - Update Rate: Up to 40 Hz
 - Frequency: 1.35 MHz


Mechanical Specifications

- Weight in Air: 12.0 lb
- Weight in Water: 3.2 lb
- Depth Rating: 1000 ft
- Size: 10.5" x 9.2" x 5.3"
- Interface Specifications
 - Coms: Ethernet
 - Voltage: 12-48 VDC
 - Power: 15 Watts

Multibeam Imaging Sonar

MBI350-45

BlueVeiw Technologies www.blueveiwtech.com

Manufacturer's Specs:

- Specifications
 - Field of View: 45°x 1°
 - Max Range: 90 ft
 - True Beam Width: 1°x 1°
 - Number of Beams: 256
 - Beam Spacing: 0.18°
 - Range Resolution: .016"
 - Update Rate: Up to 40 Hz
 - Frequency: 1.35 MHz
- Mechanical Specifications
 - Weight in Air: 12.0 lb
 - Weight in Water: 3.2 lb
 - Depth Rating: 1000 ft
 - Size: 10.5" x 9.2" x 5.3"
- Interface Specifications
 - Coms: Ethernet
 - Voltage: 12-48 VDC

231

Power: 15 Watts

Sensors

P450E-15

BlueVeiw Technologies www.blueveiwtech.com

Manufacturer's Specs:

- Specifications
 - Field of View: 45°x 15°
 - Max Range: 450 ft
 - True Beam Width: 1°x 15°
 - Number of Beams: 256
 - Beam Spacing: 0.18°
 - Range Resolution: 2"
 - Update Rate: Up to 10 Hz
 - Frequency: 450 kHz

Mechanical Specifications

- Weight in Air: 5.7 lb
- Weight in Water: 1.4 lb
- Depth Rating: 1000 ft
- Size: 9.6" x 6.9" x 4"
- Interface Specifications
 - Coms: Ethernet
 - Voltage: 12-48 VDC
 - Power: 10 Watts

Multibeam Imaging Sonar

P450E-15

BlueVeiw Technologies www.blueveiwtech.com

Manufacturer's Specs:

- Specifications
 - Field of View: 45°x 15°
 - Max Range: 450 ft
 - True Beam Width: 1°x 15°
 - Number of Beams: 256
 - Beam Spacing: 0.18°
 - Range Resolution: 2"
 - Update Rate: Up to 10 Hz
 - Frequency: 450 kHz
- Mechanical Specifications
 - Weight in Air: 5.7 lb
 - Weight in Water: 1.4 lb
 - Depth Rating: 1000 ft
 - Size: 9.6" x 6.9" x 4"
- Interface Specifications
 - Coms: Ethernet
 - Voltage: 12-48 VDC
 - Power: 10 Watts

P900E-20

BlueVeiw Technologies www.blueveiwtech.com 206-545-7260

Manufacturer's Specs:

- 900 kHz Head Specifications
 - Field of View: 45°x 20°
 - Max Range: 180 ft
 - True Beam Width: 1 °x 20°
 - Number of Beams: 256
 - Beam Spacing: 0.18°
 - Range Resolution: 1"
 - Update Rate: Up to 10 Hz
 - Frequency: 900 kHz
- Mechanical Specifications
 - Weight in Air: 4.0 lb
 - Weight in Water: 1 lb
 - Depth Rating: 1000 ft
 - Size: 7"x 4" OD
- Interface Specifications
 - Coms: Ethernet
 - Voltage: 12-48 VDC
 - Power: 10 Watts

Multibeam Imaging Sonar

P900E-20 BlueVeiw Technologies www.blueveiwtech.com

Manufacturer's Specs:

- 900 kHz Head Specifications
 - Field of View: 45°x 20°
 - Max Range: 180 ft
 - True Beam Width: 1 °x 20°
 - Number of Beams: 256
 - Beam Spacing: 0.18°
 - Range Resolution: 1"
 - Update Rate: Up to 10 Hz
 - Frequency: 900 kHz
- Mechanical Specifications
 - Weight in Air: 4.0 lb
 - Weight in Water: 1 lb
 - Depth Rating: 1000 ft
 - Size: 7" x 4" OD
- Interface Specifications
 - Coms: Ethernet
 - Voltage: 12-48 VDC

233

Power: 10 Watts

Sensors

BlueVeiw Technologies www.blueveiwtech.com 206-545-7260

Manufacturer's Specs:

- 900 kHz Head Specifications •
 - Field of View: 45°x 20° _
 - Max Range: 180 ft _
 - True Beam Width: 1°x 20° _
 - Number of Beams: 256
 - Beam Spacing: 0.18° _
 - Range Resolution: 1" _
 - Update Rate: Up to 10 Hz _
 - Frequency: 900 kHz _
- 2.25 MHz Head Specifications
 - Field of View: 45°x 20° _
 - Max Range: 15 ft _
 - True Beam Width: 1°x 20° _
 - Number of Beams: 256 _
 - Beam Spacing: 0.18° _
 - Range Resolution: 0.4" _
 - Update Rate: Up to 10 Hz _
 - _ Frequency: 2.25 MHz
- Mechanical Specifications
 - Weight in Air: 6.0 lb _
 - Weight in Water: 1.5 lb _
 - Depth Rating: 1000 ft _
 - Size: 8.3" x 5.0" OD _
- Interface Specifications ٠
 - _ Coms: Ethernet
 - Voltage: 12-48 VDC _
 - Power: 15 Watts _

234

Multibeam Imaging Sonar

BlueVeiw Technologies www.blueveiwtech.com 206-545-7260

Manufacturer's Specs:

- 900 kHz Head Specifications •
 - Field of View: 45°x 20° _
 - Max Range: 180 ft _
 - True Beam Width: 1°x 20° _
 - Number of Beams: 256
 - Beam Spacing: 0.18° _
 - Range Resolution: 1" _
 - Update Rate: Up to 10 Hz _
 - _ Frequency: 900 kHz
- 2.25 MHz Head Specifications
 - Field of View: 45°x 20° _
 - Max Range: 15 ft _
 - True Beam Width: 1°x 20°
 - Number of Beams: 256 _
 - Beam Spacing: 0.18°
 - Range Resolution: 0.4" _
 - Update Rate: Up to 10 Hz _
 - _ Frequency: 2.25 MHz
- Mechanical Specifications

_

- Weight in Air: 6.0 lb _
- Weight in Water: 1.5 lb _
- Depth Rating: 1000 ft _
- Size: 8.3 in x 5.0 in OD _
- Interface Specifications ٠
 - _ Coms: Ethernet
 - Voltage: 12-48 VDC _
 - Power: 15 Watts _
 - 234

Radiogem

Canberra Industries www.canberra.com

Manufacturer's Specs:

- Width:
- Length: ٠
- Height:
- Weight: ٠
- Sensitivity: ٠
- ٠ Energy range:
- Exposure rate range: ٠
- Response with angle if incidence: ٠
- Type of detector: ٠
- Data transmission type: •
- Battery type and lifetime: ٠
- Display type: ٠
- Alarm type: ٠
- Control: ٠
- Radio frequency immunity: ٠
- Radiated emission: •
- Shock resistance: ٠

5.9 in (15.0 cm) 3.3 in (8.5 cm) 1.8 in (4.5 cm) .66 lbs(0.300 kg) ves (Cs-137, Co-60, Àm-241) 30 - 2000 keV (probe dep.) 0.03-10,000mR/h 95% from 0° for -45° to 45° (Cs-137) GM, or Nal, Plastic RS-232 80 hours LCD display audible, visual eyes-on, manual yes yes yes

Sensors

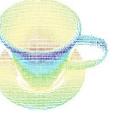
Radiogem

Canberra Industries www.canberra.com

Manufacturer's Specs:

- Width: •
- Length: •
- Height:
- Weight: ٠
- Sensitivity:
- Energy range: ٠
- Exposure rate range:
- Response with angle if incidence: ٠
- Type of detector: •
- Data transmission type: •
- Battery type and lifetime:
- Display type:
- Alarm type: ٠
- Control:
- . Radio frequency immunity:
- Radiated emission:
- Shock resistance:

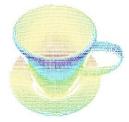
5.9 in (15.0 cm) 3.3 in (8.5 cm) 1.8 in (4.5 cm) .66 lbs(0.300 kg) ves (Cs-137, Co-60, Am-241) 30 - 2000 keV (probe dep.) 0.03-10.000mR/h 95% from 0° for -45° to 45° (Cs-137) GM, or Nal, Plastic RS-232 80 hours LCD display audible, visual eyes-on, manual yes yes yes


235

Sensors

Swiss Ranger 4000

Mesa Imaging AG/Acroname Inc. www.acroname.com (US) / www.mesa-imaging.ch (Switzerland) Steve Richards (steve@acroname.com)



Manufacturer's Specs:

- Width:
- · Length:
- Height:
- Weight:
- Locomotion:
- Steering:
- Turning Diam:
- Max Speed:
- Power Source:
- · Endurance:
- Tether:
- Control:
- · Sensors:
- Payload:
- Manipulator:

2.6" (6.5 cm) 2.6" (6.8 cm) 2.6" (6.5 cm) 1.05 lbs (470 g) None None None 54 fps battery (12V) None USB or Ethernet Mac, Linux, Windows Drivers 3D Depth Imaging (176x144) pixel, 0.3 to 5.0 meter None None

Swiss Ranger 4000

Manufacturer's Specs:

- Width:
- · Length:
- · Height:
- Weight:
- Locomotion:
- Steering:
- Turning Diam:
- Max Speed:
- · Power Source:
- Endurance:
- Tether:
- Control:
- Sensors:
- Payload:
- Manipulator:

2.6" (6.5 cm) 2.6" (6.8 cm) 2.6" (6.5 cm) 1.05 lbs (470 g) None None None 54 fps battery (12V) None USB or Ethernet Mac, Linux, Windows Drivers 3D Depth Imaging (176x144) pixel, 0.3 to 5.0 meter None None

UltraRadiac

Canberra Industries www.canberra.com

Manufacturer's Specs:

•	Width:	2.61 in
•	Length:	3.95 in
•	Height:	1.14 in
•	Weight:	.6 lbs (
•	Sensitivity:	yes (Cs 60, Am
•	Energy range:	60 - 13
•	Exposure rate range:	0.001 - mR/h
•	Response with angle if incidence: 45° to 45° (Cs-	95% fro 137)
•	Type of detector:	GM
•	Data transmission type:	RS-23
•	Battery type and lifetime:	150 ho
•	Display type:	LCD di
•	Alarm type:	audible vibratic
•	Control:	yes-on
•	Radio frequency immunity:	yes
	Dedicted emission:	

- ٠ Radiated emission:
- Shock resistance: •

(6.6 cm) n (10.0 cm) n (2.9 cm) (0.269 kg) Cs-137, Con-241) 300 keV - 500,000 rom 0° for -32 ours lisplay e, visual, on n, manual yes Sensors

yes

UltraRadiac

Canberra Industries www.canberra.com

Manufacturer's Specs:

•

•

.

•

•

•

٠

•

•

٠

2.61 in (6.6 cm)
3.95 in (10.0 cm)
1.14 in (2.9 cm)
.6 lbs (0.269 kg)
yes (Cs-137, Co- 60, Am-241)
60 - 1300 keV
0.001 – 500,000 mR/h
95% from 0° for -
137)
GM
RS-232
150 hours
LCD display
audible, visual, vibration
yes-on, manual
yes
yes
yes

237

General Index

Contact Information		3
Program Overview		4
Events		
	2008-Disater City	6
	College Station, TX	
	2007-Disater City	20
	College Station, TX	
	2006-MD TF-1	24
	Rockville, MD	
	2006-Disaster City	28
	College Station, TX	
Safety		35
Test Methods		37
Ground Robots		111
Wall Climbers		193
Aerial Robots		199
Aquatic Robots		221
Sensors		225

General Index

Contact Information		3
Program Overview		4
Events		
	2008-Disater City	6
	College Station, TX	
	2007-Disater City	20
	College Station, TX	
	2006-MD TF-1	24
	Rockville, MD	
	2006-Disaster City	28
	College Station, TX	
Safety		35
Test Methods		37
Ground Robots		111
Wall Climbers		193
Aerial Robots		199
Aquatic Robots		221
Sensors		225

Index-Size

Robot Name Ground Robots

Company

Eyeball R1	O.D.F.
Recon Scout	ReconRobotics
ToughBot	Omnitech Robotics
Active Scope Camera	Tohoku University
Pointman (LRV)	Applied Research Assoc.
VGTV-Exteme	Inuktun
Dragon Runner	Foster-Miller/Automatika
BomBot	WVHTC
Versatrax 100	Inuktun
Marv	Mesa Robotics
G2Bot	Mesa Robotics
Soryu	IRS
BomBot 2	WVHTC
Soryu V	IRS
Jacobs Rugg.Robot	Jacobs University
Hero	First Response Robotics
Super Kenaf	IRS
Kenaf	IRS
PackBot EOD	iRobot
PackBot Explorer	iRobot
Hibiscus	Toin
Cphea	Toin
Robbie 6	University Koblenz-Landau
Shinobi	Univer. Electro Comm.
Matilda	Mesa Robotics
Matilda II	Mesa Robotics
NuTech-R-4	Nagaoka Univ. Tech.
Versatrax 150	Inuktun
Chaos	Autonomous Solutions, Inc.

	Ground Robots
112	Eyeball R1
114	Recon Scout
116	ToughBot
118	Active Scope Camer
120	Pointman (LRV)
122	VGTV-Exteme
124	Dragon Runner
126	BomBot
128	Versatrax 100
130	Marv
132	G2Bot
134	Soryu
136	BomBot 2
138	Soryu V
140	Jacobs Rugg.Robot
142	Hero
144	Super Kenaf
146	Kenaf
148	PackBot EOD
150	PackBot Explorer
152	Hibiscus
154	Cphea
156	Robbie 6
158	Shinobi
160	Matilda
162	Matilda II
164	NuTech-R-4
166	Versatrax 150
168	Chaos

Index-Size

Robot Name Ground Robots

Company

	O.D.F.	112
	ReconRobotics	114
	Omnitech Robotics	116
era	Tohoku University	118
	Applied Research Assoc.	120
	Inuktun	122
	Foster-Miller/Automatika	124
	WVHTC	126
	Inuktun	128
	Mesa Robotics	130
	Mesa Robotics	132
	IRS	134
	WVHTC	136
	IRS	138
t	Jacobs University	140
	First Response Robotics	142
	IRS	144
	IRS	146
	iRobot	148
	iRobot	150
	Toin	152
	Toin	154
	University Koblenz-Landau	156
	Univer. Electro Comm.	158
	Mesa Robotics	160
	Mesa Robotics	162
	Nagaoka Univ. Tech.	164
	Inuktun	166
	Autonomous Solutions, Inc.	168

Index-Size

Robot Name Ground Robots Cont.	Company
ATRV mini Modular Logistics Platform Talon Gen IV Talon Hazmat RMP 200 TeleMax HD-1J Mini-Andros II RMP 400 Andros F6A Boz I	Idaho National Lab Segway Foster-Miller/Qinetiq Foster-Miller/Qinetiq Segway TeleRob Remotec Remotec Segway Remotec BOZ Robotics
0021	DOZ ROBOLICS
Wall Climbers	
VMRP	Vortex
NanoMag	Inuktun
Aerial Robots	
Fixed Wing	
Micro-Drone 200	BCB International, Ltd.
Nighthawk	Applied Research Assoc.
Raven	AeroVironment Inc.
Dragon Eye	AeroVironment, Inc.
CyberBug	Cyber Defense Systems, Inc.
Evolution-XTS	L-3 BAI Aerosystems, Inc
Rotor	
AirRobot	AirRobot
Flying Bassett	Univ. of AL – Huntsville
Yamaha Helicopter	Skeyes Unlimited
<u>Other</u>	
Blimp	ARACAR
Aquatic Robots	
VideoRay Pro 3	VideoRay
LBV200L2	SeaBotix
LBV150SE-5	SeaBotix

Index-Size

Robot Name	Company	
Ground Robots Cont.		470
ATRV mini Modular Logistics Platform	Idaho National Lab Segway	170 172
Talon Gen IV	Foster-Miller/Qinetig	172
Talon Hazmat	Foster-Miller/Qinetig	176
RMP 200	Segway	178
TeleMax	TeleRob	180
HD-1J	Remotec	182
Mini-Andros II RMP 400	Remotec	184 186
Andros F6A	Segway Remotec	188
Boz I	BOZ Robotics	190
Wall Climbers		
VMRP	Vortex	194
NanoMag	Inuktun	196
Aerial Robots		
Fixed Wing		
Micro-Drone 200	BCB International, Ltd.	200
Nighthawk	Applied Research Assoc.	204
Raven	AeroVironment Inc.	206
Dragon Eye	AeroVironment, Inc.	208
CyberBug	Cyber Defense Systems, Inc.	210
Evolution-XTS	L-3 BAI Aerosystems, Inc	212
Rotor		
AirRobot	AirRobot	202
Flying Bassett	Univ. of AL – Huntsville	214
Yamaha Helicopter	Skeyes Unlimited	216
<u>Other</u>		
Blimp	ARACAR	218
Aquatic Robots		
VideoRay Pro 3	VideoRay	222
LBV200L2	SeaBotix	223
LBV150SE-5	SeaBotix	224
	241	

Index- Sensors

dcMap	226
GammaRAE II Responder	227
High Speed 3D Scanner	228
ICS-4000 Radionuclide Identifier	229
Inspector-1000	230
Multibeam Imaging Sonar	
MBI350-45	231
P450E-15	232
P900E-20	233
Multibeam Imaging Sonar	234
Radiogem	235
Swiss Ranger 4000	236
UltraRadiac	237

Index- Sensors

dcMap	226
GammaRAE II Responder	227
High Speed 3D Scanner	228
ICS-4000 Radionuclide Identifier	229
Inspector-1000	230
Multibeam Imaging Sonar	
MBI350-45	231
P450E-15	232
P900E-20	233
Multibeam Imaging Sonar	234
Radiogem	235
Swiss Ranger 4000	236
UltraRadiac	237

Index-Robot Name

Robot Name	Company
Ground Robots	
Active Sc. Camera	Tohoku University
Andros F6A	Remotec
ATRV mini	Idaho National Lab
BomBot	WVHTC
BomBot 2	WVHTC
Boz I	BOZ Robotics
Chaos	Autonomous Solutions, Inc.
Cphea	Toin
Dragon Runner	Foster-Miller/Automatika
Eyeball R1	O.D.F.
G2Bot	Mesa Robotics
HD-1J	Remotec
Hero	First Response Robotics
Hibiscus	Toin
Jacobs Rugged Robot	Jacobs University
Kenaf	IRS
Marv	Mesa Robotics
Matilda	Mesa Robotics
Matilda II	Mesa Robotics
Mini-Andros II	Remotec
Modular Logistics	Segway
NuTech-R-4	Nagaoka Univ. Tech.
PackBot EOD	iRobot
PackBot Explorer	iRobot
Pointman (LRV)	Applied Research Assoc.
Recon Scout	ReconRobotics
RMP 200	Segway
RMP 400	Segway
Robbie 6	University Koblenz-Landau

Index-Robot Name

Robot Name	Company	
Ground Robots		
Active Sc. Camera	Tohoku University	118
Andros F6A	Remotec	188
ATRV mini	Idaho National Lab	170
BomBot	WVHTC	126
BomBot 2	WVHTC	136
Boz I	BOZ Robotics	190
Chaos	Autonomous Solutions, Inc.	168
Cphea	Toin	154
Dragon Runner	Foster-Miller/Automatika	124
Eyeball R1	O.D.F.	112
G2Bot	Mesa Robotics	132
HD-1J	Remotec	182
Hero	First Response Robotics	142
Hibiscus	Toin	152
Jacobs Rugged Robot	Jacobs University	140
Kenaf	IRS	146
Marv	Mesa Robotics	130
Matilda	Mesa Robotics	160
Matilda II	Mesa Robotics	162
Mini-Andros II	Remotec	184
Modular Logistics	Segway	172
NuTech-R-4	Nagaoka Univ. Tech.	164
PackBot EOD	iRobot	148
PackBot Explorer	iRobot	150
Pointman (LRV)	Applied Research Assoc.	120
Recon Scout	ReconRobotics	114
RMP 200	Segway	178
RMP 400	Segway	186
Robbie 6	University Koblenz-Landau	156

Index-Name

Company

Ground Robots Cont.		
Shinobi	Univer. Electro Comm.	158
Soryu	IRS	134
Soryu V	IRS	138
Super Kenaf	IRS	144
TalonGen IV	Foster-Miller/Qinetiq	174
Talon Hazmat	Foster-Miller/Qinetiq	176
TeleMax	TeleRob	180
ToughBot	Omnitech Robotics	116
Versatrax 100	Inuktun	128
Versatrax 150	Inuktun	166
VGTV-Exteme	Inuktun	122
Wall Climbers		
NanoMag	Inuktun	196
VMRP	Vortex	194

Aerial Robots

Robot Name

AirRobot	AirRobot	202
Blimp	ARACAR	218
CyberBug	Cyber Defense Systems, Inc.	210
Dragon Eye	AeroVironment, Inc.	208
Evolution-XTS	L-3 BAI Aerosystems, Inc	212
Flying Bassett	Univ. of AL - Huntsville	214
Micro-Drone 200	BCB International	200
Nighthawk	Applied Research Assoc.	204
Raven	AeroVironment, Inc.	206
Yamaha Helicopter	Skeyes Unlimited	216
Aquatic Robots		
LBV200L2	SeaBotix	223
LBV150SE-5	SeaBotix	224
VideoRay Pro 3	VideoRay	222

Index-Name

Ground Robots Cont.ShinobiUniver. Electro Comm.158SoryuIRS134Soryu VIRS138Super KenafIRS144TalonGen IVFoster-Miller/Qinetiq174
SoryuIRS134Soryu VIRS138Super KenafIRS144
Soryu VIRS138Super KenafIRS144
Super Kenaf IRS 144
•
TalonGen IVFoster-Miller/Qinetiq174
Talon HazmatFoster-Miller/Qinetiq176
TeleMax TeleRob 180
ToughBot Omnitech Robotics 116
Versatrax 100 Inuktun 128
Versatrax 150 Inuktun 166
VGTV-Exteme Inuktun 122
Wall Climbers
NanoMag Inuktun 196
VMRP Vortex 194
VINICI VOICA 104
Aerial Robots
AirRobot AirRobot 202
Blimp ARACAR 218
CyberBug Cyber Defense Systems, Inc. 210
Dragon Eye AeroVironment, Inc. 208
Evolution-XTS L-3 BAI Aerosystems, Inc 212
Flying BassettUniv. of AL - Huntsville214
Micro-Drone 200 BCB International 200
NighthawkApplied Research Assoc.204
RavenAeroVironment, Inc.206
Yamaha HelicopterSkeyes Unlimited216
Aquatic Robots
LBV200L2 SeaBotix 223
LBV150SE-5 SeaBotix 224

VideoRay

222

VideoRay Pro 3

Index-Test Methods

Test Methods	37
Logistics Suite	
Cache Packaging/Setup/tools	42
Sensing Suite	
Acuity/Field of View	44
Directed Search	46
Underpass Search	48
One/Two Way Audio	50
Mapping	52
Mobility Suite	
Flat Dash and Tow	54
Slalom: Flat Flooring	56
Slalom: Continuous Ramps	58
Slalom: Crossing Ramps	60
Slalom: Symmetric Stepfields	62
Gap Crossing	64
Pipe Step	66
Stairs	68
Inclined Plane	70
Tow: Hitch Trailer	72
Tow: Hitch Drag	74
Tow: End-Effector Drag	76
Confined Space	78
Terrain Traversability	80
Radio Comms Suite	
Line-of-sight	82
Non line-of-sight	84
Structure & Tunnel Penetration	86
Urban Canyon	88

Index-Test Methods

Test Methods		37
Logistics Suite		
Cache Pack	aging/Setup/tools	42
Sensing Suite		
Acuity/Field	of View	44
Directed Sea	arch	46
Underpass S	Search	48
One/Two W	'ay Audio	50
Mapping		52
Mobility Suite		
Flat Dash ar	nd Tow	54
Slalom: Flat	Flooring	56
Slalom: Con	tinuous Ramps	58
Slalom: Cros	ssing Ramps	60
Slalom: Sym	metric Stepfields	62
Gap Crossin	g	64
Pipe Step		66
Stairs		68
Inclined Plar		70
Tow: Hitch	Trailer	72
Tow: Hitch I	Drag	74
Tow: End-E	•	76
Confined Sp	ace	78
Terrain Trav	ersability	80
Radio Comms Suite		
Line-of-sight		82
Non line-of-s	sight	84
Structure &	Tunnel Penetration	86
Urban Cany	on	88

Index-Test Methods

Mobile Manipulation Suite	
Perception	90
Grasping	92
Door Opening	94
Safety/Environment Suite	
Washdown/Decontamination	96
Energy/Power Suite	
Endurance	98
Human-System Interaction (HSI) Suite	
Random Maze Search	100
Random Maze Navigation	102
Checklist Items	104
Maneuvering-Aerial Suite	
VTOL Station Keeping	106
Maneuvering-Aquatic Suite	
Underwater Navigation and Search	108

Index-Test Methods

Mobile Manipulation Suite	
Perception	90
Grasping	92
Door Opening	94
Safety/Environment Suite	
Washdown/Decontamination	96
Energy/Power Suite	
Endurance	98
Human-System Interaction (HSI) Suite	
Random Maze Search	100
Random Maze Navigation	102
Checklist Items	104
Maneuvering-Aerial Suite	
VTOL Station Keeping	106
Maneuvering-Aquatic Suite	
Underwater Navigation and Search	108