

Health Physics Fundamentals

Rod Reed, Ph.D., CHP
Senior Health Physicist
US Nuclear Regulatory Commission
Technical Training Center
Chattanooga, Tennessee
(423) 855-6513
rpr1@nrc.gov

September 6, 2007

Briefing for Media 9/6/07 - slide 0 of 26

Atomic Structure

- Atomic Structure
 - Protons (p)
 - Neutrons (η)
 - Electrons (e)

Briefing for Media 9/6/07 - slide 2 of 26

Isotopes of the Element Hydrogen

Briefing for Media 9/6/07 - slide 3 of 26

Radioactivity and Radiation

- Types of Radiation
 - Particle emission (α, β-, β+)
 - Photon emission (γ, x-ray)

Briefing for Media 9/6/07 - slide 4 of 26

Radiation Penetration

Briefing for Media 9/6/07 - slide 5 of 26

Activity

Measures of Radioactivity

Activity: The quantity of radioactive material present at a given time:

- Curie (Ci): 3.7x10¹⁰ disintegration per second (dps)
 - or
- Becquerel (Bq): 1 dps

Mass vs Activity

0.001 gm

1 gm

635,600 gm

60**Co**

²²⁶₈₈Ra

Amount in grams of each isotope equaling one curie of activity

²¹⁰Po · 0.00022 gm

Ionizing Radiation

Half Life

- amount of time for half of the activity to decay
- half life is unique to each radionuclide
 - N-16 is 7 seconds (BWRs)
 - Co-60 is 5.3 years
 - Cs-137 is 30.17 years
 - Po-210 is 138 days

Radiation Units

Radiation Units

- Roentgen: A unit for measuring the amount of gamma or X rays in air
- Rad: A unit for measuring absorbed energy from radiation
- Rem: A unit for measuring biological damage from radiation

Briefing for Media 9/6/07 - slide 9 of 26

SI vs Special Units

SI Unit	Special Unit	Conversion
Gray	Rad	1 Gy = 100 rad
Sievert	Rem	1 Sv = 100 rem
Becquerel	Curie	1 Ci = 3.7×10^{10} Bq

1 rem = 1,000 millirem (mrem) 1 Curie = 1,000 millicuries (mCi)

Briefing for Media 9/6/07 - slide 10 of 26

Terrestrial Gamma-Ray Exposure at 1m above ground

* 1 μ R = 1/1,000,000 R source of data: U.S. Geological Survey Digital Data Series DDS-9, 1993 1 milliroentgen (mR)= 1,000 μ R

Medical Procedures

Procedure	Dose (mrem)
X-Rays	
Abdomen	40
Chest	6
Pelvis	60
Dental	3
Mammography	40
CT (full body)	130
Nuclear Medicine	400

Briefing for Media 9/6/07 - slide 12 of 26

Annual Background Radiation Dose to Average US Citizen

Natural Background vs
Artificial Background

Briefing for Media 9/6/07 - slide 13 of 26

External Radiation Dose

Gamma, beta or neutron radiation emitted by radioactive material outside the body exposing the skin, lens of the eye, extremities & the whole body (i.e. internal organs)

Briefing for Media

Internal Radiation Dose

RAM is inhaled or swallowed

Alpha, beta or gamma radiation emitted by radioactive material inside the body exposing internal organs such as:

9/6/07 - slide 15 of 26

KI Effectiveness vs Time of Administration

KI can reduce
thyroid dose
in an emergency
involving radioactive iodine

Figure 5.3-6 Percent of thyroid blocking afforded by 100 mg of stable iodine (130 mg of potassium iodide) as a function of time of administration before or after a 1-µCi intake of ¹³¹I

Briefing for Media 9/6/07 - slide 16 of 26

The Cell

DNA

Briefing for Media 9/6/07 - slide 17 of 26

Low-level Radiation Effects (most exposures)

Cancer – proven at higher doses (e.g. > 10 rad acute); assumed to occur at lower doses, with no threshold

Genetic effects - occur in mice and fruit flies; assumed to occur in humans but never proven

Briefing for Media 9/6/07 - slide 18 of 26

Can Radiation Exposure Cause This?

Briefing for Media 9/6/07 - slide 19 of 26

Low-Level Effects - Cancer

Natural cancer rate = 20% or 1 in 5 (or 2,000 out of every 10,000 people)

Radiation risk of cancer (hypothetical) = 0.04% or 4 in 10,000 per rem

Thus, 1 rem might increase total cancer risk to an exposed person to 20.04%

Briefing for Media 9/6/07 - slide 20 of 26

High Levels of Radiation (occur rarely)

Acute Radiation Syndromes:

- 100 rad hematopoietic (blood)
- 500 rad gastrointestinal (GI)
- 2,000 rad central nervous system (CNS)
- LD_{50/60} lethal dose to 50% of people within 60 days, approximately 400 rad (whole body exposure)

Briefing for Media 9/6/07 - slide 21 of 26

NRC Occupational Dose Limits

Whole Body (TEDE) 5,000 mrem/yr

Any Organ (TODE) 50,000 mrem/yr

Skin (SDE) 50,000 mrem/yr

Extremity (SDE) 50,000 mrem/yr

Lens of Eye (LDE) 15,000 mrem/yr

Embryo/Fetus of DPW 500 mrem/yr

Member of the Public 100 mrem/yr

Note: 1,000 mrem = 1 rem

Briefing for Media 9/6/07 - slide 25 of 26

THE END

Briefing for Media 9/6/07 - slide 26 of 26