Modeling ecosystem-climate
Interactions in the high Arctic:
Challenges and potential solutions
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Arctic terrestrial ecosystem processes
play a critical role in prediction of future
climate response to GHG forcing
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Feedbacks associated with human-mediated changes in the biosphere (W m~2 K™)
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Recent assessment finds that Arctic processes make significant
contributions to overall land ecosystem - climate feedbacks

Figure: Arneth et al. 2010, Nature Geosci.



Summary of recent Arctic modeling
results from global/regional models

CLM4 historical (ORNL and LBNL results)

— CO, effect vs. climate change effect on total land C
storage, influence of vertical structure on solil C.

TEM historical (Hayes et al. 2011, GBC)
— Single-forcing effects in Arctic and tundra

— Highlights influence of active layer thickening

ORCHIDEE historical and future (Koven et al.
2011, PNAS)

— Active layer dynamics (no N cycle)
CESML1 climate prediction (RCP4.5, ORNL
results)

— Changes in hydrology, surface energy exchange,
vegetation dynamics, and total C storage.



CLM4 results: adding vertical
structure

IGBP soil carbon
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Figure: Koven et al., in prep.

ORCHIDEE results: pan-Arctic
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Figure: Koven et al. 2011, PNAS
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Influence of multiple forcing factors on decadal
NEE over tundra regions of North America

TEM results: Boreal and Arctic
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Figures: Hayes et al. 2011, GBC




Current scaling approach for land component
of climate prediction model (e.g. CLM4)
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Best ESMs currently use quasi one dimensional approach, with
assumption of linear scaling




Hypothesis: Linear scaling not a good assumption in Arctic Typical GCM / ESM scales
tundra landscapes under warming scenario (1°x1°) = 100km
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3-D process-resolving Arctic tundra landscape simulator

Process requirements & idecale

10100 ki grid-scale

« Subsurface

— Permafrost

— Differential ice concentrations

— Active layer

— Biogeochemistry
« Surface

— Deformable topography LIDAR measurements near

— Surface flow and dynamic flow Barrow
paths

— Snowpack dynamics
— Vegetation dynamics
» Near-surface atmosphere

— Canopy interactions with
surface wind, humidity,
temperature, and radiation
balance

— Influence of microtopography
on near-surface weather

3-D landscape
model scale

~100m —/]/—

Spatial characteristics: Eﬁzrgg;e :-D
Domain: approx. 100m x 100m a P
= model grids

Resolution: ~10 cm (horiz), variable cm+ (vert)
Temporal characteristics:

Domain: decades to century

Resolution: sub-hourly




Sub-grid representation of geomorphologically distinct landscape elements
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» Lake

*» Vegetated tundra
» Stream channel

» Barren fluvial plain

*» Vegetated fluvial plain

* Vegetated “slopes” '
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Sub-grid representation of geomorphologically distinct landscape elements

Geomorphological es:
» Lake

» Sunken-center polygon

» Raised-center polygon

* Rim (raised edge)

*» Trough (sunken edge)
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Automated mapping of geomorphological
units on Arctic coastal plain

60 km 10 km

Subsets from two recent remote sensing based efforts to map geomorphological units
across the Alaskan North Slope tundra region. Left: from Jorgensen and Heiner, 2004.
Right: from Jorgensen et al. 2005.



Up-scaling and down-scaling to
achieve improved climate prediction

Initial up-scaling

Model development Initial down-scaling
Subsequent up-scaling and

Model application down-scaling iterations
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