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1. Introduction 

The annual Spring Forecasting Experiment (SFE) is conducted in the NOAA Hazardous Weather 

Testbed during the climatological peak of severe convective weather in the U.S. (Clark et al. 

2011).  This experiment is uniquely designed to bring together meteorological scientists and 

practitioners to work on emerging problems of mutual interest.  In 2011, a major component of 

the SFE (hereafter SFE2011) was a pilot study on convective initiation (CI).  The focus on CI 

was motivated by a growing awareness that its prediction is one of the weak links in forecasts of 

thunderstorm activity, presenting a significant challenge for forecasters, including those who 

specialize in prediction of severe convective weather, flash flooding, hazards to aviation, and 

other specific threats.   

Although many thunderstorm forecasts implicitly include information about when and where 

storms are likely to form, the NWS does not issue explicit forecasts for CI.  In fact, to our 

knowledge, there is no generally accepted, specific definition of CI in the meteorological 

community.  From the perspective of a research meteorologist, CI might be defined as a process 

that occurs in the context of a single cloud as buoyant parcels begin to accelerate rapidly upward 

and produce precipitation.  If this process occurs in the absence of any other deep moist 

convection, it can be labeled unambiguously as a CI event, but observations show that most 

thunderstorms are associated in some way with previous storms.  This association could come in 

the form of isolated initiation along the downdraft outflow from a pre-existing storm, generation 

along the periphery of an organized mesoscale area of convection, or a development associated 
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with a multitude of other interactions.  “Clean slate” CI events are relatively rare and oftentimes 

it is not clear whether a particular convective updraft should be labeled as a separate CI event or 

as a new element within ongoing activity.  These details, while interesting, are likely to be 

secondary considerations for operational forecasters, who may be more concerned about what 

new convection will lead to rather than refining the definition of CI.   

Because of these ambiguities, an overarching goal of the CI component of SFE2011 was to 

define the challenges of CI prediction and establish a framework for additional studies and 

possible routine forecasting of CI.  It was decided that this framework should be applicable to 

both convection-allowing models (CAMs), which have become a fundamental part of the SFE in 

recent years, and to observations, so that meaningful verification statistics could be derived.   

The first challenge was to come up with objective diagnostics to determine whether deep moist 

convection was active at any point on a grid.  The second was to identify a subset of these points 

that should be labeled as initiation (CI) points.  A third major challenge was to investigate ways 

to generate guidance for CI forecasts and use this guidance to issue experimental probabilistic 

forecasts for CI.  A corollary objective was to develop and examine new diagnostic tools that 

would provide insight into the CI process within CAMs and provide new ways of manipulating 

high-resolution ensemble output.  More information on each of these topics is provided in the 

next section. 

2. Data and Methodology 

a. Convection-Allowing Models (CAMs) 

 Following is a brief summary of the modeling systems in which CI diagnostics were 

embedded during SFE2011.  Additional details about these model configurations can be found 

online in this document:  

http://hwt.nssl.noaa.gov/Spring_2011/Spring_Experiment_2011_ops_plan_13May_v5.pdf 

 1) NSSL-WRF:  SPC forecasters have used output from this experimental 4 km WRF-ARW 

produced by NSSL since the fall of 2006.  This WRF model is run once daily at 00 UTC 

throughout the year over a full CONUS domain with forecasts to 36 hrs.  Initial and lateral-

boundary conditions (IC/LBCs) are provided by the operational NAM.  Output is also available 

on the internet at http://www.nssl.noaa.gov/wrf/.  This modeling system is used as the “alpha” 

testing framework for many diagnostic tools that are used in SFEs, as was the case for the CI 

diagnostics used in SFE2011. 

 2) CAPS ensemble:  CAPS produced a 50 member storm-scale ensemble Storm Scale 

Ensemble Forecast (SSEF) system with grid spacing of 4 km and forecasts to 36 hrs covering a 

CONUS domain.  A total of 28 of these members (all using the WRF-ARW dynamic core) 

contained the CI diagnostic code.  Ten of the 28 used identical initial conditions but different 

http://hwt.nssl.noaa.gov/Spring_2011/Spring_Experiment_2011_ops_plan_13May_v5.pdf
http://www.nssl.noaa.gov/wrf/


3 
 

parameterizations of the planetary boundary layer (PBL), while the remaining 18 were initialized 

with both IC/LBC and physics perturbations. 

 3) High Resolution Rapid Refresh (HRRR):  The experimental 3 km HRRR model is nested 

within the hourly development version of the 13 km Rapid Refresh (RR) model, which provides 

IC/LBCs.  The HRRR uses a version of the WRF-ARW with generally RUC-like physics.  A 

unique aspect of the RR is the hourly GSI data assimilation system that incorporates a wide array 

of observational datasets including radar reflectivity via the radar-Diabatic Digital Filter 

Initialization.  The HRRR integration is run over a full CONUS domain with forecasts to 15 hrs.  

b. Objective Identification of Deep Moist Convection in CAM Forecasts 

There is no universally valid definition for the existence of deep moist convection, either in 

model or observational data.  During SFE2011 we considered the viability of three distinctly 

different sets of criteria to identify “convectively active” (CA) grid points in CAM forecasts: 

 1) Simulated lightning.  The lightning flash-rate-density (FRD) algorithm, developed by 

McCaul et al. (2009) was used to infer the presence of cloud-to-ground (CG) lightning, 

following the work of Miller et al. (2010).  This algorithm, based on simulated values of both 

graupel flux at the -15º C level and vertically integrated graupel, was originally formulated to 

predict the FRD of total lightning in CAM forecasts, but Miller et al. (2010) showed that it 

could also be used to provide a useful proxy for the occurrence of CG lightning by selecting 

an appropriate threshold value of FRD.  The threshold value was determined by mapping 

National Lightning Detection Network (NLDN) strike data to the model framework, then 

comparing the climatology of model-predicted FRD to that of the NLDN data.  A threshold 

value of FRD was determined iteratively to provide approximately the same frequency of 

grid-point activation (i.e, frequency of threshold exceedance) as given by the NLDN data 

over the same time period.  For the 2011 Spring Experiment, a threshold value of 0.55 km
−2

 

(5 min)
−1

 was used, based on calibration in the 4 km NSSL-WRF model from 11 March – 10 

June 2010.  Thus, for the simulated lightning (SLTG) criteria set, a CA grid point was 

identified as any point at which the FRD exceeded 0.55 km
−2

 (5 min)
−1

 

 2) Explicit measurement of updraft strength and precipitation content:.  A model grid 

column was defined as convectively-active given the following conditions: (1) the maximum 

updraft exceeded a threshold value Wmin;  (2) EITHER the maximum graupel mixing ratio 

exceeded a threshold value QG (g/kg), OR the maximum rain mixing ratio exceeded a 

threshold value QR (g/kg), OR both conditions were met.  Preliminary threshold values of W 

= 5 m/s, QG = 2 g/kg, and QR = 1 g/kg were selected to allow for a range of intensities of 

surface-based or elevated, warm- or cold-season, and extra-tropical or tropical storms.  To 

prevent shallow, terrain-induced updrafts from being falsely identified as convection, the grid 

column was scanned from the top of the boundary layer to the equilibrium level (i.e., 

approximating the maximum probable CAPE-bearing layer depth) to identify the maximum 
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local updraft value.  These explicit model diagnostics comprised the “SWQQ” set of criteria 

for CA. 

 3) Simulated reflectivity:  The 35dBZ threshold for simulated reflectivity (computed as in 

Kain et al. 2008) was used to identify a CA grid point, as in Roberts and Rutledge (2003), 

Mecikalski and Bedka (2006), and other studies.  In order to avoid bright-banding effects, it 

was required that this threshold be exceeded at the -10º C level (see Gremillion and Orville 

1999).  This defined the simulated minus-10 reflectivity“SMTR35” criteria set for CA.   

CA points were identified and tracked independently for each of these sets of criteria.  They were 

updated at the end of every model-integration time step (~20 - 25s) for the SLTG and SWQQ 

definitions.  For the SMTR35 definition, CA points were identified approximately every 5 

minutes during integration, to emulate the frequency of available updates for observed 

reflectivity data from the nationwide network of WSR-88D radars.  Thus, every CA event, for all 

three criteria sets, was assigned a grid box and a time-step bin (time window).   

c. Default Method for Identifying CI Points as a Subset of CA Points in CAM Forecasts (and 

Corresponding Observations) 

A preliminary set of rules was developed to allow for identification of convective initiation (CI) 

points as a subset of the CA points.  These rules were applied independently to each of the 

SLTG, SWQQ, and SMTR35 datasets, yielding three corresponding SLTG, SWQQ, and 

SMTR35 datasets for CI.  The basic idea of this algorithm was to identify CI grid points as those 

CA points that could be characterized by “new” convective development, i.e., convection not 

associated with ongoing activity, whether local or moving in from surrounding areas.  As 

implemented within the WRF model, a grid point was labeled a CI point at a given time if 1) it 

was convectively active (i.e., a CA point), 2) it had not been labeled a CI point within the 

preceding hour, and 3) none of the adjacent grid points were convectively active (CA) during the 

preceding time-step bin.  The time and space thresholds used in steps 2 and 3 are somewhat 

arbitrary.  In step 2, one hour was chosen because output grids are saved hourly.  In step 3, a 

single time step and single grid-point neighborhood were selected for computational efficiency – 

to avoid saving two-dimensional model grids every time step during integration.  Additional 

studies are being conducted to assess the sensitivity to these parameters.  Hereafter, this 

algorithm for identifying CI points as a subset of CA points will be referred to as the CI_1 

algorithm 

d. Observational Datasets for Verifying CAM Forecasts of CA and CI 

Observational datasets were collected for the purpose of verifying/validating the convective 

activity diagnosed in the CAMs.  There was no directly applicable verification dataset for the 

SWQQ-derived data, but NLDN data and observed radar-reflectivity data may be useful analogs 

for the SLTG and SMTR35 datasets, respectively. 
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 1) NLDN data.  These data, which consist almost exclusively of observed cloud-to-ground 

(CG) lightning strikes (see http://gcmd.nasa.gov/records/GCMD_NLDN.html), were collected in 

the form of a value for time, latitude, and longitude for each lightning strike.  Each lightning 

point was considered a CA point. 

 2) Observed WSR-88D Reflectivity:  As part of their National Mosaic and Multi-Sensor QPE 

initiative (NMQ), NSSL has implemented a system that produces a national (CONUS) 3D 

radar mosaic grid with a 1-km horizontal resolution over 31 vertical levels and a 5-minute 

update cycle (see http://www.nssl.noaa.gov/projects/q2/nmq.php for additional details).  Using 

these data, combined with analyzed temperature fields from the RUC, any point at which 

observed reflectivity exceeded 35 dBZ at the -10º C level was marked as a CA point and each 

point was saved in the same format as the NLDN data:  time, latitude, and longitude.  These 

points comprised the raw observed minus-10 reflectivity (OMTR35) dataset 

Both the NLDN and OMTR35 data points were mapped to the spatial and temporal coordinates 

of the model data as the first step in the verification process.  Specifically, the observed data was 

mapped to the nearest model grid point and appropriate time-step bin.  The size of the latter was 

a single model-integration time step for NLDN data (~20 – 25s, depending on the model) and ~ 5 

mins for the OMTR35 data.  CI points were generated from the NLDN and OMTR35 datasets by 

applying the same algorithm used for the model data to extract CI points as a subset of the 

corresponding CA points – the CI_1 algorithm.   

e. Output format for raw CA and CI fields. 

Two-dimensional grids of CA and CI fields were generated every time step during WRF-model 

integration (using the CI_1 algorithm), but it was prohibitively expensive to archive these 2-D 

fields every time step.  Thus, as a compromise, CA and CI activity was denoted by a time stamp 

at every grid point and 2-D fields containing this information were saved at regularly-scheduled 

model-output intervals, i.e., hourly.  Specifically, CA fields for each set of criteria contained the 

number of minutes since the last convective activity at each point.  Likewise, CI fields denoted 

the number of minutes since each grid point had been labeled a CI point.  This format lacked 

explicit information about convective activity at every grid point every time step, but it 

nonetheless provided very useful sub-hourly information about CI and CA.  Separate CI and CA 

grids were available for each set of criteria for both model output and observations. 

f. Display and Post-processing of raw CA and CI output fields 

Displays showing the raw CA fields are useful for visualizing the coverage of convective activity 

as a function of time, and when storms are sufficiently isolated, clear storm tracks are evident.  

For example, the left-side panels of Fig. 1 show an example of the raw CA field from a 24 h 

forecast of the NSSL-WRF, valid 00 UTC 25 May 2011.  Individual storm tracks and storm 

mergers are easily discernible in some areas, e.g., northeastern Texas.  These panels also indicate 

that the three different definitions of CA lead to some differences in identification of 

http://gcmd.nasa.gov/records/GCMD_NLDN.html
http://www.nssl.noaa.gov/projects/q2/nmq.php
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convectively active grid points.  For this particular output period, the SLTG definition yields the 

smallest number of individual active points, the SWQQ definitions indicates somewhat higher 

coverage, while the SMTR35 definition flags still more points.  Generally speaking, however, 

the different definitions highlight the same general areas and, for the most part, the same specific 

simulated storms.  The differences are mostly a matter of porosity and size of individual features.  

It appears that SMTR35 has the lowest threshold for activation, followed by SWQQ, then SLTG.   

The panels on the right side of Fig. 1 depict different ways of viewing the CI field.  The small ‘+’ 

signs in these panels indicate the specific locations of diagnosed CI points associated with each 

definition of CA.  The exact locations of the individual points and the detailed patterns formed 

by nearby points are quite different, but the general areas of CI activity are similar.  This 

similarity is underscored by the similar color-fill patterns in these images.  The color fill is 

derived using kernel density estimation (KDE) as a technique for creating spatial probability 

fields from deterministic prediction of individual CI events.  It is appropriate to use a technique 

like this because it is well known that CAM forecasts such as those used in SFE2011 have little 

skill in pinpointing the location of individual storms.   

The specific KDE methodology is similar to that used by Sobash et al. (2011).  The first step in 

this method is to search a neighborhood around each grid point for a “hit”, i.e., a diagnosed CI 

point as indicated by a ‘+’ in Fig. 1.  In this case, a neighborhood radius of 40 km (~ 25 miles) is 

used.  If a grid point has one or more hits in its neighborhood, the grid point itself is assigned a 

preliminary probability of 100% - specifically, 100% probability of CI within 40 km during the 

time period in question.  Grid points with no hits in their neighborhoods are assigned a 

preliminary probability of 0%.  The final probability field, as shown in Fig. 1, is derived by 

applying a Gaussian smoother to all of the preliminary probability values.  This smoothing 

process is depicted in a one-dimensional framework for a single grid point and different values 

of Gaussian standard deviation ( ) in Fig. 2.  It has the effect of conserving domain-wide 

probability while distributing the influence of each deterministically-predicted CI event over a 

user-specified neighborhood.  A range of different  values was applied for sensitivity testing 

during SFE2011, but a fixed value of 30 grid points was used to generate the probability fields in 

Fig. 1.  For a given raw CI field, smaller (larger)  values yield higher (lower) amplitude, lower 

(higher) coverage probability fields.  Regardless of the  value, the formal definition of the 

probability field remains “the probability of CI with 40 km of any point within the output time 

period”.  With appropriate verifying observations, the optimal  value could be estimated on the 

basis of past model performance, as in Marsh et al. (2012), but such observations are not 

available at this time.   

As guidance for human forecasts of CI, these raw-CA and probabilistic-CI plots formed the basis 

for all guidance products that were examined.  For example, probabilistic CI forecasts for the 

CAPS ensemble were produced by averaging the KDE-derived probability fields from individual 

members. 
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g. Alternative methods for diagnosing CI 

 1) Warping and filtering of observed radar reflectivity 

With this technique, the raw OMTR35 dataset was used to identify convectively active points on 

a 1 km CONUS grid.  Radar images 5 minutes apart were searched for grid points where 

reflectivity threshold (35 dBZ) was exceeded at current time, but not at the previous sample time. 

To prevent detection of small, noisy pixels, the images were median filtered using a 5x5 median 

filter. The effect of this median filtering is that only storm cells that are at least 13 km
2
 are 

considered to represent convective initiation. To account for movement of storm cells, the image 

at one frame is warped (by a maximum movement of 60 km/hr) to align it with the next image 

before the images are compared. To account for new updrafts within the same storm, a cell is 

considered new only if there are no convective pixels within X km of it. We experimented with 

distance thresholds ranging from 3km to 25km and from forecaster feedback, finally settled on 

15km.  Based on the comparison, pixels are classified into one of four categories: (a) ongoing 

convection (b) decayed convection (c) new convection and (d) none. (Fig. 3). 

Finally, three impossible situations are identified and removed. These were: (a) new convection 

connected to decayed convection is changed to “ongoing” (b) new convection connected to 

ongoing convection is changed to “new” and (c) decayed convection connected to ongoing is 

changed to “none” (Fig. 4).  Hereafter, this method for identifying CI points is referred to as 

algorithm CI_2 

 2) A 3D object based algorithm 

The "object-based" CI algorithm utilizes a 3-dimensional (in space and time) object 

identification algorithm.  Objects are defined using the convective activity (CA) field, which is 

based on the 35 dbz reflectivity threshold at -10º C.  The value of the raw CA field is the number 

of model time steps since the top of the hour being considered.  For use in the CI algorithm, the 

raw CA values are converted to the number of time steps since forecast hour 36, which is the 

latest forecast hour available from the SSEF system forecasts.  The 3-dimensional objects are 

defined as groups of contiguous (or adjacent) grid-points in space and time with non-zero CA 

values.  In other words, for each grid-point with a non-zero CA value, if there are adjacent grid-

points at the same time, next time, or previous time with non-zero CA values, these grid-points 

are part of the same object.  The only other criteria for classification as a CA object is that the 

object encompass a time period of at least 30 minutes.  Computing the time period encompassed 

by the object simply involves using the maximum and minimum CA value within each object.  

The threshold of 30 minutes is an adjustable parameter and was chosen somewhat arbitrarily to 

avoid classifying "CI failures" (i.e., short-lived moist updrafts that are suppressed immediately 

after initiating for whatever reason) as actual CI events. 

CI points are defined using grid-points of local time minima within CA objects.   These local 

minima are found by searching within a specified 3-d radius (in space and time) of each grid-
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point within an object to find whether that grid-point has the largest (i.e., earliest) CA value 

within the radius.  Using local time minima allows not only the grid-points with the earliest CA 

values in CA objects to be used to define CI points, but also grid-points that represent formation 

of storms that initiate later than the first convection in the object, and then merge with the object.  

Thus, multiple CI events can be associated with a single 3-d CA object.  Usually, the object-

based CI algorithm identifies a group of adjacent CI points that represent the initiation of a single 

storm.  When this occurs, the algorithm finds the centroid grid-point of the CI points and this 

point is defined as a "CI event".  Otherwise, if a CI point has no other CI points adjacent to it, 

then this CI point is classified as a "CI event".  

Hereafter, this method for identifying CI points is referred to as algorithm CI_3.  The CI values 

determined using this algorithm have a systematic bias towards later times because they were 

actually derived from the CA field.  Recall that each value in the CA field represents the last 

(most recent) time step that a given grid point was convectively active.  The CA field was used 

for this algorithm because it provides contiguous coverage of the track of convectively-active 

objects; the default CI points (from the CI-1 algorithm) represent the first time step that a grid 

point was convectively active, but by design they provide an incomplete indication of total 

coverage of convection.  Thus, the magnitude of the systematic bias toward later CI times is 

approximately equal to the average time that points remain convectively active.  However, for 

comparisons with observations, this bias should disappear if CI_3 is also used to determine CI 

points in the observations, as done in the results shown below. 

h. Human Forecasts for CI 

Human forecasts of CI consisted of a spatial categorical outlook for a 3 hour period over which 

the forecasters had high confidence that CI was likely. Categorical risk was defined using a 

slight, moderate and high ranking where slight was essentially equivalent to a 10% chance of 

having CI via any of the CI definitions we investigated (reflectivity or lightning). The other 

categories had no specific percentages attached as we had very little guidance or evidence to 

assign probabilities. The slight definition followed that of SPCs definition of 10% chance of 

thunder occurring with 25 miles of a point via their experimental thunder outlook, the closest 

operational product we had available to our own forecast (with the exception that SPCs product 

is for a set 4 hour window versus our roaming 3 hour window). 

In addition each forecaster chose a point on this 3 hour product where they expected the first 

storm to initiate.  Each forecaster was responsible for entering a time, time window, and 

confidence (percent likely a storm will occur within your time window within 25 miles of your 

point).  

i. Model diagnostics for CI-related physical processes 

Model soundings were generated for 1100+ locations for the control and select physics members 

of the CAPS ensemble, totaling 18 members. Each of these soundings was then processed 
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through a custom built version of the Storm Prediction Center’s National Sounding and 

Hodograph Analysis and Research Program (N-SHARP). Output for each forecast location, from 

each of the 18 members, was then post-processed into an ensemble-data format readable by the 

Warning Decision Training Branch’s BUFKIT sounding analysis tool.  This tool enabled very 

efficient visualization of large quantities of sounding output with powerful user controls.  For 

example, it allowed users to view forecast soundings from 1 to 18 members simultaneously 

(overlaid, color coded) at any time and location.   

A number of new fields were extracted from the CAPS ensemble ARW members to aid in our 

interpretation of the CA and CI fields. These variables were located specifically at model level 

12 in the neighborhood of 1.1km AGL. The standard variables were vertical velocity, mixing 

ratio, temperature, pressure, and u and v component winds. Following Kain et al (2010) we also 

extracted unique variables such as the number of time steps where vertical velocity exceeded 

0.25 m/s in the last hour, and the maximum vertical velocity in the last hour. These latter 

variables attempted to measure the persistence of updrafts as well as the maximum magnitude of 

updrafts respectively. In addition, we used standard surface variables and extracted fields such as 

dew point temperature gradients to identify mesoscale features such as drylines and outflow 

boundaries.  

All of these variables were used to construct displays depicting relevant boundaries, CA timing, 

CI points, and storm locations via reflectivity. In this way we could trace the storms back to the 

initiating mechanism and make reasonable assessments as to their likelihood. In pursuing this we 

could also examine the nearby ensemble soundings to see the vertical profile of temperature and 

mixing ratio, and if these profiles were what we expected of the near storm initiation 

environment. A key component of understanding CI in the model is to confirm that the model 

correctly represents actual physical processes. The imposed time constraints did not allow for 

complete understanding but it did help to identify mechanisms that led to CI during the course of 

the experiment. These included horizontal convective roll circulations intersecting the dryline 

and/or sea breeze fronts as well as areas of convergence and moisture upwelling.  

In the latter portion of the experiment, we attempted to automate the detection of the first storm 

for each ARW member in our selected domain of interest. We used this as a comparison for the 

timing that each forecaster submitted, treating the forecasters timing as a human ensemble to 

compare with that of the model ensemble. The algorithm for first storm simply recorded the time 

in the nearest 15 min bin for each member similar to what the human forecaster was asked to do. 

However, this approach was not without its flaws, since this algorithm considered the whole 

domain not just where forecasters were focused. This led to issues where spurious convection 

either in the form of peripheral convection (on the domain edge), or convection that lingered too 

long or convection that developed early could be detected. This resulted in a less than favorable 

comparison and highlighted the difficulty in automating this task. 

3. Results 
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SFE2011 was conducted from 9 May through 10 June 2011.  The primary objectives were to 1) 

evaluate the utility of different criteria used for automatic detection of CA in CAMs, 2) evaluate 

different methods to determine CI points as a subset of total convective points, and 3) quantify 

the skill of currently available CAMs for predicting CI.  Secondary objectives included 

development and evaluation of new model diagnostic tools and visualization software.   

The default CI algorithm (CI_1) was the only one that was used in real-time within the WRF 

model and it was applied extensively to observational data as well.  These applications allowed 

us to identify deficiencies in CI_1.  The alternative algorithms, CI_2 and CI_3 both show 

promise for ameliorating these deficiencies.  This preliminary report focuses primarily on the 

results obtained using CI_1.  Thus, unless otherwise stated below, CI data are derived using 

CI_1. 

a. Sensitivity to different criteria for automatic detection of CA and compatibility with CI_1 

 1) Model Output 

Probabilistic model guidance similar to that shown in Fig. 1 was examined on a daily basis 

during SFE2011 and used as guidance for the preparation of human forecasts for CI.  Subjective 

assessments from this process indicated that each of the 3 sets of criteria used to identify CA 

points in model output was adequate for the purpose of detection.  Specifically, they all seemed 

to highlight the same major features, with few or no systematic failures in detection.  As 

occurred in the specific case highlighted in Fig. 1, the SMTR35 definition consistently identified 

the largest number of CA points at a given time, followed in order by the SWQQ and SLTG 

definitions (Fig. 5a).  But again (based on subjective assessment of many cases), these 

differences in numbers of points did not appear reflect differences in numbers of identified 

convective storms.  Rather, the differences in active-point totals appeared to be related to 

corresponding differences in porosity and size of individual features that were mutually 

identified using all CA definitions.  

The relative numbers of simulated CI points associated with the different CA definitions were 

roughly proportionate to those for CA.  In fact, the mean ratios of CI to CA were similar (Table 

1, SLTG, SWQQ, and SMTR35 columns), but on some days the number of SMTR35 points 

appeared to be disproportionately high and on others unexpectedly low (Fig. 5b).  Occasionally 

the number of CI points derived using the SWQQ definition for CA exceeded those derived from 

the SMTR35 definition.  The reason for this behavior is not completely understood and will 

require more investigation, although some factors are worth noting.  For example, the 5 minute 

sample interval used for SMTR35 (as opposed to 24 s for SLTG and SWQQ within the NSSL-

WRF) can lead to relatively high ratios of CI to CA points with the default CI algorithm (CI_1).   

The reason for this is that detection of nearby ongoing convective activity is less effective with 

the 5 minute sampling interval, causing more points to be labeled as “new” convection (CI).  On 

the other hand, the SMTR35 CA field tends to be more contiguous (have lower porosity) than the 
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SWQQ- and SLTG-derived CA fields.  With fewer gaps in its depiction of individual convective 

features, the SMTR35 criteria can allow for more effective discrimination between new and 

ongoing convection and a lower number of false CI detections.  These factors can offset each 

other and one or the other may dominate depending on other (poorly understood) influences.  

In summary, any one of the three definitions appears to be adequate for detecting convectively 

active grid points in the 4 km NSSL-WRF model.  However, the default algorithm for 

identifying CI points as a subset of CA points (CI_1) shows some sensitivity to the sampling 

interval, the detailed character (small scale structure) of the CA field, and perhaps other factors. 

 1) Lightning and Radar-Reflectivity Observations 

The SLTG and SMTR35 data were validated using NLDN and OMTR35 data, respectively.  

These datasets are described in the Data and Methodology section.  An appropriate observational 

analog for the SWQQ data is under development, but not yet available.  The observational data 

were mapped to the time steps and spatial grid of the model and, to make the comparison as 

robust as possible, the CI_1 algorithm was applied to observations just as it was for model data.  

Subjective comparisons were conducted on a daily basis during SFE2011.  Processed 

observational data valid 00 UTC 25 May 2011 are presented here for direct comparison with Fig. 

1.   

In a mean sense, the CA field associated with the SLTG definition compares favorably with the 

observed NLDN coverage, with a coverage bias of about 0.7 (Table 2), but even a cursory 

comparison of the CA/CI fields derived from 25 May NLDN and SLTG data reveals significant 

differences in the character of the fields (cf. Figs 1a,b and Figs. 6a,b).  The CA field associated 

with NLDN data has a much more of a “scattershot” appearance than the SLTG-CA field and 

individual features are relatively porous (cf. Figs. 1a and 6a).  This discontinuous representation 

appears to have a negative impact on the CI_1 algorithm, causing too many of the CA points to 

be identified as independent CI points (cf. Figs 1a,b and Figs. 6a,b and the first two columns in 

 Table 1).   

The OMTR35 fields seem to be better suited for verifying the corresponding model data (i.e., 

SMTR35 fields).  For example, the OMTR35-derived CA field has a character similar to the 

SMTR35-derived CA field in this one case (cf. Figs. 1e and 6c) and the mean coverage of the 

SMTR35 and OMTR35 fields is quite similar (Table 2).  Visually, the relationship between the 

SMTR35 and OMTR35-derived CI and CA fields seem consistent for the case shown here (cf. 

Figs. 1f and 6d and their corresponding CA fields), but with the CI_1 algorithm a higher fraction 

of OMTR35 CA points are labeled CI points, compared to the CI points derived from the 

SMTR35 CA fields (cf. last 2 columns in Table 1).  This difference in the CI to CA ratio is likely 

due to the relatively contiguous character of the simulated reflectivity field compared to 

observed reflectivity.  
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In general, this analysis suggests that the reflectivity-based datasets (SMTR35 and OMTR35) 

have characteristics that will allow for meaningful preliminary assessments of skill in the 

prediction of CI.  These fields have been used for additional analyses described below. 

b) Detecting systematic errors in CI timing using the CAPS ensemble 

Hourly probabilistic guidance for CI, derived using the CI_1 algorithm, was available from 

numerous modeling systems during the SFE2011.  Corresponding NLDN and WSR-88D 

observations were available for validation.  But it became obvious early in the experiment that, 

after the first convective cells developed, both the model and observational output from the CI_1 

algorithm showed a proliferation of individual CI points on many days.  In other words, there 

appeared to be a gross over-prediction of CI points, because the CI_1 algorithm was not effective 

at discriminating between truly independent CI and CI associated with ongoing mesoscale 

convective activity.  This problem severely limited the utility of quantitative, spatially-

probabilistic guidance for CI as it was presented during the experiment (and shown, e.g., in Figs 

1 and 5).  However, because the criteria used to detect convective activity (including the first 

point) were quite effective, the dataset still provides an excellent resource to evaluate systematic 

errors in the model guidance for CI timing and CA coverage.   

 1) CI timing for individual events 

Systematic errors in timing can be evaluated by comparing simulated CI events to corresponding 

observed CI events.  However, automating this comparison, which is necessary to get enhanced 

statistical significance, is difficult.  Automation is challenging because, even within a limited 

region, convective activity often involves multiple modes of initiation and organization, and 

frequently it includes multiple waves of activity.  Convective features invariably “look” different 

and are characterized by spatial and temporal offsets in observations as compared to simulations, 

so it can be difficult to ensure that features of interest are isolated within appropriate temporal 

and spatial windows in corresponding datasets.  In short, automated detection and comparison of 

“matching” features in observations and simulations involves considerable uncertainty.   

The strategy that we followed for this preliminary work was to step through observational data 

hour-by-hour to identify manually a subset of all the CI events that were the focus of daily 

experimental forecasts for CI during the experiment.  An event was included in this subset if it 

occurred in a regional spatial domain (e.g., an area encompassed by a “slight”, “moderate”, or 

“high” risk for CI in an experimental forecast) in which no CI points were detected in the 5-h 

period leading up to the observed event.  This manual selection process yielded a total of 14 CI 

events on different days and at the locations marked in Fig. 7. 

For each of these 14 events, and for all 11 “PBL members” of the CAPS ensemble (members 

with perturbations in PBL parameterizations, but identical initial conditions), the differences in 

the timing of the first CI event were diagnosed.  A frequency histogram of these differences (Fig. 

8) shows a somewhat uneven distribution, perhaps due to the small sample size.  However, some 
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of the noise in this distribution is probably due to spurious convection in the model forecasts, i.e., 

diagnosed CI points that are not necessarily associated with the same meteorological feature that 

was associated with the observed CI event.   

One particular event is selected to demonstrate some of the challenges involved in this approach 

(Fig. 9).  In realtime forecasting for this event, CI was expected to occur in the region from 

northern Arkansas into south-central Missouri and, for the purposes of demonstration, the 

verification domain is placed over this region.  The first CI in the verification domain clearly 

occurs between 15 and 16 UTC.  The timing of CI in the model forecasts is not so obvious.  The 

simulated reflectivity fields from both forecasts suggested the presence of weak convective 

showers in the verification domain at 12 UTC (top row in Fig. 9).  The automated CI detection 

algorithm flagged this activity as the first CI event in the YSU run (middle panel), but not in the 

MYJ forecast (right panel).  In fact, the algorithm indicated that the first CI event in the MYJ run 

occurred between 15 and 16 UTC, as with observations.  In effect, the automated procedure 

assigned a significant timing error to the YSU run and minimal error to the MYJ forecast of CI, 

although the forecasts were quite similar and by 18 UTC (last row in Fig. 9) they have about the 

same degree of resemblance to reality.  This one example illustrates that, like all other attempts 

to verify detailed convective processes in model output, automated verification of individual CI 

episodes is subject to considerable uncertainty. 

In general, these results show that there is no clear evidence of a systematic bias in the timing of 

CI for the CAPS PBL sub-ensemble.  At the same time, they suggest that considerable 

uncertainty is associated with individual model forecasts and with methods to verify forecasts.  

Clearly, further work is needed to unravel this complex relationships involved in both simulated 

and observed CI. 

 2) CI timing in a bulk sense 

Another way to assess model skill for CI timing is to compare the model climatology for CI to 

that of observations.  This was done by plotting the frequency of simulated and observed CI as a 

function of time-of-day.  For this assessment, CI points/events were detected using the 3D object 

based algorithm, CI_3, with the SMTR35 definition of CA and climatology was estimated over 

various spatial sub-domains.  Preliminary results are shown for observations, selected CAPS-

ensemble PBL members, and selected sub-domains in Fig. 10.   

There is considerable sensitivity to the PBL schemes used in individual members but, in general, 

this ensemble subset seems to capture the timing and amplitude of peak CI frequency 

corresponding to the diurnal heating maximum.  The plots suggest that these ensemble members 

under-predict CI frequency overnight (24-36 h forecast time) and during the morning hours 

(prior to about 18 UTC).  As with the event-based assessment, there is no unambiguous evidence 

of a systematic bias in the timing of CI events, but insufficient information to inspire much 

confidence in specific model guidance for CI timing. 
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c) New diagnostic tools developed for SFE2011 

Boundary-layer based CI is strongly modulated by a multitude of PBL processes and constrained 

by thermodynamic profiles within and near the top of the PBL.  As described in the 

Methodology section, numerous diagnostic tools were developed for SFE2011 to help visualize 

relevant processes in model output.  As described in the Methodology section one set of 

diagnostic fields was based on model-predicted mass and momentum fields at model level 12, 

which was about 1.1 km AGL – typically within or near the top of the PBL during the afternoon 

heating cycle.  Examination of these fields often allowed one to infer important information 

about PBL processes related to CI.  For example, judicious presentation of vertical velocity and 

moisture fields can indicate the presence of horizontal convective rolls within the boundary 

layer, transverse rolls near the top of the boundary layer, and the correlation between the 

upward-motion branch of these rolls and the moisture field (Fig. 11).  The association between 

these features and specific CI events was often discernible.   

Examination of model-predicted sounding structures was also very revealing, particularly the 

sensitivity of these structures to PBL parameterizations.  For example, forecast-sounding 

structures from the individual PBL members often clustered in association with the specific 

closure assumptions used in each of the PBL parameterizations (Fig. 12).  CI is undoubtedly 

sensitive to these details in sounding structure, but much more work is needed to gain complete 

insight into how sounding structure and dynamic PBL processes modulate the CI process in 

CAMs. 

d) Human forecasts for CI 

Human forecasts were prepared as a group activity, typically involving 4-8 people.  After 

carefully reviewing and discussing all available observations and model guidance, the first 

decision for the group involved selection of a regional domain within which “clean slate” CI 

(i.e., CI preceded by at least several hours of no convective activity) was deemed possible.  On 

most days, diurnal forcing was a significant factor, so the focus was typically on afternoon-

evening CI, although overnight events were occasionally selected.  Next, the time frame for the 

forecast was narrowed down to a 3h period.  The last task for the group was to draw contours 

highlighting areas within the forecast domain having “slight”, “moderate”, and “high” 

probability for CI during the 3-h period.  On many days, categorical forecasts were no higher 

than “slight”, and on at least one day the consensus decision was to leave out even a “slight” area 

(consensus of less than 10% probability of CI with 40 km of any point during the 3 h period).  As 

a final step, each member of the forecast team was asked to select the most likely time and 

location for the first storm, along with an assessment of confidence in the timing and overall 

likelihood of CI during the 3-h period.  This information was stored for later analysis and rough 

outlines were drawn on the forecast product to indicate the areas where individual “first storm” 

points were clustered. 



15 
 

A sample forecast is shown in Fig. 13.  In this case the first storms occurred within the region of 

highest categorical risk and close to a cluster of “first storm” prediction points, near the southern 

shores of Lake Ontario.  The categorical forecasts were broadly consistent with probabilistic CI 

guidance from the CAPS ensemble. 

Preparing human forecasts for the probability of CI within a fixed spatio-temporal domain was a 

very useful exercise.  It focused the attention of participants on the working definitions of CA 

and CI, numerical guidance for CI and related fields like convective coverage, post-processing 

strategies for producing probabilistic information, and physical processes associated with CI in 

the models and observations.  Requiring individual forecasts for the location, timing, and 

likelihood of the first storm required additional consideration of how precise one can be in this 

type of forecast with any sort of confidence and skill.  Furthermore, preparation of the human 

forecasts prompted numerous discussions regarding the utility of CI/CA model guidance for 

various user groups, such as SPC and HPC forecasters and the aviation industry.  

The process was very thought-provoking and appropriate for the SFE.  However, the human 

forecasts are not likely to be useful for assessing how much skill trained NWS forecasters would 

have in predicting CI. 

4. Summary 

This CI component of SFE2011 was viewed as a pilot project designed to investigate the utility 

and feasibility of routine forecasting for CI.  This project yielded several important results:   

 

 • Several different set of criteria were found to be adequate for detecting convective activity 

in gridded model fields and observations, but the reflectivity field (simulated and observed) 

has key advantages that appear to make it the best surrogate (among those tested) for 

automation of both detection of convection and discrimination between new and ongoing 

activity (i.e., reliable identification of CI events).   

 • The default algorithm for identifying CI points as a subset of total convective points had a 

propensity to significantly over-predict the frequency of distinct CI events.  New algorithms 

that utilize object-based tracking methodologies and warping and filtering strategies show 

promise for better performance.   

 • Preliminary results indicate no systematic bias, but considerable variance in the timing of 

CI events in 4-km CAMs.   

 • Simple diagnostic tools reveal that simulated CI events rooted in the convective boundary 

layer are often associated with localized perturbations in convergence, vertical velocity, and 

moisture associated with mesoscale boundaries and boundary-layer rolls.  These simulated 

phenomena appear to be directly analogous to observed features such as horizontal 

convective rolls, although they are sometimes realized on inappropriately large scales in 

current CAMs due to coarse spatial resolution of the models.   

 • Routine probabilistic forecasts for CI are certainly possible and probably desirable.  

However, it is still not clear exactly what the parameters of a successful and useful CI 

forecast should be.  Further discussions with potential user communities are needed to clarify 

this issue. 
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5. Plans for SFE2012 [Comments encouraged] 

CI studies will be a significant part of the SFE again in 2012.  Based on promising results from 

SFE2011, it is anticipated that convective activity (CA) will be identified in both model and 

observational data primarily using the general concepts of the MTR35 set of criteria, i.e., 

reflectivity exceeding a specified threshold at some level well above the melting layer.  Although 

this criteria-set may not be the best indicator of detailed CI processes, it is preferred because it 

appears to represent the formation, expansion, merger, movement, splitting, etc. of convective 

storms and larger systems quite well.  Furthermore, both researchers and forecasters have 

considerable experience examining reflectivity fields from both observations and simulations, 

which is desirable.  CI points will be identified as a subset of CA points using algorithms based 

on tracking, warping, and filtering of convective objects, rather than the simple default algorithm 

used in 2011.   

Experimental probabilistic forecasts for CI-related processes will be generated in SFE2012 as 

well.  These forecasts are likely to have multiple elements.  For example, forecasts should 

attempt to answer some or all of the following questions, given a mesoscale time/space window: 

 • What is the overall likelihood that CI will occur (any time or location in the window)? 

 • If storms occur, what is the relative likelihood of occurrence of first storms at different 

locations? (If this is presented as a spatial probability of CI, the area under the 2-D 

probability field should be directly related to the overall likelihood of CI in the region, but 

this scaling could be done after the fact)  

 • What is the relative temporal probability distribution of first storms?  (Again, the area 

under this distribution should be directly related to the overall likelihood of CI, but this 

scaling could be done after the fact. How sharp is the distribution? Is it bimodal? Trimodal?) 

 • If CI occurs, how is the bulk coverage of storms within the region expected to change with 

time (i.e., rapid expansion of individual cells, mergers, new growth/initiation, etc?) 

 • If CI occurs, how is the convective mode expected to change with time? 

 • If CI occurs, how is the “local coverage’ (porosity?) expected to change with time, perhaps 

as a function of location within the domain? 
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Table 1.  Percentage of CA points that were identified as CI points over all days during the Spring Forecasting 

Experiment 
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Table 2. Mean coverage bias of simulated fields compared to observational 

counterpart. 
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Convective Activity (CA) Probability of CI in preceding hour 

SLTG 

SMTR35 

WQQ 

Fig. 1 Examples of raw CA field (left column) and derived 1h probabilities of CI (right column) for each of 

the 3 sets of CA criteria, derived from a 24 h NSSL-WRF forecast valid 00 UTC 25 May 2011.  The 

small ‘+’ signs on the right indicate the specific locations of CI points within the last hour, identified 

using the CI_1 algorithm. 

a b 

c d 

e f 
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Fig. 2.  Conceptual 1-D diagram of the Gaussian smoother 

used to generate probability fields from a deterministic 

forecast, depicting derived probability values as a 

function of distance for different values of standard 

deviation (sigma) 
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Fig. 3. Example showing how 2 images (a, b) are compared (c) and the 

resulting identification of CI points. 
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Fig. 4.  Example showing corrections for impossible situations 
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Fig. 5.  Time series of numbers of CA (top) and CI (bottom) grid points for each hour from 12 

UTC 11 May through 12 UTC 11June 2011, for the different CA definitions.  Data are from a 

subdomain of the daily 12-36 h forecasts from the NSSL-WRF, covering the CONUS east of 

the Rockies. 
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Convective Activity (CA) Probability of CI in preceding hour 

NLDN 

OMTR35 

Fig. 6 Examples of raw CA field (left column) and derived 1h probabilities of CI (right column) for each of 

the 3 sets of CA criteria derived from 1-h observations of NLDN and WSR-88D data ending 00 UTC 25 

May 2011.  The small ‘+’ signs on the right indicate the specific locations of CI points within the last 

hour. 

a b 

c d 
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Fig. 7.  Locations of 14 distinct CI events used for preliminary assessment of CI timing. 
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Fig. 8.  Frequency histogram of differences between predicted and observed convective initiation times 

within small regional domains centered at the locations marked in Fig. 7.  The events occurred on different 

days during the period 17 May – 10 June 2011.  The predictions came from the “PBL members” of the 

CAPS ensemble. 
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Observed Reflectivity YSU PBL MYJ PBL 

1400 UTC 

1500 UTC 

1600 UTC 

1700 UTC 

1800 UTC 

Fig. 9.  Hourly sequence of images showing observed reflectivity (left column) and simulated reflectivity from 

two different physics members from the CAPS ensemble (middle and right columns).  Red ellipse indicates the 

CI verification domain. 
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Fig. 10.  Hourly (middle row) and cumulative 

(bottom row) CI frequency as a function of forecast 

hour for observations and five selected members 

CAPS PBL ensemble.  Two different analysis 

domains were used, as indicated in the top row. 
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Fig. 11.  Sample diagnostic plot showing vertical velocity (contour interval 0.25 ms
-1

) and water vapor 

mixing ratio (color fill, g kg
-1

) at model level 12 (approximately 1.1 km AGL).  Note the horizontal-

convective-roll-like features in the drier air west of the dry line (indicated by sharp east-west moisture 

gradient) and the transverse rolls, apparently in stable air above the PBL, in central Oklahoma. 
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Fig. 12. Forecast soundings valid at a single time and location from each of the PBL members 

from the CAPS ensemble.  Note the sensitivities to PBL parameterization and parameter values 

within a given parameterization.  
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Fig. 13.  A sample experimental human forecast for CI, valid for the 3h period ending 1900 UTC 26 May 

2011.  Thick black line outlines the forecast domain, green and red lines outline the slight and moderate 

risk areas, respectively, while the hatched blue areas roughly outline the regions where individual 

forecasters predicted the first CI event within the forecast domain.  The color fill shows the CI guidance 

provided by the CAPS ensemble, expressed as the probability of CI within 40 km of any point during the 

preceding hour.  The white dots indicate the locations of observed CI points between 1700 and 1800 UTC.  

Both observed and model-predicted CI events were detected using the CI_1 algorithm and the MTR35 

definition for CA. 
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