

Raman Lidar Observations of Water Vapor Mixing Ratio Turbulence Profiles in the Convective Boundary Layer

David Turner

NOAA National Severe Storms Laboratory, USA

Larry Berg, Julia Flaherty

Pacific Northwest National Laboratory, USA

Erin Wagner

University of Wisconsin – Madison, USA

Volker Wulfmeyer, Sandip Pal

University of Hohenheim, GERMANY

2010 ASR Fall Cloud Lifecycle Working Group Meeting, Boulder Colorado, 15 Oct 2010

SGP Raman Lidar

System is Operated 24/7/365
First deployed in 1996
Major upgrade in Sep 2004

10-s data since Feb 2005

SGP Raman Lidar Uptime

Example Time-Height Cross-Section 10-s, 75-m resolution

Example Time-Height Cross-Section 10-s, 75-m resolution (zoomed view)

Instrument Noise Characteristics 22 Aug 2007 from 2200-2400 UTC

Integral Scale Profile 22 Aug 2007 from 2200-2400 UTC

Atmospheric H₂O Variance Profile 22 Aug 2007 from 2200-2400 UTC

Atmospheric H₂O Skewness Profile 22 Aug 2007 from 2200-2400 UTC

Comparison With Aircraft Observations

The CIRPAS Twin Otter

Twin Otter carried a diode laser hygrometer operating at 90 Hz during RACORO Field Campaign (Jan-Jun 2009)

How Does Variance and Skewness Vary?

- Cases will well-mixed daytime BLs from 2005 2009
- Only cases where $\sigma^2_{BLtop,instr} < 0.5 * \sigma^2_{BLtop,total}$

How Does Variance and Skewness Vary?

- Cases will well-mixed daytime BLs from 2005 2009
- Only cases where $\sigma^2_{BLtop,instr} < 0.5 * \sigma^2_{BLtop,total}$

How Does Variance and Skewness Vary?

- Cases will well-mixed daytime BLs from 2005 2009
- Only cases where $\sigma^2_{BLtop,instr} < 0.5 * \sigma^2_{BLtop,total}$
- No significant correlations found with w_{*}, q_{*}, or h...

Comparison of BL Heights Raman Lidar vs. Radar Wind Profiler (915 MHz)

RWP data courtesy of Dr. Rich Coulter

Summary

- ARM Raman Lidar at the ARM Site in Oklahoma was upgraded in September 2004 to profile H₂O with 10-s, 7.5 m resolution
- Demonstrated that the noise level is low enough to be able to measure profiles of water vapor variance and skewness, as well as integral scale, in convective (and stationary) BLs
- Comparison with in-situ measurements of water vapor (using a DLH at 100 Hz) shows good agreement in variance with RL
- Large dataset with ~90 cases has been assembled using data from 2005-2009
 - Excellent agreement in BL heights with radar wind profiler
 - Variance at top of BL ranges from < 0.5 to over $10 \text{ g}^2 / \text{kg}^2$
 - Distribution of skewness narrows substantially for $0.9 < z/z_i < 1.05$
 - No significant correlations found (yet) with convective scales and these profiles

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols

1330

J. E. M. Goldsmith, Forest H. Blair, Scott E. Bisson, and David D. Turner 20 July 1998 / Vol. 37, No. 21 / APPLIED OPTICS 4979

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 17

Measuring Second- through Fourth-Order Moments in Noisy Data

DONALD H. LENSCHOW AND VOLKER WULFMEYER

National Center for Atmospheric Research,* Boulder, Colorado

CHRISTOPH SENFF

Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Environmental Technology Laboratory, Boulder, Colorado

Boundary-Layer Meteorol DOI 10.1007/s10546-010-9494-z

ARTICLE

Can Water Vapour Raman Lidar Resolve Profiles of Turbulent Variables in the Convective Boundary Layer?

Volker Wulfmeyer · Sandip Pal · David D. Turner · Erin Wagner

Any Questions?