Radiative Heating in Underexplored Bands Campaign (RHUBC-II): Overview and Status

> Eli Mlawer¹, Dave Turner², and RHUBC-II Instrument PIs

Water Vapor Profiles for RHUBC-II (Ongoing)

Eli Mlawer¹, Jen Delamere¹, Vivienne Payne¹, Dave Turner², Maria Cadeddu³, Mike Exner⁴

ometrics, Inc.

Transmission in the Infrared

Mawer et al., Radiation Break-out, ASR Working Group Meeting, Boulder, October2010

Office of Science

S. DEPARTMENT OF ENERG

RHUBC-I Details

ARM North Slope of Alaska Site, Barrow, AK (71°N, 157°E, 8 m MSL)

- February March 2007, 70 radiosondes launched
- Minimum PWV: 0.95 mm (observed)
- 2 far-IR / IR interferometers
 - 3 sub-millimeter radiometers for PWV observation

Uncertainty in the WV Cntnm in Far-IR

Impact on Net Flux Profiles

RHUBC-II Details

August - October 2009, 144 radiosondes

- Minimum PWV: ~0.2 mm
- 3 far-IR / IR interferometers
- 1 sub-millimeter radiometer for PWV
- 1 sub-millimeter FTS
- 1 near-IR FTS
 - High-spectral resolution from 1.0 μm to 3000 μm
- Lidar for cirrus detection

Overview paper: Turner and Mlawer, BAMS July 2010

Additional support from: NASA Italian Research Foundation Smithsonian

Radiosonde Observed PWV

0

Spectral Observations 170 GHz (5.6 cm⁻¹) to 3 µm (3000 cm⁻¹)

First ever measurement of the entire infrared spectrum from 3 to 1780 µm!

AERI Status (as of 7 Oct 2010)

Instrument deployed in non-standard manner

- No Stirling cooler; had to use LN2 cooled detector
- Open front end to view atmosphere at 1 and 2 airmasses to give more analysis options
- Initial version (v0) of data submitted 13 Jan 2010
- Subsequent analysis discovered:
 - Daily movement of the LN₂ dewar/detector, which resulted in off-axis detection
 - Impact: declining responsivity over IOP
 - Impact: shift of spectral calibration over the IOP
 - Applied an offset of 0.4K to the hot blackbody (HBB) to account for convection in this BB due to the open front end; this eliminated the negative radiance bias at 10 µm in clear sky scenes
 - Data reprocessed and archived as v1 on 23 Jul 2010

- NEW: Continued analysis demonstrated HBB temperature offset inconsistent with data in channel 2 (i.e., in 3-5 μm region)
- Current focus of research: declining responsivity requires a different treatment to correct for non-linearity of detector; could solve negative clear sky bias at 10 μm, impacts the 5-19 μm spectral region.
- Need to release an update (v2) in the near future

Science

REFIR-PAD: 100-1400 cm⁻¹, resolution = 0.5 cm⁻¹

Radiation Explorer in the Far InfraRed– Prototype for Applications and Developments)

- L. Palchetti and G. Bianchini Istituto di Fisica Applicata "Nello Carrara" - CNR, Italy
- FTS, Mach-Zehnder configuration
- 2 un-cooled detectors
- 60s per scan, 5-min averaged scenes every 10 min

Current analysis • Retrieval of PWV from the FIR • Spectroscopy of WV in the FIR

FIRST: 100-1600 cm⁻¹, resolution- 0.643 cm⁻¹ (Far-Infrared Spectroscopy of the Troposphere)

- Marty Mlynczak/NASA Langley
- FIRST Instrument and Data Description
 - Fourier Transform Spectrometer
 - 6-minute sky view integration, 8.5 sec per interferogram
 - Calibration blackbodies 46 C and 12 C (Hot and Ambient)
- All data of scientific quality processed, delivered to ARM website, and available for use.
 - Twenty five days (8-12-09 to 10-17-09) and 399 6-minute average spectra
 - Corresponds to 2/3 of all recorded data
- Final data set delivered to ARM in March, 2010
- Preliminary analysis by FIRST team indicates possibility of minor adjustments to water vapor continuum 200 to 500 cm⁻¹

SAO Submm FTS: 300 GHz – 3.5 THz, resolution - 3 GHz

- S. Paine, Smithsonian Astrophysical Observatory
- Polarizing step-scanned interferometer
- Spectral coverage: LHe cooled bolometers
- 10 minutes / spectrum
- 58 days continuous operation
- Final calibrated data set (version 1) in ARM archive

HATPRO-G2: 7 channels each - -22 GHz WV, ~60 GHz O₂ (Humidity and Temperature PROfiler - Generation 2)

Instrument details

- Pls: S. Crewell, U. Löhnert, G. Maschwitz, contact: gmasch@meteo.uni-koeln.de
- Operated by the Institute for Geophysics and Meteorology, U. of Cologne
- Manufacturer: Radiometer Physics GmbH, Germany
- Microwave channels defined by precise bandpass filters
- Additional surface sensors, GPS clock and 2 scanning IR radiometers (11.1, 12.0 µm)

Data set

- Continuous scan pattern: 14(20) elevation angles in the 250°/70° azimuthal plane
- Aug15 Oct 24 contains elevation angles, surface sensor data, brightness temperatures (0.5K accuracy) for all microwave channels
- Available on ARM archive. A QC'ed update for the
 - 31.4 GHz channel is underway
- Note: data from IR radiometerss turned out to be corrupt!

METER

VSICS

Water Vapor Profiles for RHUBC-II (Ongoing)

the start the

Impact of Miloshevich Adjustment on Sonde WV

From Miloshevich et al., 2009

Office of Science

Impact of Miloshevich Adjustment on Sonde WV

GVRP: channels centered at 170, 171, ..., 183, 183.3 GHz

Mawer et al., Radiation Break-out, ASR Working Group Meeting, Boulder, October2010

the start of the

GVRP: channels centered at 170, 171, ..., 183, 183.3 GHz

Office of Science

Scaling WV Profile (Milo.) to Agree with GVRP (as of a few months ago)

Office of Science

Scaling WV Profile (Milo.) to Agree with GVRP (as of a few months ago)

Mlawer et al., Radiation Break-out, ASR Working Group Meeting, Boulder, October2010

Office of Science

Modified GVRP Instrument Function

Current Water Vapor Retrievals

CJC_20090919.153000

Current Water Vapor Retrievals

CJC_20090919.153000 6 SND-ORIG(0.278cm) - MILO-ORIG(0.289cm) 4 MILO-RET-SP(0.276cm) 2 MILO-RET-MP(0.272cm) BT [K] n -2 -4 (GVRP - MonoRTM) -6 182 170 172 174 176 178 180 184 GVRP Freq [GHz]

Office of Science

GVRP-Model Residuals Depend on BT for All Channels

Error in Calibration Using Simplistic Analysis

Summary

- Water vapor profile important for radiative closure analysis in sub-mm and far-IR
 - Determination of WV continuum, other spectroscopic parameters
- > GVRP measurements can provide valuable information
 - Miloshevich et al. adjustments have questionable impact
 - Consistent positive residuals near line center for low PWV cases have been improved by utilizing more accurate instrument function
 - Consistent negative residuals in transparent channels for low PWV cases are not due to errors in radiative transfer model calculations
 - Reconsideration of calibration approach underway (Cadeddu and Turner)
 - Using current GVRP measurements, WV profile retrievals show significant decreases near surface and increases in mid-troposphere

Averaging Kernel from Multi-level Retrieval - 9/19, 1530

.CJC_20090919.153000

-0.05

