Impacts of varying small ice crystal shapes and concentrations on bulk scattering properties of tropical cirrus

Greg M. McFarquhar and Junshik Um 10/15/2010 Boulder, CO

I. Motivation

- **II. Measurements from TWP-ICE**
- **III. Small ice crystal models**
- **IV. Results**
 - **V. Summary**

1. Motivation

Concentration

 Shattering of large ice crystals may enhance concentrations of small ice crystals (D < ~ 50 μm)

 GCM simulations with high concentration of small ice crystals +12% global ice cloud amount
5 W m⁻² cloud forcing in Tropics

1. Motivation

Small Ice Crystals

Sphere (old studies)

Chebyshev particle (McFarquhar et al., 2002)

Droxtal (Yang et al., 2003)

Gaussian random sphere (Nousiainen and McFarquhar, 2004)

1. Motivation

Ice Analogues

The ice analogues were crystalline particles of sodium fluorosilicate Na₂SiF₆ grown from solution on glass substrates

Quasi-spheres ??

Electron microscopy image of ice analogue

Ulanowski et al. (2009)

1. Motivation

Several idealized models represent shapes of small ice crystals
Chebyshev particle, droxtal, Gaussian random sphere

 State-of-art cloud probes cannot distinguish shapes of small ice crystals

✓ 98.45 % particles were 1 particle/frame in CPI, suggests shattering not responsible for observed small crystals on CPI during TWP-ICE

Q. What are impacts of small crystal shape and concentration on bulk scattering properties of cirrus?

II. Idealized models

Ice Analogue

Idealized Model

Budding Bucky Ball (3B)

Core

3B with 20 regular Hexagonal columns 3B with 20 regular Hexagonal & 12 pentagonal columns 3B with 20 regular & 12 irregular hexagonal columns

II. Idealized models

III. Single-scattering properties

III. Single-scattering properties

For area ratio of 0.85, differences are 21.6%, 993.8%, and 131.7% in forward, lateral, and backward direction
For area ratio of 0.77, differences are 20.2%, 509.8%, and 101.3%
For area ratio of 0.69, differences are 16.1%, 146.5%, and 156.1%

III. Single-scattering properties

The g varies by up to 24.6%, 22.8%, and 18.9% for area ratio of 0.85, 0.77, and 0.69

Size Distributions

Size Distributions

Size Distributions

Size distributions: 3 representations

✓ CDP + FIT + CIP
✓ CAS + FIT + CIP
✓ FIT + CIP (no small)

Mean g

CDP+FIT+CIP

4 models + No small

Mean g

CDP+FIT+CIP

4 Temperature

Mean g

CDP+FIT+CIP

3 Days

Mean g

CDP+FIT+CIP

SP, highest g

Mean g

-45 < T < −30 °C -60 < T < −45 °C 0.90 0.90 eter [g] eter [9] r L. 0.85 0.85 metry Param atri Daram 0.80 5 0.80 5 <u>۲</u> 0.75 0.75 Jan. 27 Jan. 27 Jan. 29 Feb. 2 0.70 sym 0.70 Jan. 29 Sym Feb. 2

CDP+FIT+CIP

3B, lowest g

Mean g

CDP+FIT+CIP

Mean g for 2 Feb. Is larger

Contribution of small crystal are smaller

Impact of Shape

Difference in mean g for different small crystal models using CAS+FIT+CIP larger than that using CDP+FIT+CIP:

- 16.7 % (SP), 5.4 % (DX), 7.8 % (GS), Jan. 27

VI. Summary

- Up to 21.6% (993.8% and 156.1%) difference in forward (lateral and backward) direction
- Up to 24.6%, 22.8%, and 18.9% difference in g area ratios of 0.85, 0.77, and 0.69
- Up to 17% difference in mean g depending on shape and N of small ice crystals
- Impacts of different models largest at lower temperatures & higher concentrations of small ice crystals
- Impacts of enhanced N largest at higher temperatures
- Impacts on bulk scattering depend heavily on assumed models for small ice crystals
- Higher resolution cloud probe neede