Insights into the chemical processes that affect growth rates of freshly nucleated particles

Jim Smith^{*#}, K. Barsanti, P. Winkler, J. Zhao NCAR, Boulder, CO USA *Univ. of E. Finland @ Kuopio #Finnish Met. Inst.

David Hanson Augsburg College Minneapolis, MN USA Peter McMurry, C. Kuang Univ. of Minnesota Minneapolis, MN USA

Markku Kulmala, M. Ehn Univ. Helsinki

Funding: US Dept. of Energy, NSF

The impacts of *new particle formation* on climate are to modify the amount and properties of cloud condensation nuclei (CCN).

- Model estimates suggest that new particle formation can contribute up to 40% of the CCN at the boundary layer, and 90% in the remote troposphere (Pierce and Adams, ACP, 2007).
- New particle formation is estimated to add as much as a 8 times more particles to the remote southern ocean atmosphere than anthropogenic primary particles (Spracklen et al., ACP, 2006).

Observed nanoparticle growth rates are typically 2 - 20 times greater than that which can be explained by H₂SO₄ condensation

Stolzenburg et al., 2005; Wehner et al, 2005; unpublished, 2009

TDCIMS observations of amines in particles formed from nucleation during MILAGRO

time (UTC)

TDCIMS measurements of 8-10 nm particles during March 17, 2006

Smith et al., GRL, 2008

Example: A 10 nm water droplet equilibrated with ambient concentrations of acetic acid, ammonia, and "amines" (methyl, dimethyl, trimethyl, and diethyl). Relevant parameters below.

HA/B	К _н (M atm ⁻¹)	р <i>К</i> а	c _{i .} gas phase (ppt)
Acetic	8800	4.76	100
Ammonia	60	9.25	100,1000
"Amines" (MeNH ₂ , Me ₂ NH, Me ₃ N, Et ₂ NH)	10, 30 (Me ₃ N ≈ 10, Et ₂ NH ≈ 40)	9.76, 10.64 , 10.98 (Me ₃ N = 9.76, Et ₂ NH =10.98)	1, 50, 100 (based on urban/rural measurements in Sweden, Grönberg et al., 1992)

Gas phase amines can be abundant (e.g., Atlanta 2009)

Dave Hanson, unpublished

Neutralization of aerosol by atmospheric bases increases hygroscopicity

TDCIMS measurements: Following the growth of particles formed from nucleation during MILAGRO (16 March 2006)

Smith et al., GRL, 2008

Hygroscopicity and CCN activity of ultrafine aerosol during 16 March event

TDCIMS observations at Hyytiälä on 9 April 2007 show aminium ions with deprotonated acids in 10nm particles

- On average, aminium
 ions comprise about 23%
 of positive ion spectrum
- 10 nm particles had an average 90%RH growth factor of 1.27

Smith et al., PNAS, 2010

Aminium ion ratios suggest that organic and inorganic salt formation may be a universal, and important, growth process

To equate aminium ion ratios from mass spectra to those in particles

- Nanoparticles formed from nucleation are composed of nonrefractory oxidized species (thus are quantified by TDCIMS).
- Normalize ratio by non-acid ion peaks in positive ion spectrum.
- TDCIMS has equal sensitivity towards bases, acids, and other oxidized organics (see Winkler).

Aminium salt formation is an important mechanism for nanoparticle growth

New particle formation (NPF) at the Southern Great Plains ARM site

Collins, unpublished

New particle formation at the Southern Great Plains ARM site

high in Kay Cnty. SO2 Air Quality, 1990 - 2008

0 0 0 0 0 0 0 0 ō Õ Collins, unpublished and USEPA

New particle formation – a simple demonstration

