Preliminary Analysis of Uncertainties in Current Boundary Layer Clouds Retrievals over ARM Sites

Chuanfeng Zhao, Shaocheng Xie, Stephen A. Klein, Renata Mccoy

Lawrence Livermore National Lab, CA, 94550

Acknowledgment

Jennifer Comstock, Min Deng, Maureen Dunn, Robin Hogan, Mike Jensen, Jay Mace, Sally McFarlane, Ewan J. Oconnor, Matthew Shupe, David Turner, Zhien Wang

Overview

- Cloud Retrieval Ensemble Data (CRED)
- Retrieval Techniques
 - Boundary Layer Clouds Retrieval
 - Uncertainty related Technique issues
- Boundary Cloud Properties and Uncertainties
 - SGP
 - NSA
- Summary

1. Data: Cloud Retrieval Ensemble Data (CRED) over ARM Sites

SITE	RETRIEVALS	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
SGP	MACE													
	MICROBASE													
	CLOUDNET													
	DENG													
NSA	MICROBASE													
	SHUPE_TURNER						ĺ							
	WANG													
	DENG													
TWP C1	COMSTOCK													
	MICROBASE													
	DENG													
TWP C2	COMSTOCK							-						
	MICROBASE													
	DENG													
TWP C3	COMSTOCK													
	MICROBASE													
	CLOUDNET													
	DENG													

Note that Purple bar means whole year, yellow bar means partial year.

2. Retrieval Techniques – Boundary Clouds (H<2 km)

Method	Include Refs	Clouds	PSD	Measure	Comments
MACE	Mace1998	Thin Stratus	Modified	Z, R	Iteration method to converge ε using DISORT;
			Gamma (α=1)		Sensitive to ΔH and T
	CCM3 (Kiehl1998)	All clouds	-	т, Р	Diagnostic Parameterization; limited sizes ranges
					(L: 5-30 um; l: 10-30 um)
	Dong1998	boundary	log-normal	MWR, T,	Regression parameterization; Thin: D97; thick:
		layer stratus	(σ=0.35)	R	big uncertainty;
	Dong&Mace2001	boundary	Log-normal	MWR, Z	LWC(h) ~ F(Z, LWP) (F98); Re(h) ~ F(Z, re_m) or
		layer stratus			Re(h)=ae ^{(0.0994db2(h)} ; re_m from D98;
	Frisch1998	stratus	-	MWR, Z	Regression method LWC(h) ~ F(Z, LWP);
					Assuming <r<sup>b>~<r<sup>3>²</r<sup></r<sup>
MICROBASE	Liao&Sassen1994 -	Liquid	Log-normal	Z, MWR	Regression Method: Z=3.6LWC ^{1.8} /N; re~F(LWC,
(JENSEN)	LWC; Frisch1995 - re		(σ=0.35)		N); (Z-LWC) vapor/droplet competition restricts
					large sizes;
	Liu&Illingworth2000 -	lce	Exponential	Z, T	Empirical/regression relationships :
	iwc; Ivanova2001- re				IWC=0.097Z ^{0.59} g m ⁻³ ; re=(75.3+0.5895T)/2
	see above	Mixed	above	Above	Liquid_Z=(1-T/16)*Z; Ice Z=(T/16)*Z; above
CLOUDNET	Provide by Ewan	Liquid part	-	т, р,	Adiabatic profiler with MWR scaling
(HOGAN)	O'Connor	(LWC)		MWR	Sensitive to cloud boundaries.
	Hogan2006	Ice Part (IWC)	-	T, P, Z,	Regression Empirical Equation
				MWR	
SHUPE_TURN	Frisch1995	Liquid only	Log-normal	MWR, Z	Adjust N to match MWR LWP
ER		clouds	(σ=0.30)		$Z=2^{6}Nr_{0}^{6}exp(18\sigma_{x}^{2})$
					q _I =0.30ρ _w Z ^{1/2} N ^{1/2}
	Turner2005	Liquid (thin	-	R	optimal Iteration estimate (LBLRTM and DISORT)
		Mixed)			
	Shupe2005	Ice clouds	exponential	Ze	Tuned regression approach
WANG	Wang2004	Liquid (thin	-	MWR, R	Iteration optimal estimation (DISORT); Ice habit
		Mixed)			is hexagonal.
	Wang&Sassen2002	Ice (Mixed) or	Modified	Ζ, σ	Parameterization of lidar-radar method
	Wang2004	Ice only	Gamma		

Uncertainty Related Technique Issues

- Theory Basis
 - Equations, Parameters; (Z-r, V-r, M-r)
 - Radiation Closure
- Input Data/Data Process
 - Cloud Boundaries/detections
 - Liquid Water Path from MWR
 - Cloud Classifications/Categories
- Assumptions
 - Particle Habit
 - Particle Size Distribution (PSD)
 - Vertical/Horizontal Distribution

3.1 SGP Boundary Layer Clouds – Liquid re

200410

- MICROBASE (Water/vapor competition) < MACE (6th relationship Z-r)
- Difference in LWC/LWP (MICROBASE: Z ~ LWC^{1.8}/N; re ~ N^{-1/3})

SGP Boundary Layer Clouds - LWC

- Method difference?
- Cloud detection/Cloud boundaries?
- LWP constrain? (Different Data Version or Process?)

3.2 NSA Boundary Layer Clouds -liquid part

M-PACE Period: 2004.10

- re difference:

- MICROBASE: Water/vapor competition mechanism
- LWP difference (NO) (LWP Constrain!!)

NSA Boundary Layer Clouds -liquid part

Big scattering (no correlation) (even LWP similar)?

- Method difference (γ, WV, T, etc.): vertical distribution

NSA Site re_liquid Different Vertical Pattern 2008.10

NSA Boundary Layer Clouds – Ice Part

- Different Parameterization!
 - MICROBASE: T-based
 - SHUPE_TURNER: Tuned regression with exponential PSD
 - WANG: Parameterization of Z- σ with modified Gamma PSD
- PSD difference! re (exponential) < re (gamma)

NSA Boundary Layer Clouds – Ice Part

Parameterization!

- SHUPE_TURNER: IWC=a(time)Z_e^{0.63}
- MICROBASE: IWC=0.097Z^{0.59}
- WANG: IWC ~ $F(\sigma, Z_e)$, D_{ge} ~ $F(\sigma, Z_e)$;

4. Results Summary

Theory Understanding for discrepancies in Boundary cloud properties from 5 methods:

- 1. Principle (like Z and R); e.g. MICROBASE and MACE (liquid re)
- 2. Basic equations/parameterization; e.g. empirical regression between MICROBASE and SHUPE_TURNER (Ice re)
- 3. PSD; e.g. exponential (SHUPE_TURNER) vs gamma (WANG) (Ice re)
- 4. Vertical Distribution; e.g. NSA site (liquid re, lwc)
- 5. Input Measurements (like Cloud Detection/boundary, time resolution); e.g. CLOUDNET and MACE (LWP);
- 6. Others (not discussed here); e.g. ice particle habit, ice density.

5. What These Results Suggest? (Future)

- Discrepancies in different retrievals can, at least partly, be explained from their methods, assumptions and inputs;
- Worthwhile to figure out/understand likely tendency/biases of every method for easy use (Much longer period statistics)
- Using same inputs and assumptions (like cloud H and LWP), an Inter-comparison study might help understand performance of current inversion techs and bring insights to best estimates.
- Necessary for uniform evaluation of uncertainties/biases
- With uncertainties, all retrievals will provide a suggestable range; and could be combined together.

Thank you!