Coupling Boundary-Layer Turbulence to Shallow Cumuli in WRF

Larry K. Berg, William I. Gustafson Jr., and Evgueni Kassianov

Proudly Operated by Battelle Since 1965

ASR Working Group Meeting

Motivation

How important are shallow cumuli?

- Do they significantly change the amount of downwelling radiation available at the surface?
- How are they represented in models?
 - Are current methods adequate?
 - Can the prediction of amount of shallow cumuli be improved?

How Important Are Shallow Cu?

- Focused on a single mid-latitude site
 - U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains site
 - Surface measurements: radiation and clouds
 - 8 summers (2000-2007)
 - Single-layer clouds
 - 202 days (898 hours) with shallow cu

Cloud Radiative Forcing

Date and Time (UTC)

Cloud Radiative Forcing: Summer Averages

-48 kWh m⁻²

- Integrated value for all shallow cu periods during the entire 7 years
- Daily average change -0.87 MJ m⁻² or -0.24 kWh m⁻².

Berg et al. (JGR, accepted)

Modeling Shallow Cumuli

Two parts to representing convective clouds

- Do they form (the trigger)?
 - Kain Fritsch uses an ad-hoc temperature perturbation
- How many form (the closure)?
 - Generally expressed as a mass flux
- Deep convection closure
 - Based on conditional instability or moisture convergence
- Shallow convection
 - Based on the strength of the capping inversion
 - Shallow cumuli are linked to the boundary layer, requiring a coupling between turbulence and convective parameterizations

Modeling Shallow Cumuli

- New Cumulus Potential Scheme (Berg and Stull 2004, Berg and Stull 2005)
 - Introduce more realistic trigger function to the standard scheme
 - A set of simulations have been completed for the summer of 2004.
- Control simulations use standard Kain-Fritsch scheme

VAPS from ARM

- Cloud radar and lidar data to determine cloud boundaries (ARSCL)
- Radiative fluxes (SWFLUXANAL)
- Gridded surface flux data (SFCCLDGRID)

The CuP Scheme

The Cumulus Potential (CuP) scheme has been implemented in WRF

- JPDF of temperature and humidity in the boundary layer is based on properties of the:
 - surface
 - mid-mixed layer, and
 - entrainment zone (EZ)
- Tilt of JPDF related to
 - Jumps in θ_v and
 q at the surface and EZ

Spread of JPDF based on similarity

Proudly Operated by Battelle Since 1965

Berg and Stull (2004), Berg and Stull (2005)

Model Performance: Case study

WRF KF

WRF CuP

Simulations valid at 8/13/2004 18:00 UTC

Gridded data from ARM radiometer network (Long et al. 2006)

Model Performance: Downwelling SW

Standard scheme underpredicts change in downwelling SW

Gridded data from ARM radiometer network (Christy and Long 2003)

Model Performance: Seasonal CF

- Summer time cloud fraction (at Central Facility)
 - KF-Standard underpredicts cloud frequency of small cloud fraction, overpredicts frequency of large cloud fraction
 - KF-CuP does a better job matching observations

All days with shallow cumuli during the summer of 2004

Proudly Operated by Battelle Since 1965

Pacific Nort

NATIONAL LABORATORY

Model Performance: SW Cloud Effect

- SW cloud effect [$SW_{CE} = (F_{\downarrow,cld} F_{\downarrow,clear})$]
 - KF-Standard underpredicts SW cloud effect—many cases with no impact
 - KF-CuP does a better job matching observations of SW cloud effect

All days with shallow cumuli during the summer of 2004

Proudly Operated by Battelle Since 1965

NATIONAL LABORATORY

Summary

- How important are shallow cumuli?
 - Shallow cumuli do have an impact on the surface radiation budget
 - Reduction of downwelling shortwave of -45.5 W m⁻² (out of 612 W m⁻²)
- How are they represented in models?
 - Standard WRF parameterization underpredicts small cloud amounts, overpredicts large cloud amounts
 - A new scheme has been implemented that improves the prediction of shallow cloud amount and radiative forcing

Acknowledgments: This work has been supported by the DOE Atmospheric Radiation Measurement and Atmospheric Systems Research programs.

Backup material

ARM SGP Site

ARM radiation measurements

- Made at 23 extended facilities
- 5 extended facilities within 100 km of CF (plus 2 further south)

Model Performance: Seasonal CF

- Summer time cloud fraction (at ARM Central Facility)
 - KF-Standard underpredicts cloud frequency of small cloud fraction, overpredicts frequency of large cloud fraction
 - KF-CuP does a better job matching observations

Cloud Radiative Forcing

Cloud Radiative Forcing (CRF): Difference in radiation at the surface in cloudy and clear conditions

Date and Time (UTC)

Model Performance: Case study

Model Performance: Downwelling SW

Standard scheme underpredicts change in downwelling SW

