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• Gravity waves generated by clouds displace air parcels
vertically as they propagate away, possibly producing
further cloud.

• Gravity waves transport momentum and energy large
distances from the site of their generation, exerting a
stress on the atmosphere wherever they dissipate.

• The project examines the part played by convectively
generated gravity waves:

i. in the formation of cirrus, and
ii. in the subgrid-scale momentum transport and

associated large-scale stresses imposed on the
troposphere and stratosphere.

Background and Aims
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TWPICE
The project is centered on the observations taken during TWPICE.



• Horizontal cross section 
through idealized three-
dimensional simulation of 
convection above the Tiwi 
Islands off Northern Australia.

• The vertical velocity at a 
height of 40 km is shown at 
(a) 1230 LST, (b) 1300 LST and 
(c) 1330 LST. (From Lane, 
Reeder and Clarke., 2001, JAS, 
58, 1249 - 1274.)
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Radiosondes from TWPICE
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• The perturbation profile is defined as the difference between the radiosonde
profile that from the ARM variational analysis (Shaocheng Xie).

• A basic assumption is that the perturbations represent gravity waves.



Radiosondes from TWPICE
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• Gravity waves are more easily detected in the stratosphere because: (i) the 
density decreases with height, and (ii) the waves are marked in the 
troposphere by convective circulations and other weather systems.



Radiosonde from TWPICE
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• The ascent rate of the 
radiosonde is calculated from the 
time derivative of the 
hydrostatically calculated 
radiosonde height. 

• A cubic polynomial is fitted to 
and removed from each vertical 
profile.

• The amplitude of the vertical 
motion in the upper troposphere 
is typically 2 m/s.
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Radiosonde Ascent Rate

 
u,v,w( )= Au ,Av ,Aw( )exp i kx + ly + mz − ωt( ) 

 
Aw = −

kAu + lAv( )
m

• If Au and Av are fixed, then |Aw| increases with decreasing 
vertical wave number and increases with increasing 
horizontal wave number. 

• Consequently, measurements of u and v emphasize long 
horizontal wavelengths, whereas measurements on w
emphasize short horizontal wavelengths. 

Let

Then



Convective 
Regimes 1 2 3

• Regime 1 – Active 
monsoon convection.

• Regime 2 – Suppressed 
convection. Strong 
westerlies associated with 
deep tropical low to the 
south.

• Regime 3 – Break 
convection. Deep 
easterlies.

• These periods do not 
coincide exactly with those 
defined by May et al. 
(2008)
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Morlet Wavelet Analysis
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• Regime 2. The high frequency wave activity is modulated on a time scale 
of 3 – 4 days.

• Coincides with the passage of a very large amplitude inertia-gravity wave.

• Regime 3. Peak at 1 day.

1 2 3



Wave Variance from Radiosondes

• ρu'u' reflects inertia-gravity wave activity and varies little diurnally.

• ρw'w' reflects higher frequency gravity wave activity and has strong diurnal 
variation.

Regime 2

Time (GMT) Time (GMT)
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Wave Variance from Radiosondes

 ρ ′u ′u  ρ ′w ′w

• ρu'u' reflects inertia-gravity wave activity and varies little diurnally.

• ρw'w' reflects higher frequency gravity wave activity and has strong diurnal 
variation.

Regime 3
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Convective Generation of Gravity Waves

 
öω = öωLNB − k U − ULNB( )

• Hypothesis: Large-amplitude, high frequency gravity 
waves are excited as the convective updrafts overshoot, 
and subsequently oscillate about, their level of neutral 
buoyancy (LNB). 

• To the extent that the background flow is steady and 
horizontally homogeneous, the waves conserve their 
ground-based frequency and horizontal wavelength as 
they propagate upwards.

• Then the intrinsic frequency varies along a ray as



Linear solution Nonlinear solution Difference (x2)

• Idealized 2-D, nonlinear model forced by a (periodic) diabatic heat 
source. (source period: 2 hours, width: 20 km, depth 10 km)

• Vertical velocity (black/green +ve, white/pink –ve)

Nonlinear Theory
Linear solution Nonlinear solution Difference (x2)
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Weakly Nonlinear (WNL) Theory
Linear solution WNL correction (x2)
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• Idealized 2-D, nonlinear model forced by a (periodic) diabatic heat 
source. (source period: 2 hours, width: 20 km, depth 10 km)

• Vertical velocity (black/green +ve, white/pink –ve)
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Ensemble Simulations of TWPICE

• The project uses a 
combination of detailed 
numerical simulation and 
analysis of the 
observations taken during 
TWP-ICE. As an example, 
see the numerical 
simulation.

• Output from the 
simulation will be used to 
drive an offline detailed 
microphysics calculation 
describing the production 
of cirrus.



Ensemble Simulations of TWPICE

• The project uses a 
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• Gravity waves have the potential to lift moist layers in the upper
troposphere to produce extensive layers of cirrus.

• The vertical velocity perturbations may lead to supersaturation near the
tropopause, which in turn can lead to cirrus nucleation.

 

Future Direction - Formation of Cirrus

• Relative humidity with 
respect to ice (colored) 
from an idealized three-
dimensional WRF 
simulation of a deep 
convective cloud in a 
background environment 
observed during TWP-ICE. 

• Total cloud mixing ratio 
(cloud water plus all ice 
types) contoured at 0.01 
and 0.1 g/kg (red contours) 
with potential temperature 
(black contours).



• The project integrates:

i. Observations from TWPICE
ii. Theory
iii. Numerical modeling (WRF).

• The project spans (at least) two cloud types:

i. Deep convection
ii. Cirrus.

• The project informs the parameterization of:
i. Nonorographic gravity-wave drag
ii. Cirrus.

Connection with the Cloud Life Cycle WG









Wave Variance from Radiosondes

 ρ ′u ′u  ρ ′w ′w

• ρu'u' reflects inertia-gravity wave activity and varies little diurnally.

• ρw'w' reflects higher frequency gravity wave activity and has strong diurnal 
variation.

Regime 1
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