Synergism Between O₃ and NO₃ Radical Chemistry in the Formation and Composition of Secondary Organic Aerosols

<u>Véronique Perraud</u>, E. A. Bruns, M. J. Ezell, S. N. Johnson, Y. Yu, M. L. Alexander, A. Zelenyuk, D. Imre and B. J. Finlayson-Pitts

Aerosol Lifecycle Working Group Meeting - Boulder - October 11th, 2010

Nitrate Radical Chemistry

Bonn and Moortgat, ACP, 2002, 2, 183-196

Large Volume Aerosol Flow Tube

- Initial conditions
 - dry air (RH < 3%)
 - room temperature (22°C)
 - total flow : 20 L min⁻¹
 - residence time: 1 hour

- Oxidant concentrations $[O_3]_0 = 1.4 \text{ ppm}$ $[NO_2]_0 = 6.3 \text{ ppm to 0 ppm}$
- Studied terpene
 [α-pinene]₀ = 1 ppm

Cannot Mobility Farlows or (SMPS)
Perturbation Partole Street Stree

Ezell et al., Aerosol Sci. Technol. 2010, 44, 329-338

"Higher NO₂" = 2.4 ppm "Lower NO₂" = 0.2ppm

Prediction

• Box model using a simplified 96 step mechanism for NO₂ + O₃ + α -pinene system

Prediction

 Box model <u>results</u> from a simplified 96 step mechanism for NO₂ + O₃ system

Particle concentration

spherical particles

Combined SMPS-APS size distribution

• density 1.19-1.21 g cm⁻³

O₃ chemistry contributes to the SOA formation

ZnSe disc impactor and FTIR analysis

Mass fraction of organic nitrates in the SOA

Mass fraction of organic nitrates in the SOA

Mass fraction of organic nitrates in the SOA

Summary of O₃/NO₃ chemistry

f_{RONO2} = 7% of SOA

f_{RONO2} = 0.2% of SOA

 $f_{RONO2} = 0.0\%$ of SOA

✓ Using SOA yield and composition from single component systems can be misleading for atmospheric conditions where multiple oxidants are present

Partitioning of RONO₂ into SOA

 \checkmark F_i / (A_i*M_o) is not constant as expected.

 \checkmark Results suggest that the equilibrium between RONO₂ in the gas phase and particles is not reached.

Conclusions

 SOA yields and composition from single component systems can be misleading for atmospheric conditions where multiple oxidants are present

 Partitioning of RONO₂ suggests that equilibrium between the gas phase and the particles is not reached for these products (see Zelenyuk et al.)

Acknowledgements

AirUCI

National Science Foundation

U.S. Department of Energy

Finlayson-Pitts'research group

Collaborators from PNNL: A. Zelenyuk and M. L. Alexander

P. Ziemann (UCR)

Particle concentration

Combined SMPS-APS size distribution

<u>spherical particles</u> with <u>density = $1.19-1.21 \text{ g cm}^{-3}$ </u> from SPLAT-II MS measurements

aerodynamic diameter, d_a

electrical mobility diameter, d_m

DeCarlo et al., AS&T, 2004, 38, 1185-1205

HR-ToF-AMS measurements

Quantification AMS vs FTIR

	HR-ToF-AMS	FTIR	FTIR / AMS	
	N/H	n(-ONO ₂)/n(C-H)		
High NO ₂	0.030	0.077	2.6	
Low NO ₂	0.015	0.040	2.5	

• AMS systematically underestimates the N/H for organic nitrates consistent with the recent literature (*Farmer et al., 2010; Rollins et al., 2010; Bruns et al., 2010*) due to:

{RCH ₂ ONO ₂ }+	\rightarrow	RCH ₂	+	ONO ₂ +	(1)
	\rightarrow	RCH ₂ +	+	ONO ₂	(2)
	\rightarrow	R'CH ₂ ONO ₂ +	+	Н	(3)
	\rightarrow	R	+	CH ₂ ONO ₂ +	(4)

Partition of RONO₂ into SOA

$$K_{abs} = \frac{R * T}{MW_{om} * 10^6 * \zeta_i * \rho_{L,i}^{0}}$$

Organic nitrate, assuming $\zeta_i = 1$ and MW_{om} = 200 g mol⁻¹)

range K_{abs} for individual compounds

= 10⁻² to 10⁻⁵ m³ µg⁻¹

Teflon Chamber: APIMS analysis Identified organic nitrates

 $\rho_{\rm Li}^{0}$ (295K) = 9.7 x 10⁻⁸ atm