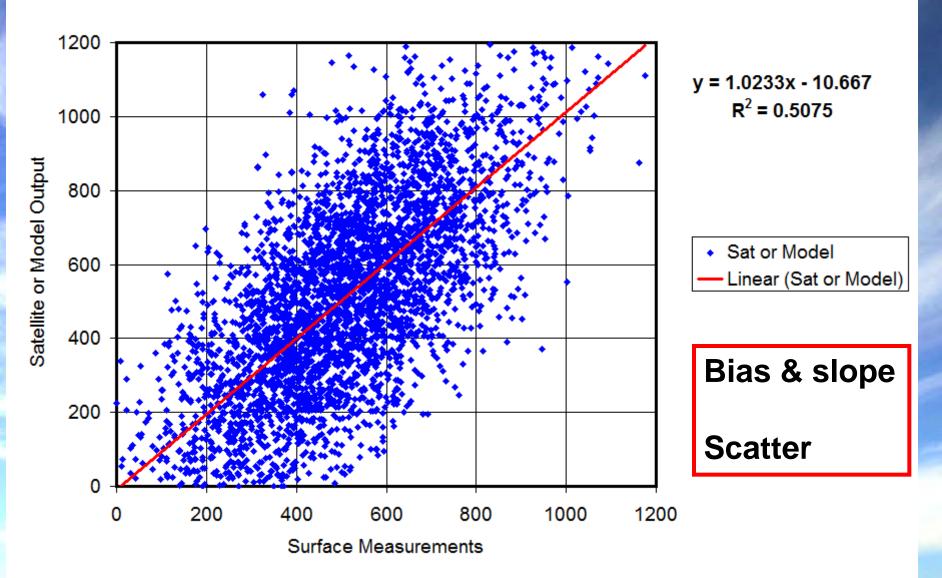
The Meteorological Similarity Comparison Method (MSCM): A new tool for satellite and model testing and development


Chuck Long, PNNL Yuanchong Zhang, NASA GISS Bill Rossow, NASA GISS Ells Dutton, NOAA GMD

Motivation

- Comparison of cloud and surface radiation parameters from surface "point" measurements to satellite retrievals and model output problematic
 - differences in such aspects as:
 - Spatial/temporal domain
 - for satellite, fields of view and view angles
 - for models, sub-grid representation

Fictional Comparison

Fictional Comparison

Comparison Outcome

- Bias & slope assumed to be an indicator that something is amiss
 But what?
- <u>Scatter</u> largely assumed to be due to spatial and temporal mis-match
 - But also affects linear fit that produces bias and slope
- Either way, where does one go from here?
 - What part of the model?
 - Parameterizations, assumptions, inputs?
 - What part of the satellite retrieval?

Measurement Availability

- Only a few sites with many measured quantities to assess causes
- These few sites have limited representation of climate regimes and situations
 - If you "fix" the problems for these, how sure are we that they are fixed for situations not represented?
- Many "BSRN-type" surface radiation sites covering many various climates and situations

Plus far more cases, more robust statistics

MSCM

- Meteorological Similarity Comparison
 Method
- A methodology for proceeding beyond comparison with only measurements at BSRN-type sites
- Zhang, Y., C. N. Long, W. B. Rossow, and E. G.Dutton (2010): Exploiting Diurnal Variations to Evaluate the ISCCP-FD Flux Calculations and Radiative-Flux-Analysis-Processed Surface Observations from BSRN, ARM and SURFRAD, JGR, 115, D15105, doi:10.1029/2009JD012743.

Radiative Flux Analysis

- All data tested for quality (QCRad code)
 Long and Shi, 2008, TOASJ
- Flux Analysis methodology
 - Time series analyses of surface broadband radiation and meteorological measurements
 - Use detected clear sky data to fit functions
 - Interpolate coefficients to produce continuous estimate of clear-sky irradiances
 - Use results to infer cloud properties

RFA Outputs

Parameter	Meas./Retr.	Comments	
Downwelling Total SW	Measured	Unshaded Pyranometer	
Clear-sky Total SW	Retrieved	Long and Ackerman, 2000, JGR	
Diffuse SW	Measured	Shaded Pyranometer	
Clear-sky diffuse SW	Retrieved	Long and Ackerman, 2000, JGR	
Direct SW	Measured	Sun Tracking Perheliometer	
Clear-sky direct SW	Retrieved	Long and Ackerman, 2000, JGR	
Upwelling SW	Measured	Pyranometer	
Clear-sky Upwelling SW	Retrieved	Long, 2005, ARM	
Downwelling LW	Measured	Pyrgeometer	
Clear-sky Downwelling LW	Retrieved	Long and Turner, 2008, JGR	
Upwelling LW	Measured	Pyrgeometer	
Clear-sky Upwelling LW	Retrieved	Long, 2005, ARM	
Clear-sky periods	Retrieved	Long and Ackerman, 2000, JGR [daylight only]	
Air Temperature	Measured	Temperature sensor	
Relative Humidity	Measured	Humidity sensor	
Total Sky Cover	Retrieved	Long et al., 2006, JGR [daylight only]	
LW Effective Sky Cover	Retrieved	Long and Turner, 2008, JGR; Durr and Philipona, 2004, JGR [low/mid cloud only]	
Cloud Vis optical depth	Retrieved	Barnard and Long, 2004, JAM; Barnard et al., 2008, TOASJ [Skycover>90% only]	
Cloud SW transmissivity	Retrieved	Long and Ackerman, 2000, JGR [daylight only]	
	Retrieved	Long, 2004, ARM	
cloud radiating temperature	Retrieved	Long, 2004, ARM [LW Scv>50% only]	
clear-sky LW emissivity	Retrieved	Marty and Philipona, 2000, GRL; Long, 2004, ARM	

Complete Net surface radiative cloud forcing and cloud macrophysical properties without using any measurements typically used as input for model calculations

RFA Outputs Uncertainty

Variable	Est. 95% Uncertainty	Information Source
Downwelling Total SW	6% or 10 Wm ⁻²	Stoffel, 2005, ARM-TR
Downwelling Diffuse SW	3% or 4 Wm ⁻²	Stoffel, 2005, ARM-TR
Downwelling Direct SW	6%or 20 Wm ⁻²	Stoffel, 2005, ARM-TR
Clear-skyTotal, Diffuse, Direct SW	RMSE(2X Meas. Uncert.)	Long and Ackerman, 2000
Upwelling SW	6% or 10 Wm ⁻²	Stoffel, 2005, ARM-TR
Clear-sky Upwelling SW	RMSE(2X Meas. Uncert.)	Long, 2005
Downwelling LW	2.5% or 4 Wm ⁻²	Stoffel, 2005, ARM-TR
Clear-sky Downwelling LW	4-5 Wm ⁻²	Long and Turner, 2008
Upwelling LW	2.5% or 4 Wm ⁻²	Stoffel, 2005, ARM-TR
Clear-sky Upwelling LW	Unknown	
Daylight Fractional Sky Cover	10%	Long et al., 2006
LW Effective Sky Cover	1-2 Oktas	Durr and Philipona, 2004
Cloud Visible Optical Depth	10%	Barnard & Long, 2004; Barnard et al., 2008
Effective Cloud Transmissivity	10%	Estimated from above Total and Clear-sky SW
Cloud Radiating Temperature	Unknown	
Cloud Radiating Height	Unknown	

Processed RFA data

- Available as PI Product at ARM Archive
 For all fixed sites and several AMF deployments
- Plans to upgrade current ARM SW Flux Analysis VAP to Full RFA
- Most BSRN and SURFRAD sites
 - 2004 & 2005 contributed as part of the GEWEX/NASA Radiative Flux Assessment Archive
 - These data used for the MSCM paper

MSCM: Basis of the approach

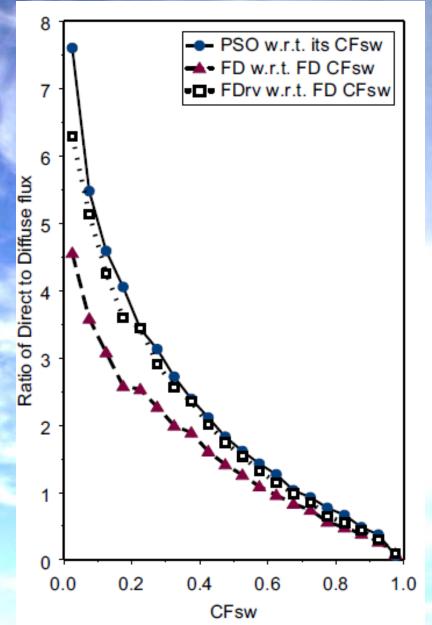
- Use the data to screen for similar conditions
 - Ex: only comparing radiation values and radiative forcing for times with matching cloud amounts between the data sets
- Eliminates much of the spatial mismatches affecting previous comparisons
- Thus affords a more detailed analysis of the ensuing differences
- Leads to better understanding of the underlying causes of the differences

Examples

- Compare clear-sky parameters to test treatment of atmospheric state
 - This resulted in finding that ISCCP-FD had double the aerosol loading it should
- Use overcast conditions to compare cloud optical depth
- Compare all-sky cloud transmissivity for comparable cloud amounts

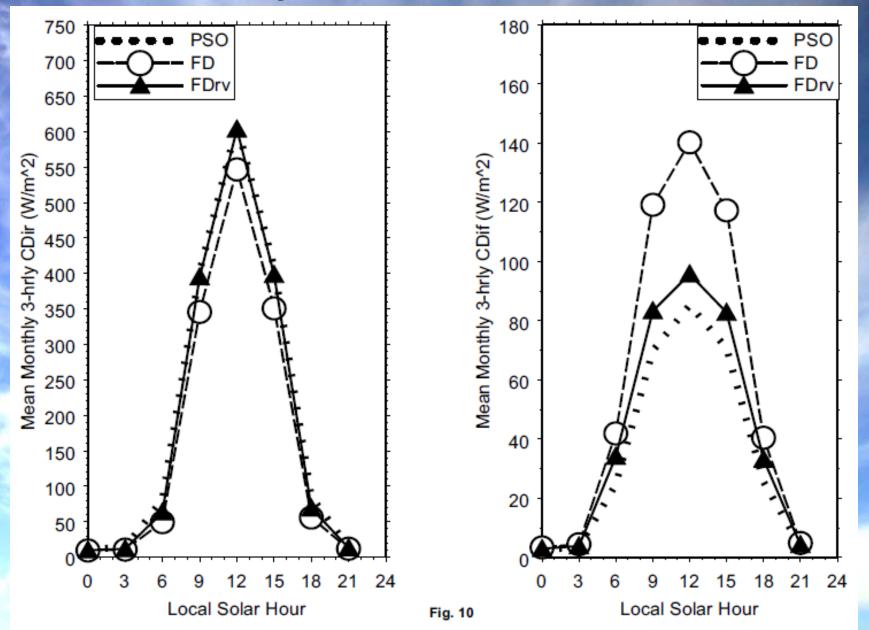
ISCCP Study

Station Acronym	Station Name [Owner] ²	Quality Rate-Network ³	Station Lat/Lon	FD Cell ⁴ Lat/Lon
NYA	Ny Alesund, Spitsbergen [GM/NY]	B-BSRN	78.9N/ 11.9E	78.8N/ 6.4E
FPE	Fort Peck, MT [USA]	A-SURFRAD	48.5N/254.8E	48.8N/255.8E
PAY	Paverne, [Swittzerland]	A-BSRN	46.8N/ 6.9E	46.2N/ 5.4E
PSU	Rock Springs, PA [USA]	A-SURFRAD	40.7N/282.1E	41.2N/281.7E
BOS	Boulder, CO [USA]	A-SURFRAD	40.2N/254.6E	41.2N/255.0E
BON	Bondville, IL [USA]	A-SURFRAD	40.1N/271.4E	41.2N/271.7E
DRA	Desert Rock, NV [USA]	A-SURFRAD	36.6N/243.9E	36.2N/243.6E
BIL	Billings, OK [USA]	B-ARM	36.6N/262.5E	36.2N/262.2E
TAT	Tateno [Japan]	B-BSRN	36.0N/140.1E	36.2N/141.2E
GCR	Goodwin Creek, Mississippi [USA]	A-SURFRAD	34.2N/270.1E	33.8N/271.5E
NAU	Nauru Island [USA]	B-ARM	0.5S/166.9E	1.28/166.2E
MAN	Momote, Manus Is., Papua New Guinea [USA]	B-ARM	2.1S/147.7E	1.2S/148.8E
DAR	Darwin [Australia]	B-ARM	12.58/130.9E	13.8S/129.9E
GVN	George von Neumaver, Ant. [GM]	B-BSRN	70.7S/351.8E	71.28/348.3E
SPO ⁶	South Pole, Antarctica [USA]	B-BSRN	89.8S/258.0E	88.8S/300.0E

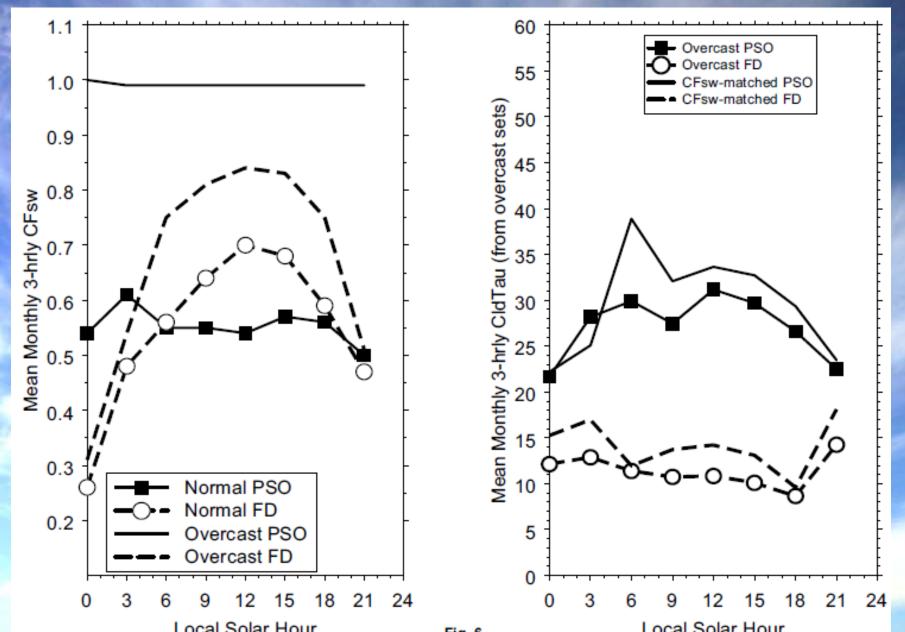

Used 15 ARM, BSRN, and SURFRAD sites

79N – 90S Year 2004

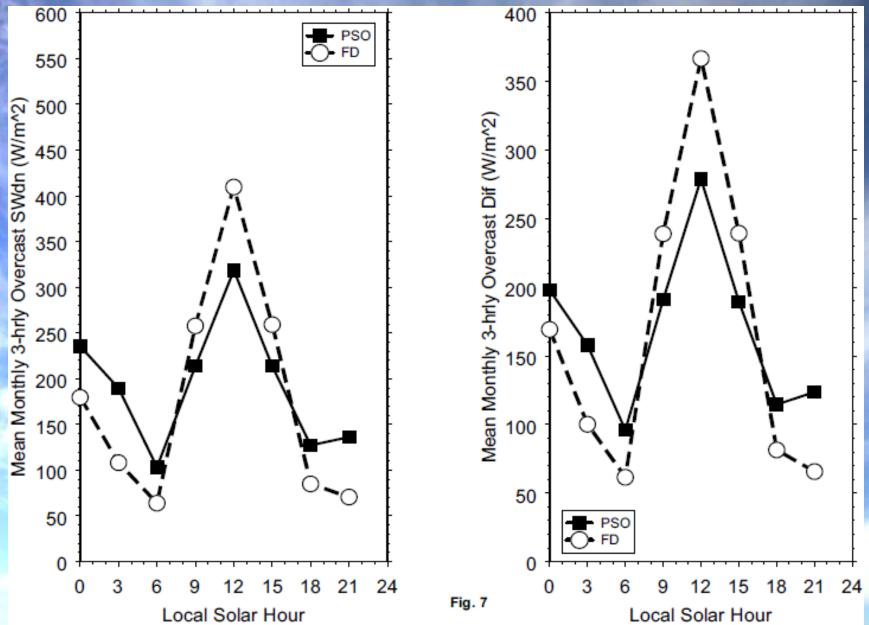
ISCCP-FD


3-hour averages

Samples



- Dir/Dif by Cloud Fraction
- Shows bias in original ISCCP data compared to RFA
 - Increasing difference for decreasing CF
- Agreement after adjusting aerosol loading by ¹/₂


Clear-sky Direct and Diffuse

CF and Cloud Tau Comparisons

Samples

Some Paper Highlights

- For downward total SW, Dif, Dir
 - matching CF reduces the flux difference by up to a factor of 2
 - Reducing AOD by ½ accounts for most of remaining differences
 - Still some differences in diurnal cycle
 - Best agreement/analysis when matching CF and cloud optical depth jointly

Some Paper Highlights

For downward LW

- Matching either Tair or CF reduces differences to nearly zero
- But diurnal differences due to differing sensitivities to cirrus and low clouds
- These results confirm that the primary source of the FD surface flux uncertainty of about 10–15 Wm⁻² is the input quantities and not the radiative transfer model.

MSCM Summary

- The paper includes a "blueprint" describing the MSCM
 - Serves as a set of instructions for future use of the Radiative Flux Analysis in satellite and model comparison studies
 - Techniques significantly increase the value of surface radiation and meteorological measurements beyond that of the individual measurements themselves