Modeling organic aerosol-cloud interactions

P. J. Ziemann, R. Atkinson, J. Arey, M. D. Petters, S. M. Kreidenweis

, A. J. Prenni, C. M. Carrico, R. C. Sullivan, P. J. DeMott, S. R. Suda, A. Faulhaber, A. Matsunaga

Project Goals and Methods

- Address current limited understanding of the effects of **organic species** on the role of atmospheric aerosols in warm and cold cloud formation
- Improve understanding of the product mix resulting from formation of secondary organic aerosol (SOA), and the role of SOA in cloud formation
- Condense information into form(s) suitable for atmospheric modeling.
- Our **approach** as been to conduct a large number of experiments (> 60) varying the precursor organic compound + oxidant:
 - Carbon chain length (size of carbon "backbone")
 - Oxidant (ozone; NO₃; OH in presence of NO_x; OH in absence of NO_x; reaction of stabilized Criegee intermediate with water, alcohols, and aldehydes)
- Followed by analyses of composition and cloud-forming potential using both conventional and novel techniques

Project Goals and Methods

- Address current limited understanding of the effects of **organic species** on the role of atmospheric aerosols in warm and cold cloud formation
- Improve understanding of the product mix resulting from formation of secondary organic aerosol (SOA), and the role of SOA in cloud formation
- Condense information into form(s) suitable for **atmospheric modeling**
- Our **approach** as been to conduct a large number of experiments (> 60) varying the precursor organic compound + oxidant:
 - Carbon chain length (size of carbon "backbone")
 - Oxidant (ozone; NO₃; OH in presence of NO_x; OH in absence of NO_x; reaction of stabilized Criegee intermediate with water, alcohols, and aldehydes)
- followed by analyses of composition and cloud-forming potential using both conventional and novel techniques

Compositional analyses

Motivation:

SOA and oxidized primary organic aerosol (POA) systems are too complex to be effectively analyzed by molecular methods (GC-MS and LC-MS)

Approach:

Develop and apply new spectrophotometric analyses for identification and quantification of **functional groups**

- Expect the type and number of functional groups to play a key role in compound hygroscopicity
- Applied to filter samples (so can be readily extended from lab systems to ambient samples)
- Have methods for quantification of carboxyl, hydroxy, carbonyl, nitrate, peroxy, and ester groups
 - Qualitative and quantitative results are consistent with known reaction mechanisms
 - Also compare well with measured elemental composition (C, H, O, N)

Example: α -pinene + O₃

 Major products (Yu et al., 1999): pinic acid, pinonaldehyde, hydroxy pinonaldehydes pinonic acid, hydroxy pinonic acid, and norpinic ac

. .

- Applying estimated relative amounts in aerosol phase of these products, obtain overall O:C ~0.4
- Comparison of relative abundance of functional groups from the literature,

a	Carboxyl	Carbonyl	Hydroxyl	Ester	Peroxide	Methylene	O:C
	С(О)ОН	C(O)	СОН	C(O)OR	COO	CH ₂	
	0.15	0.08	0.03	0	0	0.74	0.4
new	0.12	0.12	0.03	0.06	0.02	0.65	0.55

Size resolved cloud condensation nuclei

Example activation spectrum at $s \in 0.53\%$

[Method described in Petters et al., 2007 AS&T and 2009 J

Data in supersaturation / activation diameter space

Data in supersaturation / activation diameter space, parameterized (κ)

Petters and Kreidenweis, ACP, 2007; 2008

Data in supersaturation / activation diameter space, parameterized (κ)

Example partial derivative

Expect κ to decrease with molecular weight (except for polymers)

Expect κ to decrease with molecular weight (except for polymers)

SOA systems studied thus far

Ozone chemistry with cyclic alkenes, linear alkenes, and monoterpenes

Further clarification of structure-*k* **links** (proof-of-concept)

- HPLC in a reversedphase mode
- SOA created in chamber, collected on filter
- Extracted in ethylacetate & dried; dissolved in acetonitrile
- In HPLC, separated via gradient elution method using a water/acetonitrile mixture ramped linearly from 0.95/0.05 to 0/100

Method achieved separation of κ

decreasing polarity, water solubility, κ

 α -pinene + O₃ dark reaction, in UCR smog chamber

Summary

- Have developed new methods for
 - quantifying number and type of functional groups in a sample of organic aerosol
 - Separating aerosol samples by κ (concept demonstrated; method in development)
 - Linking κ to molecular structure (C number, functional groups)
- Findings thus far:
 - κ decreases with precursor carbon number within a "series" of similar molecules
 - $\kappa \sim 0.1$ is a good model for SOA from 'small' precursors (< C_8 - C_{10}).
 - SOA from most precursors $\geq C_{15}$ effectively CCN inactive
- Developing a framework for predicting κ that can be coupled to chemical mechanism models