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Project Goals and Methods
-

e Address current limited understanding of the effects of organic species
on the role of atmospheric aerosols in warm and cold cloud formation

e Improve understanding of the product mix resulting from formation of
secondary organic aerosol (SOA), and the role of SOA in cloud
formation

a__Condence infarmation_ into form/(c) cuiitahla for atmocnheric modaelinag
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e Our approach as been to conduct a large number of experiments (> 60)
varying the precursor organic compound + oxidant:

— Carbon chain length (size of carbon “backbone™)

— Oxidant (ozone; NOg; OH in presence of NO,; OH in absence of NO,; reaction
of stabilized Criegee intermediate with water, alcohols, and aldehydes)

e Followed by analyses of composition and cloud-forming potential using
both conventional and novel techniques
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Compositional analyses
.

Motivation:
SOA and oxidized primary organic aerosol (POA) systems are too
complex to be effectively analyzed by molecular methods (GC-MS and
LC-MS)

Approach:
Develop and apply new spectrophotometric analyses for identification
and quantification of functional groups

- Expect the type and number of functional groups to play a key role in
compound hygroscopicity

— Applied to filter samples (so can be readily extended from lab systems to
ambient samples)

e Have methods for quantification of carboxyl, hydroxy, carbonyl,
nitrate, peroxy, and ester groups

- Qualitative and quantitative results are consistent with known reaction
mechanisms

— Also combpare well with measured elemental composition (C. H. O. N)



Example: a-pinene + Oq

fydrosypinonic
acid

Major products (Yu et al., 1999): I i
pinic acid, pinonaldehyde, hydroxy pinonaldehydes &
pinonic acid, hydroxy pinonic acid, and norpinic ac s

Applying estimated relative amounts in aerosol phase of these products,
obtain overall O:C ~0.4

Comparison of relative abundance of functional groups from the
literature,

ar\fl £ e o o ootbhode
Carboxyl Carbonyl Hydroxyl Ester Peroxide Methylene O:C
C(O)OH C(0) COH C(O)OR COO CH,
0.15 0.08 0.03 0 0 0.74 0.4

new  0.12 0.12 0.03 0.06 0.02 0.65 0.55




ed cloud condensation
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Example activation spectrum at s @
CCN activation
from inversion spectrum
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Data in supersaturation / activation diameter
space
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Data in supersaturation / activation diameter
space, parameterized (x)
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Data in supersaturation / activation diameter
space, parameterized (x)
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Example partial derivative
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Expect xto decrease with molecular
weight (except for polymers)
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Expect xto decrease with molecular
weight (except for polymers)
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SOA systems studied thus far
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Ozone chemistry with cyclic alkenes,
linear alkenes, and monoterpenes
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Further clarification of structure-xlinks
(proof-of-concept)

e HPLC in a reversed-
t phase mode
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Method achieved separation of x
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Distribution of xin a-pinene SOA

a-pinene + O, dark reaction, in UCR smog chamber

[ HPLC
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Distribution of xin a-pinene SOA
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Distribution of xin a-pinene SOA
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Distribution of xin a-pinene SOA
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Summary

e Have developed new methods for

— quantifying number and type of functional groups in a sample of organic
aerosol

— Separating aerosol samples by x
(concept demonstrated; method in development)

— Linking xto molecular structure (C number, functional groups)

e Findings thus far:
— Kk decreases with precursor carbon number within a “series” of similar
molecules
- x~ 0.1 is a good model for SOA from ‘small’ precursors (< Cg-C,,).

— SOA from most precursors 2 C,; effectively CCN inactive

® Developing a framework for predicting x that can be coupled to
chemical mechanism models
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