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CUMULUS PARAMETERIZATION

A

s Describes interaction of a cumulus cloud ensemble with the large-scale

% Often looking for the “expected values” of influence from an ensemble of clouds in
quasi-equilibrium with the large-scale conditions.

% Requires spatial and temporal scale separation.
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How MANY THUNDERSTORMS FIT?

% With a grid spacing of 20 km
or less, we definitely do not
have a statistically meaningtul
sample of large clouds in each
grid column.

% Even with a grid spacing of
200 km, the number of large
clouds in a column is
worryingly small.

~700 km



How QE BREAKS DOWN
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¢ Quasi-equilibrium regime

%¢ Forcing determines response

A

¢ Non-equilibrium regime, still deterministic

A

s¢ Out of phase, forcings change too rapidly

A

“ Past history of the convective statistics matters

Al

¢ Non-deterministic regime

Al

“¢ As computational areas decrease in size, the stochastic
component of convection becomes significant.

A

s¢ Creates uncertainty due to small sample size -- noise
from below
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How QE BREAKS DOWN
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3D NUMERICAL SIMULATION

Following Xu et al. 1992
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256 x 128 km Domain
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LIMITS OF EQUILIBRIUM

% QE purports to describe “expected values” of Q1 and 0».

A

% A cloud-resolving model generates a “realization” of O

and Q>.

A

% A stochastic parameterization aims to generate a
“realization” of Q1 and Q:.

“ For weather prediction, we will need ensembles of
realizations.

¢ We can imagine a generalization of QE that predicts pdfs
of Q1 and Q7. This 1s an interesting but dithcult challenge.



HEATING AND DRYING ON
FINE AND COARSE GRIDS

N

s¢ Parameterizations for low- s¢ Parameterizations for high-
resolution models are designed resolution models are designed to
to describe the collective describe what happens inside

effects of ensembles of clouds. individual clouds.



Scale-dependence of heating & drying
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These quantities are defined in terms of spatial averages.

As the averaging length becomes smaller:
® The vertical transport terms become less important.
Later horizontal averaging does not change this.

® The horizontal transport terms become more important
locally. Horizontal averaging kills them, though.

@® The phase-change terms become dominant.



Typical vertical profiles of the apparent moist static energy source

due to convective actvity
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Three problems with parameterizations
at high resolution:

® The sample size is too small.
® The “resolved-scale forcing” varies too quickly.

® Convective transports should give way to
microphysics, but we have no quantitative
theory for this transition.

Expected values --> Individual realizations
-=-> Global CRMs



You can run a high-resolution model
with a cumulus parameterization.

® The model won’t blow up.
® Numbers will come out.
@® You can make a plot.

® You can publish a paper.
@® You can get a grant.

® You won’t be arrested.
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