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Cumulus Parameterization

Describes interaction of a cumulus cloud ensemble with the large-scale

Often looking for the “expected values” of influence from an ensemble of clouds in 
quasi-equilibrium with the large-scale conditions.

Requires spatial and temporal scale separation.
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How many thunderstorms fit?

With a grid spacing of 20 km 
or less, we definitely do not 
have a statistically meaningful 
sample of large clouds in each 
grid column.

Even with a grid spacing of 
200 km, the number of large 
clouds in a column is 
worryingly small.

~700 km



How QE Breaks Down

Quasi-equilibrium regime
Forcing determines response
No memory

Non-equilibrium regime, still deterministic
Out of phase, forcings change too rapidly
Past history of the convective statistics matters

Non-deterministic regime
As computational areas decrease in size, the stochastic 
component of convection becomes significant.
Creates uncertainty due to small sample size -- noise 
from below
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3D Numerical Simulation

Following Xu et al. 1992
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Forcing leads Precip by: 
60.0 minutes (50.00 % of the forcing period)
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Forcing leads Precip by: 
80.0 minutes (16.67 % of the forcing period)
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Forcing leads Precip by: 
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Forcing leads Precip by: 
70.0 minutes (0.97 % of the forcing period)
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Forcing leads Precip by: 
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82.5 minutes (4.58 % of the forcing period)
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Forcing leads Precip by: 
86.9 minutes (4.83 % of the forcing period)
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Forcing leads Precip by: 
113.8 minutes (6.32 % of the forcing period)
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Forcing leads Precip by: 

149.0 minutes (8.28 % of the forcing period)
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Limits of Equilibrium

QE purports to describe  “expected values” of Q1 and Q2 . 

A cloud-resolving model generates a “realization” of Q1 
and Q2 .

A stochastic parameterization aims to generate a 
“realization” of Q1 and Q2 . 

For weather prediction, we will need ensembles of 
realizations.

We can imagine a generalization of QE that predicts pdfs 
of Q1 and Q2 . This is an interesting but difficult challenge.



Heating and Drying on 
Fine and Coarse Grids

Parameterizations for low-
resolution models are designed 
to describe the collective 
effects of ensembles of clouds.

Parameterizations for high-
resolution models are designed to 
describe what happens inside 
individual clouds.



Scale-dependence of heating & drying

As the averaging length becomes smaller:

Q1 ≡ LC − 1
ρ

∂
∂z
(ρ ′w ′s )− 1

ρ
∇H ⋅ (ρVH

′ ′s )+QR

Q2 ≡ LC + L
ρ

∂
∂z
(ρ ′w qv′)+

L
ρ
∇H ⋅ (ρVH

′qv′)

These quantities are defined in terms of spatial averages.

The vertical transport terms become less important. 
Later horizontal averaging does not change this.

The horizontal transport terms become more important 
locally. Horizontal averaging kills them, though.

The phase-change terms become dominant.



Slide from A. Arakawa

Typical vertical profiles of the apparent moist static energy source
due to convective actvity

Any space/time/ensemble averages of the profiles in the left 
panel do NOT give the profile in the right panel.

Fine mesh Coarse mesh



Three problems with parameterizations
at high resolution:

Expected values --> Individual realizations 
--> Global CRMs

The sample size is too small.

The “resolved-scale forcing” varies too quickly.

Convective transports should give way to 
microphysics, but we have no quantitative 
theory for this transition.



You can run a high-resolution model 
with a cumulus parameterization.

The model won’t blow up.

Numbers will come out.

You can make a plot.

You can publish a paper.

You can get a grant.

You won’t be arrested.
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