

cloud-aerosol interactions

aerosol life cycle

Modeling Organic Aerosols in a Megacity: Comparison of Simple and Complex Representations of the Volatility Basis Set Approach

Manish Shrivastava, Jerome Fast, and Rahul Zaveri Aerosol Life Cycle Working Group, October 11-12, 2010

Supported by the U.S. Department of Energy's Atmospheric System Research Program
We thank the numerous scientists who provided MILAGRO data

Pacific

Motivation

Measured Organic Matter:

- Comprises 20 90% of submicron mass worldwide [e.g. *Zhang et al.* 2007]
- Analyses of aerosol mass spectrometer data suggests it is comprised of mostly oxygenated material [*Jimenez et al.* 2010]

Predicted Organic Matter:

- Simulated mass usually too low [e.g. Volkamer et al. 2006]
- SOA formation is not adequately represented by models, OA treated as non-volatile POA or using the traditional 2-product approach [*Odum et al.* 1996]

Objective

New Treatment of Organic Matter:

 'Volatility Basis Set' approach proposed by *Robinson et al.* [2007] that represents organic matter as semi-volatile POA and formation of SOA through oxidation of S/IVOC and VOC precursors [*Shrivastava et al.* 2008]

- Application of this approach have shown improvements in simulated SOA [e.g. *Dzepina et al.* 2008; *Hodzic et al.* 2009, 2010]
- In this study, 'simple' and 'complex' volatility basis set versions are coupled with the MOSAIC in the WRF-Chem model [Shrivastava et al. 2010, to be submitted]
 - Simple versions needed for climate models
 - Need to assess performance using field data
 - Couple SOA with aerosol-radiation-cloud interactions

Testbed Case for SOA Treatment Development

Megacities Initiative: Local and Global Research Observations

2006 Emission Inventory courtesy of Miguel Zavala (MCE2)

Organic aerosol measurements collected at several surface sites and on two research aircraft, in conjunction with meteorology and aerosol precursors

Mexico City

NASA DC-8 photo

Brief Description of Volatility Basis Set

- Modified Robinson et al. [2007] volatility basis set by adding 2 oxygen atoms per generation of oxidation
- # of volatility bins: 9 for fresh and 8 for aged
- Separate volatility species for fossil and biomass burning sources
- Predict both oxygen and carbon mass for each volatility species to obtain O:C ratios
- Traditional anthropogenic and biogenic SOA (4product VBS set) using yields from *Tsimpidi et al.* [2010] with no further aging
- prognostic SOA species: currently 380 for 4 size bins, (684 for 8 size bins)
- Coupled with SAPRC-99 gas-phase mechanism and MOSAIC aerosol model [Pablo Saide, U. Iowa]
- Dry deposition for all species treated the same
- For now, assume new organic species all have the same refractive index, density, etc.

Pacific Northwest NATIONAL LABORATORY

Evaluating Simulated Organic Aerosols (1)

Positive Matrix Factorization used to estimate organic aerosol components from Aerosol Mass Spectrometer data

- HOA: hydrocarbon-like organic aerosol
- OOA: oxygenated organic aerosol
- BBOA: biomass burning organic aerosol
- Volatility bins in the model grouped together to form equivalent HOA, OOA, and BBOA

Evaluating Simulated Organic Aerosols (2)

Simplified Volatility Basis Set

'Complex'

'Simple'

Pacific Northwest

Results

Temporal Variability in OA at TO Site (City Center)

Diurnal Average OA: TO Site

Diurnal Average OA: Remote Sites

simulated OA ~ observed

most OA at both sites from SOA on average

Organic Matter Aloft: March 15

G-1 Flight Path

(low biomass burning day)

AMS data from Liz Alexander (PNNL) and Manjula Canagaratna (Aerodyne)

<u>Near the City</u>: simulated HOA too low, but OOA similar to PMF estimate

<u>Downwind:</u> simulated OOA too high

Organic Matter Aloft: March 10

C-130 Flight Path

(high biomass burning day)

AMS data from Pete de Carlo (PSI) and Jose Jimenez (Univ. CO)

<u>Near the City</u>: simulated HOA too low, but OOA similar to PMF estimate

<u>Downwind:</u> simulated OOA too high

Performance for All Aircraft Flights - Percentiles

O:C Ratios

Pacific Northwest

Aerosol Effect on Shortwave Radiation

- Aerosols reduce downward shortwave radiation over Mexico City and downwind over the Gulf of Mexico
- SOA contributes to ~50% of reduction in shortwave radiation
- Impact on radiation downwind of Mexico City is likely too high because of over-prediction of OA

Summary

- HOA (primary): particulate emissions in 2006 inventory are likely too low
- **OOA** (secondary): too low in the city, similar to observed near the city, but too high downwind
- **BBOA** (biomass burning): usually too low likely missing sources
- Diurnal and spatial variability in O:C ratios similar to estimates, but magnitude is too low (not aged enough)
- When total OM simulated well, it is not necessarily for the right reasons
- 2-bin and 9-bin approaches similar in terms of mass and oxidation state of OA

Current form of the volatility basis set approach cannot represent all processes associated with OA evolution

- Semi-volatile SOA precursors may be too high
- Chemistry may be too fast
- Missing sinks as fragmentation of SOA
- Dry deposition may be too low

log₁₀ (C*) from *Jimenez et al*. [2009]

Next Steps

- Aerosol optical properties: Vary refractive indices based on aging?
- Coupling new organic aerosol species with cloud-aerosol interactions
- Evaluate using CARES 2010 field campaign data

- Compare volatility basis set approach with new approaches, i.e. 'bottom-up' approaches based on master chemical mechanisms
- Work with Alla Zelenyuk and John Shilling to obtain laboratory data to better constrain or replace assumptions in volatility basis set theory

