New model developments of SOA formation in the aqueous phase

Chemical processes in cloud droplets vs aqueous particles

Barbara Ervens

CIRES, University of Colorado NOAA, ESRL Chemical Sciences Division

SOA formation in the aqueous phase (aqSOA)

... of cloud droplets

Parameterization of SOA formation from glyoxal

... of aqueous (deliquesced) particles

- Derivation of individual rate constants based on lab studies
- Quantifying differences to cloud chemistry

First model studies

Comparison of cloud- and particle-SOA

Evidence in current models of 'missing SOA'

'Traditional SOA' 0.02 < O/C < 0.8 aqSOA from glyoxal1 < O/C < 2</th>aqSOA from methylglyoxal0.4 < O/C < 1</td>

I. Cloud chemistry

Liquid water content $\sim 0.1-1 \text{ g m}^{-3}$ Lifetime of cloud droplet $\sim \text{minutes}$ Solute concentration $\mu M - m M$

• Oxidation by OH

- Acid formation
- Formation and loss are pH dependent
- T and pH dependencies for all rate constants are known

Simplification of cloud chemistry: aqSOA formation from glyoxal

Factor: - Deviation from thermodynamic equilibrium $[Gly]_{aq} = K_H^{Gly} \cdot [Gly]_{gas}$ $[OH]_{aq} = K_H^{Gly} \cdot [OH]_{gas}$

- Loss processes Oxalic acid/Oxalate + OH \rightarrow CO₂

How to derive the empirical 'factor' ?

~100,000 box model simulations using 'detailed cloud chemistry'

0.01 ppb \leq [Gly]_{gas} \leq 1 ppb 10⁴ cm⁻³ \leq [OH]_{gas} \leq 7.10⁶ cm⁻³ 0.01 g m⁻³ \leq LWC \leq 1.5 g m⁻³ 275 K \leq T \leq 300 K 2 \leq pH \leq 6.5

Factor = $a_1 + a_2 [y(pH) + A(pH) \cdot exp(C(pH) \cdot [Gly]_{gas})] + a_3 \cdot T + a_4 [Gly]_{gas}$ Coefficients: a_1 , a_2 , a_3 , a_4 , y(pH), A(pH), C(pH)

II. SOA formation in aqueous particles

LWC ~ $10^{-6} - 10^{-4}$ g m⁻³ Particle lifetime ~ days Solute concentration ~M

Complex mechanism:

- Surface and bulk processes
- Reversible and irreversible
- Photochemistry/ dark chemistry
- Solute (activity) dependent
- Oligomerization (Products?)

Ervens and Volkamer, ACP, 2010

Quantifying chemical differences between cloud and particle chemistry

Laboratory studies

Glyoxal uptake on aqueous aerosol (different seed composition), in the presence of OH/hv

Volkamer et al., ACP, 2009

Model studies

Simulations of chamber conditions Assumed 'cloud chemistry'

 $OH(aq) + Glyoxal(aq) \rightarrow SOA$

Cloud chemistry reaction scheme underestimates photochemical SOA formation **by more than two orders of magnitude**! Additional photochemical process(es) Glyoxal \rightarrow SOA with 0.8 s⁻¹ < k_{photochem} < 7 s⁻¹ can account for the discrepancy k_{photochem} = f(particle composition, hygroscopicity)

Model simulations: Cloud vs particle SOA

Parcel model

Prescribed RH, liquid water content, temperature, pressure...

^{'aerosol'} ^{'cloud'} ¹⁰⁰ ⁹⁵ ⁹⁰ ⁹⁰ ⁸⁵ ⁸⁰ ⁷⁵ ^{2.5} ³ ^{3.5}

<u>Model results: 2.5 h < time < 3.5 h</u>

Cloud SOA

(oxalic, glyoxylic, glycolic, pyruvic acid):

- $\sim 1 \,\mu g \, m^{-3}$ after 3 hours (f(LWC, time))
- Sink: Oxidation and evaporation

Particle SOA

Oligomers, org. N-compounds Steady increase (no sink – correct?)

- Several μ g m⁻³ after a few hours

SOA formation in clouds and aqueous particles about equally efficient

Conclusions

- Aqueous phase chemistry is important for the SOA budget (mass, O/C)
- Cloud droplets/ aqueous particles = different aqueous phases

<u>Parameterization</u> of **in-cloud aqSOA formation** as *f*([Gly]_{gas}, pH, T)

Kinetic data for particle-aqSOA based on laboratory studies

- Application of process model (e.g., MCMA-2003; CARES; CalNex...)
- Lab studies to extent parameter space (pH, seed, species...)

SOA formation from glyoxal in cloud droplets and particles might yield similar amounts of highly oxidized aqSOA mass (O/C > 1)