#### Microphysics Parameterization Changes Based on Observational Studies

Jimy Dudhia, Andy Heymsfield and Carl Schmitt NCAR/MMM

#### Motivation

- New observational, theoretical and laboratory studies are leading to new parameterization formulas in bulk microphysics schemes
  - Heymsfield, Schmitt, Bansemer and Twohy: Improved representation of ice particle masses based on observations in natural clouds (JAS, 2010)
  - Heymsfield and Westbrook: Advancements in the estimation of ice particle fall speeds using laboratory and field measurements (JAS, 2010)

#### **Mass-Diameter Relation**

- Heymsfield et al. (2010) use data from 6 field programs
- Tropical/convective: CRYSTAL-FACE (Florida), NAMMA (Africa), TC4 (Costa Rica)
- Mid-latitude/stratiform: ARM SGP 2000,
  AIRS-2 (Canada), C3VP (Canada)

#### **Mass-Diameter Relation**

 Particle Size Distribution (PSD) derived from observations is a temperature dependent gamma distribution of the form

 $N = N_0 D^{\mu} exp(-\lambda D)$ 

where  $\mu$  is a cubic fit to  $\lambda$ , and  $\lambda$  is an exponential function of temperature

 Note that this PSD is only a function of T not ice water content (IWC)

#### Gamma PSD for different T



#### **Mass-Diameter Relation**

 Fitting IWC measurements to probe size data using this PSD yields a fit over a range of median-mass diameters and temperatures from 0°C to -60°C. For the complete dataset, the following function is optimal

$$m_g = 0.00528 D_{cm}^{2.1}$$

#### Fallspeed-Diameter Relation

- Heymsfield and Westbrook (2010)
  - Use drag coefficient (C<sub>d</sub>) that accounts for attached boundary layer (D+ $\delta$ ) as a function of Reynolds number (Re)
  - Introduce a new form of Best number ( $X^* \equiv C_d^* Re^2$ ) that has lab-derived effect of particle sub-circular cross-sectional area factor ( $A_r$ ) on drag
  - These allow derivation of a new Re(X\*) and hence v\_t = Re  $\eta$  /  $\rho_{air}$  D
  - Note that the  $v_t(D)$  relation is not of the form  $aD^b$

## Log-log V<sub>t</sub> versus D for various T



#### Mass-Weighted Fallspeed

- In microphysics parameterization the massweighted fall speed  $(V_t)$  is required
  - Mass-weighted particle v<sub>t</sub> (D) is integrated numerically over the particle size distribution for each temperature
  - A<sub>r</sub> also taken to be function of D from field data
- V<sub>t</sub> is fitted as a quadratic function of T separately for the tropical/convective and mid-latitude/stratiform datasets
- Since the PSD is self-similar for different IWC at a given T, a unique feature of this scheme is that V<sub>t</sub> is not a function of IWC, only T

#### **Mass-Weighted Fallspeed**

Convective (solid) Stratiform (dashed)



#### **Temperature versus Fallspeed**



- Observations seem to support this relation, but there is some spread
- Is this due to neglecting IWC?

#### **Temperature versus Fallspeed**



- Different IWC (lines) show no trend
- Fallspeed seems not to be correlated with IWC (also from separate scatter plot, not shown)
- This supports idea of temperature-only function

#### Initial Implementation in WRF

- Fall speed (convective formula) added to WSM6 microphysics option (not yet other aspects of size distribution)
- Replaces mass-weighted fall speeds from exponential distribution for snow and massdiameter relation for mean ice crystal diameter
- Since it is independent of IWC, we can just treat ice and snow fallspeeds independently
- Tests on hi-res 1 km 22-23 Jan 2006 TWP-ICE case

#### 22/12Z-23/18Z precip rate 3 km domain

QuickTime<sup>™</sup> and a BMP decompressor are needed to see this picture.

## Comparison: Domain-mean vapor and snow versus time



## Comparison: Domain-mean ice and graupel versus time



# Comparison: Domain-mean rain and cloud water versus time



old

new

#### **Comparison OLR**

RRTM\_OLR



old

Valid: 2006-01-23\_06:00:00

100 120 140 160 180 200 220 240 260 280 300 320 340

new

## Domain-averaged OLR versus time



#### Comparison 12-hr Precipitation

Init: 2006-01-23 00:00:00

Valid: 2006-01-23 06:00:00

Init: 2006-01-23\_00:00:00 Valid: 2006-01-23\_06:00:00





old

new

### Domain-averaged precip accumulation and rate versus time



### Summary and Further Work

- Need to evaluate differences against observations
- New fall speeds differ with height leading to
  - Less mean hydrometeor mass suspended
  - Small effect on rainfall
  - Increased OLR effect despite lower ice mass
- Further implementation
  - Apply PSD for microphysical processes that generally depend on particle sizes and fallspeeds
  - Radiation scheme should also be unified to use the same PSD and ice particle properties

#### Suitability for GCMs

- By being a unified scheme for addressing the PSD and fallspeeds of all non-rimed ice, this can be the basis of a relatively cheap singlemoment bulk scheme in climate models with non-rimed ice and snow particles represented by a single array
- It has been derived from observation-based size distributions combined with lab and theoretically-based particle fallspeeds