Using water vapor isotopes as a tracer for cloud-aerosol-precipitation studies

David Noone¹, Marc Ficsher², Sebastien Biraud², Margaret Torn² ¹Dept. Atmospheric and Oceanic Sciences and Cooperative Institute for Research in Environmental Sciences University of Colorado ²Lawrence Berkeley National Laboratory

Outline

- New science opportunities because in situ measurements of isotope composition of vapor
- Isotopes record what happened to the water vapor and where it came from
 - Indicator of water source/origin
 - Indicator of cloud processes
- Give theoretical basis, show a few examples

"Zipser" inspired cloud dynamics

What is the air motion? What is the hydrometeor motion? What are the microphysical exchanges? *Each aspect has an isotopic "tag" which helps analysis*

Ratio of HDO to H₂O

Measured as a difference from ocean water.

Equilibrium fractionation about 8 times stronger for 180 relative to ²H

Two simple isotope models...

Condensation

Vapor becomes depleted as heavy removed preferentially

Evaporation

Returns to isotopic composition of the (ocean/land) source.

Conditions under which condensation occurs is different from the conditions when evaporation occurs – thus "tags"

Isotopic composition and cloud dynamics

Coplen et al., 2008

Experiment

- Mounted a Picarro Water Vapor Isotope Analyzer on the BAO instrument carriage.
- Along with additional sensors
- LiCor open path CO₂/H₂O, temperature, pressure, sonic wind)
- Every 15 minutes, elevator went up or down for about 4 days (Feb 15-18, 2010)
- Ascent takes 8m50s, decent 8m30s
- Data mapped to high resolution profiles
- 312 profiles 0-300 meters with approximately 5-20 meter resolution (depending on instrument response)

Picarro H2O

Intermittency of mixing

Profile from Hawaii: aerosol

Theoretical framework

Simple "box model" expectations for cloud provide a single measure of cloud precipitation efficiency.

Box model predictions (i.e., theoretical framework)

"f": Rainfall efficiency (JJA)

Using box models, applied to satellite data can deduce precipitation efficiency

Difference between reversible moist adiabatic conditions and pseudo adiabatic conditions is a measure of the rainfall efficiency.

i.e., The fraction of the water is removed from 850-500 hPa layer

(Adapted from Brown et al., 2010, in prep)

Conclusions

 Adds constraints to water budgets, ... including *what type of cloud processes*

- Combination of H₂O and isotopic measurements provides

 very clear signature of air mass mixing
 (vertical, and distinct lateral air masses)
 type/conditions of cloud and precipitation processes
 (rain intensity, evaporation of falling rain)
- Offers opportunity to get a direct measure of precipitation efficiency (in a bulk sense)
- Clear advantages when combined with modern atmospheric instrumentation
 - Radar remote sensing
 - Boundary layer dynamics
 - Aerosol conditions
 - Surface water and carbon fluxes