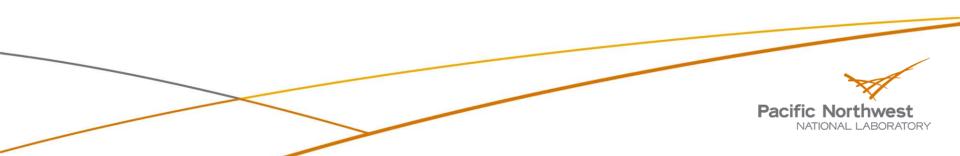
Storm Peak Lab Cloud Property Validation Experiment : StormVEx


Daniel Cziczo

with thanks to

Jay Mace (StormVEx PI), Gannet Hallar and Ian McCubbin (DRI / SPL)

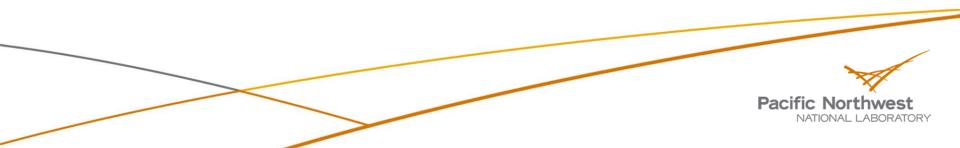
Cloud –Aerosol-Precipitation Interaction Session

Wednesday October 13, 2010

What: Deployment of the 2nd ARM Mobile Facility and various other experiments to Steamboat Springs Colorado to operate in close coordination with instruments at Storm Peak Lab

When: Mid November 2010 – early April 2011 with periodic 'intensive' efforts (e.g. during mixed phase or dust events)

Why: Primary objective – Use AMF2, 'guest' instruments and SPL as in situ data collection platform for validation of cloud and precipitation properties retrieved by ground-based active and passive remote sensors.



StormVEx Objectives :

1. Provide a continuous correlative remote sensing and in situ data set to the ARM Archive that consists of routine ARM active and passive remote sensing measurements, with coincident in situ microphysical cloud and precipitation observations that are suitable for validation of remote sensing retrieval algorithms.

2. Produce an ACRF data set in a region of complex terrain (e.g. COPS) - a long standing goal of ARM

3. Document the *role of aerosols*, *both natural and anthropogenic, in cloud and precipitation processes*.

403

Fish Creek

Valley Floor Site

Medical Center

403

403

403

Thunderhead

Burgess C

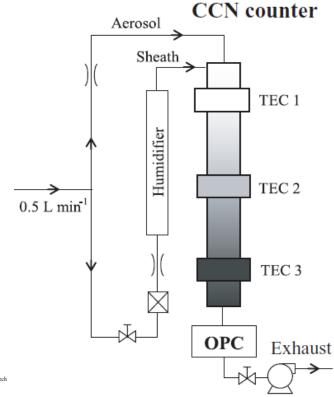
Routt National Forest

1 S	T	
151		- (
1 11	V	
Co Rd 14F	-1	Co R 24
Table 2.4 Instrumentation at	Valley Floor Site	e: 1
raove 2.4 instrumentation at	valley Floor Sile	

Instrument	Measurement	Proposed Location	Support Needed	
Radar Wind Profiler Winds, back scatter		East of GP Van within	Tie Downs or weights for guy wire	
(RWP)		20 m		
Ceilometer (VCEIL)	Cloud base, aerosols	East of GP Van within 10	Tripod tie-downs	
		m	-	
Skyrad	Broadband SW, infrared, UV	East of GP Van ~50 m	Radiometer Stand tie-downs	
-	downwel. irrad	Elevated Stand		
Gndrad	Broadband SW, infrared	East of GP Van ~50 m	Tower	
	upwelling irrad	from 10 m tower		
Total Sky Imager (TSI)	Cloud fraction	East of GP Van ~50 m		
		Elevated Stand		
Balloone-borne Sounding	Wind, Temp, RH atmos. Profile	Helium beside GP Van	Helium location Access to field thru	
Sys. (BBSS)		Launch from field as	snow	
		appropriate		
Surface Fluxes (ECOR)	Heat, Mom., Water Vapor, CO2	East of GP Van ~50 m	Access to inst, thru snow	
	sfc fluxes	from tripod/tower		
Surface Met (SMOS)	10 m Winds, Temp, RH, Precip	East of GP Van ~50 m		
		from tower		
Infra Red Sfc Temperature	Sfc Skin Temp	East of GP Van ~50 m	Height TBD	
(IRT)		from tower	c l	
Local Data System	Instrument communication	GP Van Inside trailer	Virtual Comms to Data System	
JPL 94 GHz Cloud Radar	Scanning W-Band Radar	JPL Supplied Trailer	Steve Dinardo, JPL.	
(ACR)	Reflectivity			
	-			
MMCR	Vertically pointing Ka Band			
	Doppler Radar Spectra			
Scanning ARM Cloud Radar	Scanning X and Ka Band			
(SACR)	Doppler Radar Spectra			

	Geo					
	Table 2.3. Christie Peak Instruments					
	Instrument Measurement		Proposed Location	Support Needed		
5	3-λ Nephelometer (dry)	Acrosol light abs. at 450, 550,	Inside	Weekly calibration using		
		and 700 nm (RH <15%)	AMF2-AOS Platform	CO2		
	3-λ Nephelometer (wet)	Aerosol light abs. at 450, 550,	Inside	Weekly calibration using		
Э	-	and 700 nm (RH 40-90%)	AMF2-AOS Platform	CO2; water as needed		
C.	3-λ Particle soot Abs.	Acrosol light abs. at 450, 550,	Inside	Filter changes (daily)		
4	Photometer (PSAP)	and 700 nm	AMF2-AOS Platform			
2	Hygroscopicity Tandem	Hygroscopic particle growth	Inside	Water/butanol as needed		
s	Differential Mobility Analyzer		AMF2-AOS Platform			
	(HTDMA)					
-	Cloud Condensation Nuclei	CCN activity at two super	Inside	Water/butanol as needed		
	(CCN) counter	saturations	AMF2-AOS Platform			
	Condensation Particle Counter	Particle counting >10 nm	Inside	Butanol as needed		
	(CPC)		AMF2-AOS Platform			
-	Trace Gas (Ozone)	Ambient ozone burden	Inside	Monthly filter changes		
8			AMF2-AOS Platform			
25	Met. Data	Temp.; wind speed; wind dir.;	Inside	none		
		humidity; pres.; rain fall	AMF2-AOS Platform			
	Single Particle Soot	Black Carbon mass cone. and	Inside	Data transfers as needed		
	Photometer (SP2)	size. Dist.	AMF2-AOS Platform			
	Data System	Instrument systems, data	Inside			
		archive	AMF2-AOS Platform			
	Multi Filter Rotating	Direct normal, Diffuse & Total	Roof of AOS platform	Snow removal as needed		
	Shadowband Radiometer	horizontal solar irrad. @ 415,				
	(MFRSR)	500, 615, 673, 870, 940				

	1 marine	ALC: NO				
SPL Instruments	Measurement	Location	Operation Plans	Calibration History/plan 8	Level 1 Data Availability	Level 2 Plan
PIP	Raw data needed 100 microns to 6.5 mm.	SPL	Whenever particles are around	Cal by dmt prior.	Raw data will be provided	Processing plans.
Fssp	Psd 1-50 microns	SPL	Whenever particles are around	Calibrated by dmt	Raw data to be preserved	Size distribu
CIP	25-1550 microns	SPL	Whenever particles are around	Calibrated by DMT prior	Raw data to be preserved	Size Distribu
CCN counter	Number per cm3 per ss%	SPL	24/7	DMT calibration	Available upon request	n/a
SMPS (scanning mobility particle sizer	8-500nm size distribution	SPL	24/7	TSI calibration annually; Not mission critical	Available upon request	
APS (aerodynamic particle sizer)	500nm to 20 microns	SPL	24/7	TSI calibartion annually; Not mission critical		
(U)Cpc (ultra)(conden sation particle counter)	Aerosol concentrion 10 and 3 nm cutoffs	SPL	24/7	TSI calibration annually; Not mission critical		
Trace gasses (ozone and co2)		SPL	247	Not mission critical		
MFRSR		SPL	24/7		Cal prior	
Met	5 minute data uploaded directly to WRCC site	SPL	24/7			
Table 2.5. SPL Instrumentation						

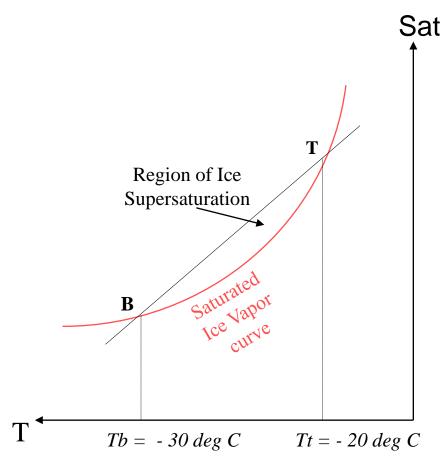

What Effect Do Aerosol Properties (Size & Composition) Have On Cloud Formation?

1. Laboratory Studies (... but what composition to use ?)

2. Measure in Cloud (... but what were the initiation conditions?)

3. Make an artificial cloud from free tropospheric aerosol

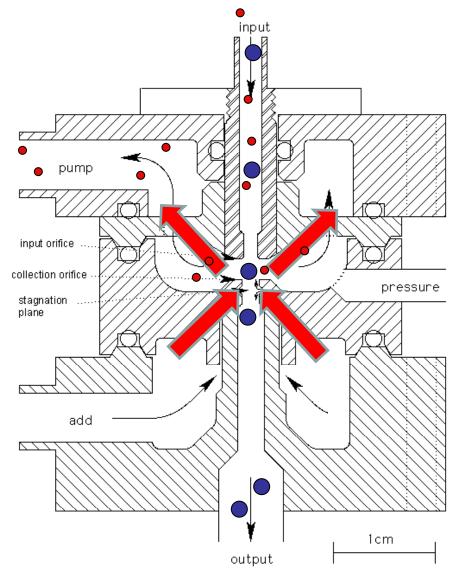
Droplet Formation Cloud Condensation Nucleus Chamber

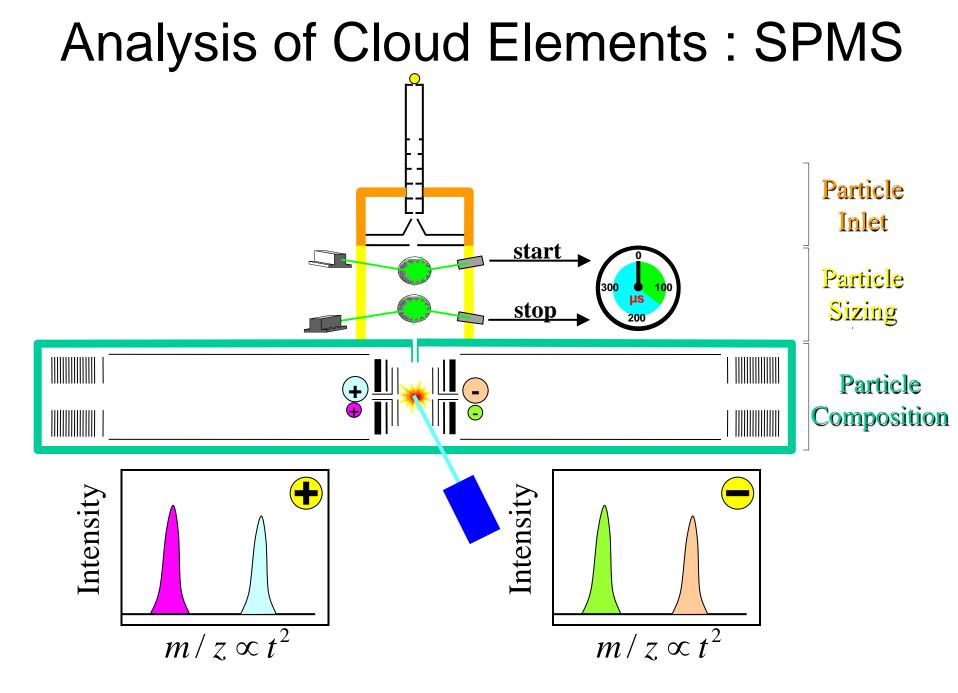


Aerosol Science and Technology, 44:861–871, 2010 Copyright © American Association for Aerosol Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/02786826.2010.498715

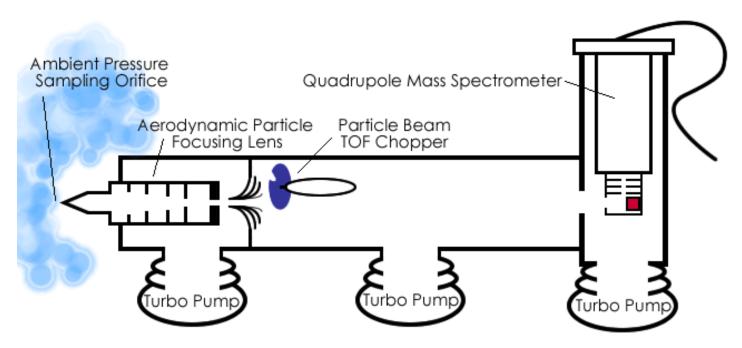
Scanning Mobility CCN Analysis—A Method for Fast Measurements of Size-Resolved CCN Distributions and Activation Kinetics

Richard H. Moore,¹ Athanasios Nenes,² and Jeessy Medina¹


Ice Nucleation Compact Ice Chamber

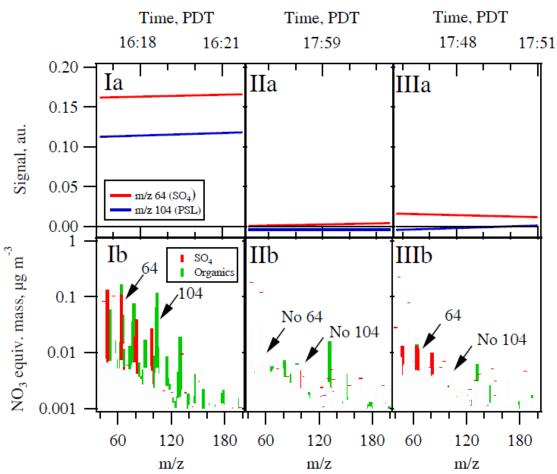

Relationship between the saturation vapor pressure over ice and temperature.

Key Step : Counterflow Virtual Impaction



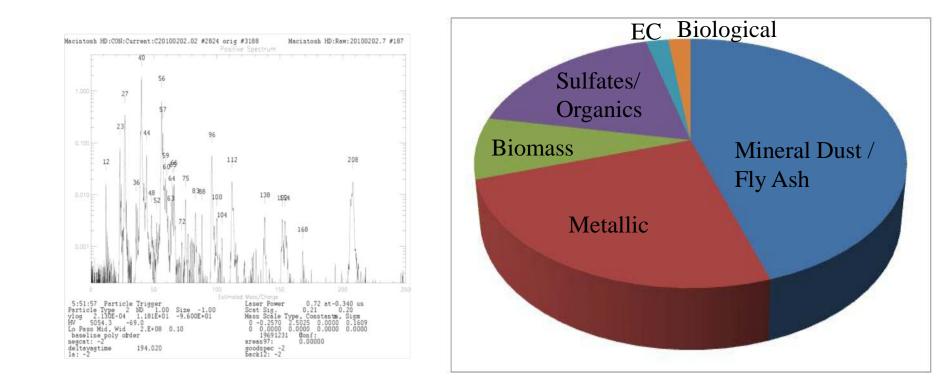
Design and Performance of a Pumped Counterflow Virtual Impactor, Boulter, Cziczo et al., AS&T, 2006.

Courtesy of D. Gross


Analysis of Cloud Elements : AMS

- The choice of analytical technique critically depends on what is being observed.
- e.g. ice nuclei are largely mineral dust which is not visible to AMS whereas CCN can activate at sizes below SPMS thresholds

Animation of the Aerodyne AMS. Credit: Matt Thyson (Lexington, Massachusetts) and Jose Jimenez


Salient Results : CCNC

• Proof of concept : Separation of droplets from unactivated due to composition effects

• Preliminary Results : Organics preferentially in the unactivated phase

Salient Results : CIC

• Ice nuclei are, on average, large than typical with special composition enhanced in mineral dust and anthropogenic particles (metals).

Particle analysis by laser mass spectrometry (PALMS) studies of ice nuclei and other low number density particles

Daniel J. Cziczo^{a,*}, David S. Thomson^{b,c}, Thomas L. Thompson^b, Paul J. DeMott^d, Daniel M. Murphy^b Unpublished Data, SPL e.g. DeMott, Ice Nucleation Tutorial

Questions?

Valley Floor Site – Everything too big and heavy to get to Thunderhead...

Table 2.4 Instrumentation at Valley Floor Site

Instrument	Measurement	Proposed Location	Support Needed	
Radar Wind Profiler (RWP)	Winds, back scatter	East of GP Van within 20 m	Tie Downs or weights for guy wires	
Ceilometer (VCEIL)	Cloud base, aerosols	East of GP Van within 10	Tripod tie-downs	
Skyrad	Broadband SW, infrared, UV downwel. irrad	East of GP Van ~50 m Elevated Stand	Radiometer Stand tie-downs	
Gndrad	Broadband SW, infrared upwelling irrad	East of GP Van ~50 m from 10 m tower	Tower	
Total Sky Imager (TSI)	Cloud fraction	East of GP Van ~50 m Elevated Stand		
Balloone-borne Sounding Sys. (BBSS)	Wind, Temp, RH atmos. Profile	Helium beside GP Van Launch from field as appropriate	Helium location Access to field thru snow	
Surface Fluxes (ECOR)	Heat, Mom., Water Vapor, CO2 sfc fluxes	East of GP Van ~50 m from tripod/tower	Access to inst. thru snow	
Surface Met (SMOS)	10 m Winds, Temp, RH, Precip	East of GP Van ~50 m from tower		
Infra Red Sfc Temperature (IRT)	Sfc Skin Temp	East of GP Van ~50 m from tower	Height TBD	
Local Data System	Instrument communication	GP Van Inside trailer	Virtual Comms to Data System	
JPL 94 GHz Cloud Radar (ACR)	Scanning W-Band Radar Reflectivity	JPL Supplied Trailer	Steve Dinardo, JPL.	
MMCR	Vertically pointing Ka Band Doppler Radar Spectra			
Scanning ARM Cloud Radar (SACR)	Scanning X and Ka Band Doppler Radar Spectra			

Note: 4 Radar and 5 Frequencies!

Christie Peak – ARM Aerosol Observing System

Instrument	Measurement	Proposed Location	Support Needed	
3-λ Nephelometer (dry)	Aerosol light abs. at 450, 550, and 700 nm (RH <15%)	Inside AMF2-AOS Platform	Weekly calibration using CO2	
3-λ Nephelometer (wet)	Aerosol light abs. at 450, 550, and 700 nm (RH 40-90%)	Inside AMF2-AOS Platform	Weekly calibration using CO2; water as needed	
3-λ Particle soot Abs. Photometer (PSAP)	Aerosol light abs. at 450, 550, and 700 nm	Inside AMF2-AOS Platform	Filter changes (daily)	
Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA)	Hygroscopic particle growth	Inside AMF2-AOS Platform	Water/butanol as needed	
Cloud Condensation NucleiCCN activity at two super(CCN) countersaturations		Inside AMF2-AOS Platform	Water/butanol as needed	
Condensation Particle Counter (CPC)	Particle counting >10 nm	Inside AMF2-AOS Platform	Butanol as needed	
Trace Gas (Ozone)	Ambient ozone burden	Inside AMF2-AOS Platform	Monthly filter changes	
Met. Data	Temp.; wind speed; wind dir.; humidity; pres.; rain fall	Inside AMF2-AOS Platform	none	
Single Particle SootBlack Carbon mass conc. andPhotometer (SP2)size. Dist.		Inside AMF2-AOS Platform	Data transfers as needed	
Data SystemInstrument systems, data archive		Inside AMF2-AOS Platform		
Multi Filter Rotating Shadowband Radiometer (MFRSR)Direct normal, Diffuse & Total horizontal solar irrad. @ 415, 500, 615, 673, 870, 940		Roof of AOS platform	Snow removal as needed	

Table 2.3. Christie Peak Instruments

SPL Instruments	Measurement	Location	Operation Plans	Calibration History/plan s	Level 1 Data Availability	Level 2 Plans
PIP	Raw data needed 100 microns to 6.5 mm.	SPL	Whenever particles are around	Cal by dmt prior.	Raw data will be provided	Processing in plans.
Fssp	Psd 1-50 microns	SPL	Whenever particles are around	Calibrated by dmt	Raw data to be preserved	Size distributions
CIP	25-1550 microns	SPL	Whenever particles are around	Calibrated by DMT prior	Raw data to be preserved	Size Distributions
CCN counter	Number per cm3 per ss%	SPL	24/7	DMT calibration	Available upon request	n/a
SMPS (scanning mobility particle sizer	8-500nm size distribution	SPL	24/7	TSI calibration annually; Not mission critical	Available upon request	
APS (aerodynamic particle sizer)	500nm to 20 microns	SPL	24/7	TSI calibartion annually; Not mission critical		
(U)Cpc (ultra)(conden sation particle counter)	Aerosol concentriion 10 and 3 nm cutoffs	SPL	24/7	TSI calibration annually; Not mission critical		
Trace gasses (ozone and co2)		SPL	24/7	Not mission critical		
MFRSR		SPL	24/7		Cal prior	
Met	5 minute data uploaded directly to WRCC site	SPL	24/7			

Storm Peak Lab Instrumentation consists primarily of in situ aerosol, cloud, and precipitation probes

Additional instruments include SPEC CPI and 2DS

Table 2.5. SPL Instrumentation

P.I.	Institution	Name of Instruments	Dates of Deployment
Dan Cziczo	PNNL	Ice Nucleation	January 3 – February 18
		Chamber, Counter-	April 1 – May 15
		Flow Virtual Impactor,	
		PALMS, Aerosol Mass	
		Spectrometer	
Paola Massoli	Aerodyne	CAPS, aerosol	October 15 – May 15
		extinction	
Tim Garrett	University of Utah	HYVIS, snowflake	Participation uncertain
		probe	
Art Sedlacek	Brookhaven National	SP2	October 15 – May 15
	Lab		
Larry Berg	PNNL	PSAP, TSI	October 15 – May 15
		Nephelometer	
Chuck Long	PNNL	Basic Radiometer	October 15 – May 15
		System (RadSys)	
Chuck Long	PNNL	Hemispheric Sky	October 15 – May 15
		Imager	

Table 2.7 Other Guest Instruments at SPL