What processes control diversity in the sensitivity of warm low clouds to aerosol perturbations?

> Robert Wood Graham Feingold Dave Turner

Warm cloud responses to aerosols

- Microphysical, structural, and dynamical properties of low, liquid-phase clouds show sensitivity to aerosol loading, but the responses are not uniform
- Increase in aerosol concentration increases cloud droplet concentration
 - droplet size response may depend on LWP response
- The magnitude and even the sign of the response of various cloud-field characteristics (depth, liquid water path, cloud fraction) appear to depend upon
 - cloud type and meteorological regime
 - Precipitation
 - cloud field organization (itself a function of precipitation)
 - aerosol loading in the unperturbed clouds

A formalism

 The response of albedo α to a perturbation in some aerosol property (N, nominally CCN concentration) can be written

$$\frac{d\alpha}{dN} = \left(\frac{d\alpha}{dN}\right)_{h,f} + \left(\frac{d\alpha}{dh}\right)_N \left(\frac{dh}{dN}\right)_{W_X} + \left(\frac{d\alpha}{df}\right)_N \left(\frac{df}{dN}\right)_{W_X}$$

TwomeyCloud thicknessResponseResponse

Cloud cover Response

 W_x = meteorology

Twomey

- Twomey responses (at fixed LWP) are most simple to understand
 - But is it an activation problem <u>or</u> the net effect of all microphysical processes (at constant LWP)?
- A diverse response of albedo dependent upon
 - cloud albedo (susceptibility maximum at α =0.5)
 - $-N_d$ before perturbation
 - aerosol/dynamical properties affecting activation
 - spatial scales of aerosol and cloud variability
 - etc..

Measurements of Aerosol-Cloud Interactions

Beyond Twomey

• All else is not equal......

How does precipitation respond to aerosol perturbations?

- Aerosol suppresses collision-coalescence but dynamical responses may counter
 - e.g. the clouds deepen allowing more precip
- What are the appropriate timescales?
 - Aerosol perturbations timescales vs. adjustment timescales
- Do albedo and "lifetime" effects work in unison?
- Precipitation susceptibility –dlnR/dlnN as a means of quantifying aerosol influence on precipitation

Marine stratocumulus: LES results

- Impact of aerosols simulated by varying N_d
- Increased $N_d \Rightarrow$ Reduced precipitation \Rightarrow increased TKE \Rightarrow increased entrainment w_e
- Changes in w_e can sometimes result in cloud thinning (reduced LWP)
- Also noted by Jiang et al. (2002)

AIEs may reverse in sign

Trade cumulus responses

------ Clean (50 cm⁻³) ----- Polluted (250 cm⁻³)

Trade cumulus responses

Trade cumulus responses

Influence on cloud optical depth

Only about 75% of the Twomey increase in albedo is realized because of horizontal and vertical spatial variability in microphysical properties —— Clean (50 cm⁻³)

-- Polluted (250 cm⁻³)

i.e.,
$$3/4 \times (N_{d,H}/N_{d,C})^{1/3}$$

Resilience, buffering and multiple timescales

- To what extent are aerosol perturbations "absorbed" by the cloud system? ("buffering")
 - Feedbacks via precipitation, evaporation, sedimentation
 - Aerosol perturbations imprint cloud morphological responses (e.g. depth, fraction, inversion height)
 - How do these compare with slower time scale drivers?
 - How stable is the aerosol-cloud system?

Aerosol effects on cloud dynamics

↑ Smaller droplets ⇒ slower sedimentation ⇒ more evaporative cooling at inversion ⇒ more entrainment ⇒ drier PBL with less LWP

(Bretherton et al. 2007)

← More CCN ⇒ higher condensation ⇒ stronger w Kogan and Martin (1994)

Resilience and dynamical systems

- In the beginning....
 - We saw the world in terms of 1st, 2nd, nth indirect effects
 - Clouds tended to be thought of in a box
- Time to shift focus from individual microphysical processes to a dynamical system view of myriad interacting dynamical/microphysical components
 - Systems are often characterized by self organization
 - Self-organizing systems are resilient and even benefit from small perturbations (aerosol and other)

Aerosol-driven shifts in organization

- POCs and other closed to open cell transitions
 - Collapsed boundary layers, ultraclean, highly sensitive to aerosol (e.g. shiptracks)
 - But not all open cells are necessarily aerosolsensitive....

Collapsed boundary layer at the Azores

Action plan Beyond aerosol indirect effects?

- Consider the aerosol-cloud system as a whole with the following key properties
 - Dynamically evolving
 - Aerosols are an integral component and a "dynamic" variable (cloud effects on aerosols, aerosol effects on clouds)
 - Aerosols are more relevant to some systems than to others

Action plan

What processes control diversity in the sensitivity of warm low clouds to aerosol perturbations?

Guiding subquestions:

- What factors control the susceptibility of warm rain to aerosol perturbations?
- Why do different approaches to quantifying the Twomey effect yield such diverse estimates?
- How do aerosol perturbations change the dynamics of marine and continental low clouds?
- How sensitive are cloud transitions to aerosol perturbations?
- Can we move beyond the aerosol-cloud microphysical component of the Twomey effect and make progress on the radiative forcing aspect?

1. What factors control the susceptibility of warm rain to aerosol perturbations?

Sorooshian et al. (GRL, 2009)

Terai et al. [Atmos. Chem. Phys. 2012]

1. What factors control the susceptibility of warm rain to aerosol perturbations?

- Ideas for moving forward:
 - Estimate precipitation susceptibility metrics for existing ARM low cloud datasets (e.g. Azores, MASRAD, MAGIC)
 - Use high resolution and simple process models to explore key controlling factors and attempt to composite observations using these factors
- Data needs:
 - Improved quantification of light drizzle, cloud liquid water path, microphysical retrievals, CCN measurements

2. Why do different approaches to quantifying the Twomey effect yield such diverse estimates?

- ACI is scale dependent. Constant LWP matters!
- Averaging method matters!

2. Why do different approaches to quantifying the Twomey effect yield such diverse estimates?

- Ideas for moving forward:
 - Determine ACI metrics across ARM low cloud datasets
 - Systematically examine how ACI changes with cloud dynamics, aerosol loading, spatiotemporal scale
- Data needs:
 - Robust cloud microphysical retrievals (r_e, N_d), LWP (especially for thinner clouds); vertical velocity measurements

3. How do aerosol perturbations change the dynamics of marine and continental low clouds?

GoMACCS (Small et al. 2009)

Entrainment vs Twomey

$$\frac{d\ln\tau}{d\ln L}\bigg|_{\text{inhomog}} = 1$$

$$\frac{d\ln\tau}{d\ln N}\bigg|_{L} = \frac{1}{3}$$

$$\frac{d\ln\tau}{d\ln L}\Big|_{\text{homog}} = \frac{2}{3};$$

3. How do aerosol perturbations change the dynamics of marine and continental low clouds?

- Ideas for moving forward:
 - Use existing ARM datasets to explore relationships between aerosols and cloud dynamics (updraft speed, entrainment rates)
- Data needs
 - Cloud dynamical properties (updraft speed)
 - Entrainment properties, moisture profiling

CCN (0.2% SS

4. How sensitive are cloud transitions to aerosol perturbations?

Surface Pressure, mb

Colored trajectories: transition between states Triangle = start; square = end

A = Radiatively clear

$$B = Cloudy$$

4. How sensitive are cloud transitions to aerosol perturbations?

- Ideas for moving forward:
 - Identify cloud organizational "states" and the transitions between them
 - How different are aerosol properties within states and between states
- Data needs
 - Meteorological controls on cloudiness
 - Microphysical data during transitions

5. Can we move beyond the aerosol-cloud microphysical component of the Twomey effect and make progress on the radiative forcing aspect?

5. Can we move beyond the aerosol-cloud microphysical component of the Twomey effect and make progress on the radiative forcing aspect?

- Ideas for moving forward:
 - Characterize the statistical nature of the radiation of cloud fields
- Data needs
 - Downward irradiance or radiance
 - Surface and/or airborne measurements