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In this paper, we present and discuss the results of a
high-resolution three-dimensional simulation of shal-
low-to-deep convection transition over a relatively
large area of about 150 X 150 km?, using the forcing
derived from an 1dealization of the observations made
during the LBA experiment in Amazonia during the
TRMM-LBA mission on 23 February 1999. The simu-
lation starts from the early morning sounding at 0730
LT with a uniform 1nitial state forced by prescribed
surface latent and sensible heat fluxes that are applied
uniformly.
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Throughout
the simulation, including the initial state, the mean
thermodynamic sounding has a rather considerable
amount of CAPE, in the range from about 1600 J kg ™"
in the early morning to 2400 J kg™ ' at the end of the
simulation, with virtually no CIN. Theoretically, clouds
could rise as high as 12 km as early as at 0930; however,
deep clouds emerge only at about 1230 in the after-
noon.



clouds during the shallow and
congestus stages have sizes (i.e., horizontal scales) com-
parable to the sizes of boundary layer eddies, that is,
generally less than 1 km, and are fairly quickly diluted
by the environmental air through entrainment. This
prevents deep clouds from forming. Thus the existence
of positive buoyancy through a deep layer 1s not by
itselt sufficient to permit deep convection, even 1n an
environment characterized by low convective inhibi-

tion; however, such triggering 1s often allowed 1in cumu-
lus parameterizations.



341 K 347 334 K 349



11:30 Moist Static Energy at z= 3000 m 13:30

332 K 336 331 K 340



| The joint PDFs of cloud size and other
in-cloud variables such as total water, moist static en-
ergy, and vertical velocity show that the bigger clouds
are far less diluted above their bases than their smaller
counterparts. As a result, the bigger clouds are more
buoyant and, therefore, maintain high in-core vertical
velocities, and penetrate deeper into the troposphere.
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It 1s
remarkable that regardless of cloud size, the thermody-
namic properties at cloud bases are nearly identical for
all of the simulated clouds, in agreement with the find-

ings of KBO05.



Joint PDF of cloud size and maximum deviation from the
mean of moist static energy
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PDF of moist static energy
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PDF of moist static energy for w > 5 ml/s
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FIG. 12. As in Fig. 11 except for the updraft cores defined by the vertical velocity being in excess of 5 ms™".



It 1s demonstrated that the transition of convection
from shallow to deep 1s strongly favored by a positive
feedback involving evaporating precipitation. Larger
clouds precipitate more heavily and, thus, through the
cold pool dynamics, tend to produce larger boundary
layer thermals that may grow into even larger precipi-
tating clouds. This feedback, first discussed by KB03, 1s
eliminated 1in a sensitivity experiment by artificially
switching off the evaporation of precipitation.
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Giga-LES of deep convection

* Goal is to simultaneously simulate boundary layer
turbulence, shallow convection, deep convection,
and mesoscale convective systems.

e |dealized GATE (tropical ocean) simulation with
shear.

*Used a CRM (SAM) with 2048 x 2048 x 256 (10°)
grid points and 100-m grid size for a 24-h LES.

Khairoutdinov, M. F. , S. K. Krueger, C.-H. Moeng, P. A. Bogenschutz, and D. A.
Randall, 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv.
Model. Earth Syst., 1, Art. #15, 13 pp., doi:10.3894/JAMES 2009.1.15.
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Cloud Liquid Water Path (vertical integral)
(shows low and middle clouds)




zoom into 50 km by 50 km
(shows all clouds)

QuickTime™ and a
decompressor
are needed to see this picture.
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Shallow Convect

Cloud Water Path at t = 4 hours



Congestus

CWP att=5.75 hours



Transition

CWP att =7 hours
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MSE Histogram
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Height ( km )

Average Vertical Velocity in Cloudy Updrafts
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Mass Flux Spectrum

Net Mass Flux ( g/ m? /s / bin ) for 0.1 K MSE bins with Constant Fractional Entrainment Rate Plumes
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Downdraft MSE Variance at SFC

Variance of MSE in Downdrafts at the Surface
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MSE variance (downdrafts) leads precip by ~20 min

Variance of MSE in Downdrafts at the Surface
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Precipitating Condensate Spectrum

Total Precipitating Condensate Qp (Lig.+Ice) by volume in each 0.1 K MSE bin ( kg / m° )
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Height ( km )

Mass Flux in Precip. Containing Non-Cloudy Downdrafts ( g / mé/s/ bin) in 0.1K MSE Bins
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Mass Flux Spectrum vs Fractional Entrainment Rate
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Important Physical Processes

Boundary layer turbulence
Shallow cumulus convection
Precipitation formation
Entrainment in cumulus clouds

Downdrafts and cold pools



Implications for Modeling

® Requires large-eddy simulations of deep
convection:

® High-resolution (~ 100 m grid size)
® |arge domain
® These are very expensive simulations.

® They are also challenging to analyze due to
the volume of output.



Implications for Modeling

o CMMAP will perform a new Giga-LES of
continental convection based on ARM data.

e CMMAP will make the results immediately
available to the ASR community.



