Global Simulations of Cloud Phase

Steve Ghan and Xiaohong Liu Pacific Northwest National Lab

Outline

- Processes treated in advanced climate models
- Simulations of cloud phase
- Sensitivity to heterogeneous nucleation
- Sensitivity to numerics

Cloud microphysics in advanced climate models

Ice Nucleation in Global Models

- Homogeneous nucleation depends on temperature, aerosol number*, and updraft velocity
- Heterogeneous nucleation
 - Immersion nucleation (dust or soot). Competition with homogeneous.
 - Deposition nucleation
 (Meyers or Phillips)
 - Contact freezing (dust)

Wegener-Bergeron-Findeisen (WBF) Process in Global Models

Under mixed-phase conditions $q_{vi}^* < q_v \cong q_{vl}^*$

• q_{v+l} is depleted by deposition to ice crystals:

$$\left(\frac{dq_{v+l}}{dt}\right)_{dep} = \frac{q_{vi}^* - q_v}{(1 + \frac{L}{Cp}\frac{dq_{vi}^*}{dT})\tau}$$

• q_{v+l} depletion reduces q_l assuming RH_l =100% when q_l >0.

Cloud Phase

- Liquid and ice coexist in lower half of cloud
- f(T) partitioning in CAM3 fails to produce low liquid fractions at observed T
- Advanced cloud schemes with WBF simulate lower liquid fractions in lower half of cloud

Xie et al. JGR (2008)

Glaciation Indirect Effect

Lohmann, GRL (2002) contact nucleation dust & BC

- If 10% of BC were active as IN, enhanced glaciation would deplete LWP and cloud cover
- Impacts on SW and LW cloud forcing largely cancel
- BC is a poor IN, but other ۲ anthropogenic mechanisms are possible

Present Day – Pre-Industrial

BC1%

1.6 (13)

7.9 (8)

0.2(3)

-0.02(-1)

-0.3(0)

-1.0(0)

-0.5(0)

-1.5

BC0%

0.1(1)

0. (0)

-1.4

BC10%

1.1 (9)

-2.9(-3)

0.6(8)

-1.3(-2)

Simulation

 $\Delta LWP g m^{-2}$

 $\Delta IWP \ \tilde{g} \ m^{-2}$

 $\Delta PR \text{ mm } d^{-1} 0.05 (2)$

 ΔF_{SW} W m⁻² +1.9 (1)

 ΔF_{LW} W m⁻² -3.5 (2)

 $W m^{-2} - 1.6$

 ΔAB

 ΔTCC

 ΔF_{net}

Subgrid Variations in WBF Process

Storelvmo et al. ERL (2008)

- Subgrid variability in WBF process has a large effect on aerosol impact on LWP and SW and LW energy balance
- This estimate of sensitivity is probably excessive because of assumptions about BC as IN

 AER_{LIQ} : no aerosol effects on ice AER_{MIX} : WBF at grid-cell mean only AER_{WBF} : subgrid WBF

Simulation	AER _{LIQ}	AER _{MIX}	AER _{WBF}
Cloud cover (%)	-0.21	-0.21	-0.25
Liquid water path (g m^{-2})	5.4	4.1	-6.9
Ice water path (g m^{-2})	0.17	-0.28	0.20
Shortwave radiation,			
TOA (W m^{-2})	-1.66	-1.11	1.13
Outgoing longwave			
radiation (W m^{-2})	-0.27	-0.38	-1.08
Net radiation, TOA (W m^{-2})	-1.93	-1.49	0.05
Effective droplet radius (μ m)	-0.96	-1.01	-0.89
Precipitation (mm/day)	-0.004	-0.026	0.011

Beware Numerical Issues (Peter Caldwell)

Extra slides

Where Simulated WBF Occurs

Vertical distribution of anthropogenic impacts on liquid and ice

(a)

(b)

(c)

Storelvmo et al. ERL (2008)