
The CNMS Computer Cluster  

This page describes the CNMS Computational Cluster, how to access it, and how to use it.  

 (16 August 2010) N.B. The latest block of the CNMS Computer Cluster is still undergoing 
debugging and improvements to its configuration. Although the hardware is fixed, the software 
configuration is likely to change. In particular, final decisions on the queue configuration have not 
been taken.  

 (2008) Previous blocks of CNMS Cluster 
 

 (2006) First block of the CNMS cluster 
 

Introduction  

The computer cluster is a “Beowulf” style machine purchased in 2010 for the CNMS. It is provided with a light 
level of support. It is NOT provided with the level of support of a user facility like NERSC or NCCS.  

Please take care to  

 1. make suggestions and report problems – you might be the first person to spot an issue  
2. not to abuse the resource: check with your CNMS contact if you need e.g. to run an 
    extraordinary large number or size of jobs.  

 
Hardware  

The CNMS Computer Cluster is actually two racks of the 2010 additions to the Oak Ridge Institutional Cluster, 
two racks of the 2008 additions, and 1 rack of the original units (http://oic.ornl.gov). The software and 
hardware of the 2010 additions are configured very similarly to earlier racks. Experience, codes, and scripts 
should carry over. The CNMS units are the “2008 and 2010 CNMS” units.  

In summary the 2010 units are an Intel/Linux/PBS/MPI/Infiniband system with 336 processor cores total, 3GB 
memory/core, delivering nearly 3 million CPU hours per year. CNMS has two of these units.  

The 2008 blocks are two units consisting of XE310 boxes (3 Ghz) from SGI that contain one login node, one 
storage node and 28 compute nodes within 14 chassis. Each node has eight cores. There are 16GB of memory 
per node. The login and storage nodes are XE240 boxes from SGI; Two units consisting of XE240 SGI nodes 
and contain one login node, one storage node and 20 compute nodes within 20 separate chassis. Each node 
has 8 cores. There are 16GB of memory per node. These nodes contain larger node-local scratch space and a 
much higher I/O to this scratch space because the scratch space is a volume from 4 disks.  

The 2006 block is one unit of the original blocks that consist of a bladed architecture from Ciara Technologies 
called VXRACK. Each VXRACK contains two login nodes, three storage nodes, and 80 compute nodes. Each 
compute node has Dual Intel 3.4GHz Xeon EM64T processors, 4GB of memory and dual Gigabit Ethernet 
Interconnects.  

Compute nodes  

2010: 2x42 nodes each with two (2) Quad Core 2.26 GHz Intel Xeon E5520 (Nahelem-EP) processors with 
24GB 1066MHz DDR3 memory per node and 500GB of local disk:  

2008 2x48 nodes each with two (2) Quad Core 3.0 GHz Xeon processors;  

2006 1x80 nodes each with Dual Core 3.4 Ghz Xeon EM64T processors. 

The interconnect is quad data rate (4X) Infiniband for 2010 and 2008 units and gigabit for the 2006 unit.  

Head node  

2010: Two (2) Quad Core 2.26 GHz Intel Xeon E5520 (Nahelem-EP) processors with 24GB 1066MHz DDR3 
memory and redundant power supplies.  



2008: Two (2) Quad Core 3.0 GHz Intel Xeon XE340 processors and Two (2) Quad Core 3.0 GHz Intel Xeon 
XE240 processors 
 
2006: Dual core 3.4 Ghz Xeon EM64T processors. 
 

Access  

The machine is “behind” the ORNL firewall. A SecureID token and OIC account are required for access.  

You must have an active CNMS user project or be a CNMS staff.  If you have a project or are staff and do 
not have ORNL computer access, write Erica Lohman (lohmanem@ornl.gov) and provide the CNMS user project 
number and PI and ask for access to the CNMS computer cluster. 

 
Obtaining Help  

Account problems should be sent to the main ORNL helpline, help@ornl.gov. Be sure to clearly state that you 
are referring to the OIC and how to reproduce the problem.  

For simulation software issues the OIC administrators might be able to help if the problem seems 
hardware related. Contacting other CNMS staff members or OIC users is likely to be more productive for 
more general issues.  

Logging in  

If you are attempting access from outside ORNL, first use VPN or login via the gateway machine 
login1.ornl.gov. You need a SecurID token for this step.  

From inside ORNL  

ssh myuserid@ccsd2.oic.ornl.gov  

Use your UCAMS password.  

Using the head nodes  

The head nodes are intended for compiling and submitting jobs. Do not run long simulations or analysis jobs 
on the head nodes. These should be submitted as PBS jobs.  

Software  

The CNMS unit shares software with the other OIC units. See http://oic.ornl.gov  
Most significant software packages (compilers, mpi, some applications) have been configured via the modules 
environment. The environment is also installed e.g. at NERSC and NCCS. module list shows currently loaded 
modules module avail shows available modules module load abc loads the abc module module unload abc 
unload (removes) the abc module These commands can be added to shell startup files if you wish.  

Recommended software  

Paul Kent recommends using the following setup unless you have technical reasons to use otherwise. Be sure to 
“unload” other loaded mpi and compiler modules. Many older compiler and mpi versions are also available, but 
understand that they are more buggy and help will be harder to obtain if you are doing something exotic.  

Please use the latest Intel C++ and Fortran Compilers  
 

module load icce/11.1  

Notice that this includes the fortran compiler  

Please use the latest OpenMPI  

module load mpi/openmpi-1.3.2-intel  

mailto:lohmanem@ornl.gov�


If you have used the OIC before and changed the defaults, you might also need to “switcher mpi = openmpi-
1.3.2-intel”  

If you choose to use the gnu compilers you will need to use e.g. mpi/openmpi-1.3.2-gcc4  

Please use the Intel MKL BLAS/LAPACK  

Linked by specifying ‘-mkl’ on the compile/link line using the v11 Intel compilers. (See below for more options 
including Scalapack). The actual libraries are under /opt/intel/Compiler /11.1/072/mkl/ . Unfortunately the link 
lines can be quite complex if you opt to manually link...  

By default, the MKL library uses threads. For single core jobs, this setting can improve performance 
considerably. However, If you are using all the cores on a node for MPI tasks, this risks actually reducing 
performance. Set OMP_NUM_THREADS=1 to avoid this. 

 
Running jobs  

Jobs are submitted and monitored via standard PBS queueing commands: qsub, qstat, qdel, qhold, qrls.  

Abuse  

Respect other users. We aim for a permissive configuration of this cluster so that the resource can be 
maximally and flexibly utilized. If you see problems please let the computational thrust leaders know.  

Note that the main userspace filesystem is mounted via NFS. Large amounts of I/O will flood the network 
slowing access for everyone. Instead write to local scratch $PBS_SCRATCH and copy large files back, or 
change/reconfigure your software to write infrequently. This scratch space is not shared between nodes. 

(October 2010) The 2010 units feature a shared/global scratch filespace for each job. This means that files 
written in this space can be read by all nodes with high performance. Use $GLOBAL_SCRATCH within your job 
for access. These directories are deleted at the end of each job, so be sure to copy back the files you need. 
While a job is running, you can access these directories on the head nodes via /global_scratch/your_job_id/…  

 
A very good way to end up the black books of the administrators and other users is to run a quantum 
chemistry code (e.g. NWCHEM) and write a large integrals file to your homespace. Please don’t do this.  

 

Sample job  

The job below requests 2 hours on 16 cores  
 

#PBS -N TESTJOB 
#PBS -j oe 
#PBS -M 
#PBS -m abe 
#PBS -q cnms08fq 
#PBS -l walltime=2:00:00,nodes=2:ppn=8 
 
 NCORES=16 
 
EXEC=./supercapacitor_simulation 
 
# In case of unresolved symbols, good candidates are: wrong mpi module loaded &/or missing LD_LIBRARY_PATH 
to 
# compiler runtime libraries or Intel MKL library. Check your shell startup files or e.g. 
# export LD_LIBRARY_PATH=/opt/intel/Compiler/11.1/072/mkl/lib/em64t/:${LD_LIBRARY_PATH} 
#echo $LD_LIBRARY_PATH 
 
cd $PBS_O_WORKDIR 

my_email@somewhere.inter.net 



mpirun -v --mca mpi_leave_pinned 1 --mca mpool_base_use_mem_hooks 1 --mca bt1 openib,self -np ${NCORES} 
${EXEC} 
 

 
Queue structure 

 

Queue 
name  

Core count 
limit  

Node 
limit  

Run 
limit  

Time 
limit  

Unit Global scratch Local scratch (not 
shared between 

nodes) 

cnms10fq  8  2  3  72 
hours  

2010 $GLOBAL_SCRATCH  

cnms10tq  None None  2  None 2010 $GLOBAL_SCRATCH  

cnms08fq  8  1  3  72 
hours  

2008 None $PBS_SCRATCH 

cnms08tq  None  None  2  None 2008 None $PBS_SCRATCH 

cnmsq None None 2 None 2006 None $PBS_SCRATCH 

 

The queue configuration will be adjusted based on experience and feedback. 

 

Specifying the number of cpus, nodes  

Please choose a processor core count appropriate for your calculation.  

The quantum of allocation is a single node. Each node has eight cores. Consequently a 
single core job locks up the resources of an eight core job. Even a barely parallel job will 
make better use of resources than a serial run. Also note that each 2010 node has 24GB 
memory, more than machines at NERSC or NCCS. “Large” jobs might fit on fewer cores 
than on other machines.  

To check the parallelization efficiency of your simulation on the cluster you will have to 
run benchmarks. Efficiencies should be reasonable, but not as good as e.g. a Cray XT 
that has a better interconnect and tuned software stack.  

For jobs requiring 8 or fewer cores, vary the ppn (processors per node) request:  

e.g. a four core run  

#PBS –l nodes=1:ppn=4 
mpirun –np 4 ./a.out 
 

For jobs requiring multiples of 8 cores:  

e.g. a sixty-four core run  

#PBS –l nodes=8:ppn=8 

mpirun –np 64 ./a.out  

Submitting jobs  

qsub myjob.job  

Monitoring jobs  



qstat  

Note that the default queue status report includes every job on every queue on the cluster. To see only your 
jobs  

qstat –u $USER  

Deleting jobs  

qdel –W 0 jobnumber  

Queue dependencies  

Standard PBS job dependencies are supported enabling very long running simulations or 
automatic running of analysis: 
 

qsub first.job 
12345.b15l01.oic.ornl.gov 
qsub –W depend=afterok:12345 second.job 
12346.b15l01.oic.ornl.gov 
qsub –W depend=afterok:12346 third.job 
 

The second job will only start after the first one has completed with no errors. Similarly the third will only start 
after the second has completed with no errors. By using a (very) little scripting VASP, LAMMPS, NAMD etc. jobs 
can be automatically restarted and continued for long simulation times. Thus there is no effective limit on 
the length of simulation that can be run. 

Building codes  

The OpenMPI library provides wrappers for the C, C++, and Fortran compilers. If you are 
building a standard MPI application, look for an Intel/MPI configuration. 
 

The following should compile and link, producing a hello_world executable  
cat >hello_world.f <<EOF  
program hello 
  include 'mpif.h' 
  integer rank, size, ierror, tag, status(MPI_STATUS_SIZE) 
  call MPI_INIT(ierror) 
  call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror) 
  call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror) 
  print*, 'node', rank, ': Hello world' 
  call MPI_FINALIZE(ierror) 
end 
 
EOF 
mpif90 –o hello_world hello_world.f 
 

Numerical libraries  

See the available modules  

The latest (v11) Intel compilers can link agains the Intel Math Kernel Library (MKL) by 
specifying the ‘–mkl’ on the link line 
 

mpif90 –mkl –o numerical.exe numerical.f90  



The libraries can be directly linked from  

MKLPATH=/opt/intel/Compiler/11.1/072/mkl/lib/em64t  

To link the parallel Scalapack library in combination with OpenMPI use  

-L$(MKLPATH) -lmkl_scalapack_lp64 -lmkl_blacs_openmpi_lp64  

 
Applications  

LAMMPS  

NWChem 
 

VASP  

Paul Kent has compiled versions of 4.6 and 5.2.8 for the OIC unit using the latest compilers, MKL, the MKL 
FFTW, and MKL scalapack. Access is only provided to authorized license holders of vasp. 

 
History  

16 August 2010 -Initial version by Paul Kent  
    21 October 2010 – Updated by Bobby Sumpter and Paul Kent 


