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ABSTRACT: Biological macromolecules and other polymers belong to the class of
mesoscopic systems, with characteristic length scale of the order of a nanometer.
Although microscopic models would be the preferred choice in theoretical calculations,
their use in computer simulations becomes prohibitive for large systems or long
simulation times. On the other hand, the use of purely macroscopic models in the
mesoscopic domain may introduce artifacts, with effects that are difficult to assess and
that may compromise the reliability of the calculations. Here is proposed an approach
with the aim of minimizing the empirical nature of continuum approximations of
solvent effects within the scope of molecular mechanics (MM) approximations in
mesoscopic systems. Using quantum chemical methods, the potential generated by the
molecular electron density is first decomposed in a multicenter-multipole expansion
around predetermined centers. The monopole and dipole terms of the expansion at each
site create electric fields that polarize the surrounding aqueous medium whose
dielectric properties can be described by the classical theory of polar liquids. Debye’s
theory allows a derivation of the dielectric profiles created around isolated point
charges and dipoles that can incorporate Onsager reaction field corrections. A
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superposition of screened Coulomb potentials obtained from this theory makes possible
a simple derivation of a formal expression for the total electrostatic energy and the
polar component of the solvation energy of the system. A discussion is presented on the
physical meaning of the model parameters, their transferability, and their convergence
to calculable quantities in the limit of simple systems. The performance of this
continuum approximation in computer calculations of amino acids in the context of an
atomistic force field is discussed. Applications of a continuum model based on screened
Coulomb potentials in multinanosecond simulations of peptides and proteins are briefly
reviewed. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem 102: 986–1001, 2005
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Introduction

M olecular interactions in biological systems
occur mostly in solutions. From structure,

dynamics, and thermodynamics of macromolecules
to chemical equilibrium, reaction mechanisms, elec-
tronic spectra, and molecular vibrations of small
molecules, the solvent plays a fundamental role.
Depending on the size scale of the system, the
properties to be studied and the time scale in-
volved, different theoretical approaches are avail-
able. Nowadays, ab initio molecular dynamic (MD)
simulation of small systems can be carried out in
the picosecond time scale using a high level of
theory, for example, Hartree–Fock (HF) or density
functional theory (DFT) [1–4]. An example of this
kind of study relevant to biological systems is the
simulation recently reported of proton transloca-
tion in Bacteriorhodopsin, a transmembrane recep-
tor that uses light to trigger a specific signal trans-
duction pathway in the cell [5]. Upon isomerization
of retinal due to photon absorption, a proton is
transferred to the cell interior through a transloca-
tion mechanism that involves a short water chain in
the protein interior [6]. Dynamic events spanning
relatively longer time scales and/or larger molecu-
lar systems, including the solid state, can also be
studied at a quantum mechanical (QM) level using,
for example, the Car–Parrinello method [7, 8]. An
example of this, relevant to biological chemistry, is
the study of the dynamics of proton diffusion in
bulk water [9]. This particular study provided in-
sight into acid–base equilibrium, an ubiquitous
phenomenon in solution chemistry and biochemis-
try.

As the size of the system increases and the dy-
namic events span time scales in the microsecond to
millisecond range, it becomes necessary to intro-
duce further approximations to the full quantum
mechanical approach. Thus, molecular mechanics

(MM) approximations that evolved from simple
physical potentials for use in simulations of liquids
to the sophisticated empirical force fields currently
in use for simulations of macromolecules such as
proteins and nucleic acid chains [10] have been
developed. The MM methods are by and large
based on classical mechanics and use empirical
force fields that rely heavily on their parameteriza-
tion.

The availability of MM force fields expanded
considerably the range of applicability of theoreti-
cal methods to study physical effects, mainly those
related to thermodynamics and statistical mechan-
ical concepts. At the same time, however, this ap-
proximation drastically restricted or completely
abolished the possibility of studying pure chemical
problems, that is, phenomena that involve the
breaking and formation of covalent bonds, such as
enzyme catalysis and proton transfer. To partially
mitigate this limitation, hybrid methods were de-
veloped that divide the system into a pure MM
(classical) region and a QM region using a properly
modified Hamiltonian that accommodates the MM
potential (both bonded and nonbonded interac-
tions) and its effect on the electron density in the
QM region [11, 12]. This hybrid approach was first
introduced in a pioneering paper by Warshel and
Levitt [13]. The three levels of theory, here referred
to as QM, QM/MM (the hybrid approach), and
MM, have been successfully applied to the study of
biological molecules. At the same time, MM force
fields are continually evolving to describe the phys-
ics of the systems with an increasing degree of
accuracy and realism. The main drawback with this
approximation is the need to define and derive
parameters for the empirical force fields. Moreover,
as their quality improves it is hoped that the results
become more accurate and reliable, assuming of
course that the empirical energy function contains
terms that represent the physics of the process to be
studied. The optimization of parameters is a diffi-
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cult and time-consuming task, but efforts are being
made to derive high-quality parameters for bonded
as well as nonbonded interaction terms in the force
fields. In particular, bonded parameters for small
organic molecules have been derived to reproduce
experimental or ab initio properties in the gas phase
[14–17].

Because of the enormous interest in biological
processes, water, nucleic acids, and amino acids
have been among the most intensively optimized
systems. Parameters for nonbonded interactions
such as those involved in Coulomb and Lennard–
Jones potential terms have also been obtained and
optimized for calculations of biological macromol-
ecules in explicit solvent (water). However, the cal-
culations of macromolecules immersed in explicit
water rapidly exhaust computational capabilities,
and it has become apparent that a way has to be
found to reduce the dimensionality of the problem.
One approach to do this is to replace the explicit
solvent by a continuum description that is incorpo-
rated into the force field, although such models
modify the form of the simple nonbonded terms
valid when explicit solvent is used. At the same
time, continuum models of solvent effects incorpo-
rate a new set of parameters into the force field that
also require careful optimization.

The theoretical description of solvent effects in
small molecules is generally based on one or an-
other form of self-consistent reaction field theory
[18–20]. Although still approximate, their limita-
tions and scope of applicability can be reasonably
well identified. However, such approaches are still
computationally demanding for the larger size
scale commonly found in biological systems, so that
further simplifications had to be sought to make the
systems amenable to computational study. As a
natural consequence, this has brought into MM
force fields a miscellany of methods and approxi-
mations that, due to a mismatch of parameters to
the phenomena being studied, may require param-
eter adjustments and reparameterizations. This pro-
liferation of models is understandable because of
the growing pressure for applying “molecular
modeling” techniques to macromolecular systems,
which are among the most complex in nature, to
solve problems that, invariably, are much too diffi-
cult. Thus, the need to understand the limitations of
a particular approach and its scope of applicability
(defined by the physics of the problem to be stud-
ied) has largely been neglected.

This paper addresses the question of how to
bridge the gap between small and large molecules,

in the development of a continuum model of sol-
vation, by combining the classical theory of liquids
with quantum chemical calculations of the solute
molecule for use in MM force fields. The possibility
of merging these formalisms of classical and quan-
tum mechanics into a unique picture has the advan-
tage that the resulting model could be applied
transparently to a QM or a MM calculation where
the solvent plays a role, i.e., most phenomena in
chemistry and biology. At the same time, this ap-
proach would help to minimize empiricism and the
lack of transferability of parameters, a drawback of
MM force fields for biological systems.

This paper is organized as follows: the second
section presents an overview of the two basic com-
ponents of the proposed methodology for achiev-
ing the merger outlined in the previous paragraph.
The first component discusses methods for assign-
ing atomic properties in molecules: (i) Bader’s the-
ory of atoms in molecules (AIM) [21–25], and (ii)
Stone’s distributed multipole analysis (DMA) [26,
27]; the second component deals with the classic
theory of polar/polarizable liquids [28–32] origi-
nally developed by Lorentz, Debye, Sack (LDS),
and Onsager (LDSO), which is briefly reviewed. A
connection with atomic properties of the solute and
with the multipole expansion of the potential is
discussed. In the third section the screened Cou-
lomb potential (SCP) continuum solvent model [33]
is described and the SCP-based implicit solvent
model (SCP-ISM) for MM calculations of macro-
molecules [33–36] is reviewed. In the fourth section
dielectric profiles and the associated screening
functions are calculated numerically from the
LDSO theory for different atomic charges. A dis-
cussion concerning the physical meaning of param-
eters and their definition is presented. A summary
and a discussion of future direction are also given.

Atom-Based Partitioning of the
Electron Density and the Classical
Theory of Polar Liquids

MULTICENTER-MULTIPOLE EXPANSION OF
THE POTENTIAL

The basic tool for merging a partitioning of the
molecular density with the theory of polar fluids is
the multicenter-multipole expansion of the poten-
tial [37]. Let �(r) be a charge density distribution
and expand it as a sum over a set of N arbitrary
functions {�i(r)}i�1

N , that is,
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��r� � �
i�1

N

�i�r�. (1)

The electric potential �(R) at any arbitrary point R
in space is given by

��R� � �
ℜ3

��r�
�R � r� d3r � �

i�1

N �
ℜ3

�i�r�
�R � r� d3r � �

i�1

N

�i�R�.

(2)

The functions �i(R) can be thought of as the poten-
tial in R generated by a charge distribution �i(r).
The electric field generated by �(R) is given by
���(R), and similarly each �i(R) can be considered
to generate a field Ei(R) given by ���i(R), such that
E(R) � ¥ Ei(R). Standard methods [38] can be used
to develop a multipole expansion for each �i(R)
around an arbitrary point Ri provided that
�r � Ri�/�R � Ri� �� 1. For the present purpose it is
necessary to retain only the first two terms of the
expansion, that is, the monopole and dipolar terms:

�i�R� �
Qi

�Ri
�

�Ri � �i

�Ri
3 , (3)

where �Ri � R � Ri, ri � r � Ri, Qi � �	i
�i(r)d3r

and �i � �	i
�i(ri 
 Ri)rid

3ri; 	i�ℜ3.
From the definition of �i it follows that

�i � �
	i

�i�ri � Ri�rid3ri

� �
�i

�i�r�rd3r � QiRi � pi � QiRi, (4)

where pi is the dipole moment of the distribution
�i(r) with respect to the center r � 0 (�i is the
integration domain in r). Although �i is indepen-
dent of spatial transformations regardless of the
values of Qi, both pi and ��i � QiRi do depend, in
general, on the reference frame.

PARTITIONING OF THE MOLECULAR
ELECTRON DENSITY

The continuous spatial arrangement of charge in
a molecular system has a clear physical meaning
because it is an observable of the system. Unfortu-

nately, there is no unique way to partition this
molecular electron charge distribution into local
properties because the molecular Hamiltonian can-
not be partitioned in this way. However, the idea of
local properties has always been attractive because
it allows for simple chemical interpretation, and a
number of more or less arbitrary approaches for
defining such partitioning have been proposed [21,
39–43]. Atomistic force fields used in MM simula-
tions usually (but not always) use partial charges
located on the nuclei to represent the molecular
charge distribution. Thus, the goal of developing a
seamless way to pass from �(r) to �i(r) and finally to
the point charge qi and dipole ui would be en-
hanced by any scheme that is based on a reasonably
quantitative definition for calculating qi and ui from
�i(r).

One such approach is Bader’s theory of AIM
[21–25]. In this approach topological properties of
the electron density are used to define a set of
spatial domains associated with individual atoms.
Zero-flux surfaces, S(r), are defined in the system
such that ��(r) � n̂(r) � 0, where n̂(r) is a unit vector
normal to S(r) at each point r in the space. With this
definition each surface surrounds a region 	s(r) of
space containing a point where �(r) reaches a max-
imum (the atomic nucleus). Therefore, an atom, i, in
the molecule is defined as the nucleus (with total
charge eZi) plus the charge density in the associated
basin 	Si

(r) � 	i that contains it. The net atomic
charge is then defined as qi � eZi 
 Qi, where the
electronic charge associated with this atom is given
by Qi � �	i

�(r)d3r. Although this partitioning is
also arbitrary from a physical standpoint, it has
unique properties that are independent of the basis
set used in the QM calculations, in contrast to other
approaches such as those based on population anal-
ysis. The AIM theory provides a natural way of
partitioning �(r) in a set of conjoint spatial regions
{	Si

(r)}i�1
N that are univocally associated with a set

of spatial densities {�i(r)}i�1
N and can be used to

expand �(r) as in Eq. (1). Therefore, it is convenient
to define the set {Ri}i�1

N as the position of the nuclei
in a molecular system composed of N atoms. With
these definitions, a multicenter-multipole expan-
sion can be performed as described above based on
atomic charges and dipoles [cf. Eqs. (2)–(4)].

Other methods to quantify atomic properties in a
molecule have been reported [39–42]. The problem of
assigning atomic charges is closely related to the
physical interpretation of a chemical bond. Real sys-
tems are somewhere in between the limits of an ideal
ionic bond and an ideal covalent bond. The original
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definition of atomic charges was given by the Mul-
liken population analysis [39]. An objection to this
approach is that the dipole moment calculated with
these partial charges does not converge to its expec-
tation value, and Mulliken net charges cannot be used
to define the charge distribution for MM simulations;
thus, improvements have been sought to alleviate this
and other drawbacks [26, 44, 45].

One approach to improve on the Mulliken pop-
ulation analysis is Stone’s DMA [26, 27], which is a
generalization of Mulliken’s approximation. In this
method the electrostatic potential at any point in
space is represented by a set of multipole expan-
sions centered at a number of points throughout the
system, the so-called DMA sites. In general, a mul-
ticenter-multipole expansion of the potential has
the advantage over a one-center expansion in that
fast convergence is attained at all accessible dis-
tances from the charge distribution. Stone’s DMA
method relies on the Gaussian nature of the basis
functions and makes use of their properties to de-
fine appropriate local quantities in the system, such
as charges, dipoles, quadrupoles, etc. [27, 46]. Two
main sources of arbitrariness can be recognized in
this method: the choice of the expansion centers
(i.e., their number and location), and the expansion
of the wavefunction itself, which is not unique. The
DMA sites are usually chosen to be the nuclei and
the midpoint of covalent bonds. Out of this expan-
sion local properties can be obtained such as the
monopole and dipolar terms that are associated
with each atom.

Both AIM and DMA are reasonable starting
points for the construction of a continuum model of
solvent effects in proteins based on the theory of
polar liquids. To illustrate the approach proposed
in this paper, DMA will be used to obtain the
expansion of Eq. (3) and the energetics of a simple
system, namely, the alanine dipeptide. A complete
formalism for calculations of protein energetics
based on AIM theory will be reported elsewhere.

LORENTZ–DEBYE–SACK–ONSAGER THEORY
OF POLAR FLUIDS

Consider a point charge or dipole immersed in a
solvent composed of molecules with isotropic po-
larizabilities � and permanent dipole moments �.
Regardless of its nature, the solute creates a field
that orients and polarizes the surrounding mole-
cules of the solvent. The polarization P(r) at a po-
sition r in the solvent is given by �P(r) � �El(r) 


f(�)�, where El(r) is the local electric field related to

the macroscopic (Maxwell) field E(r) by El(r) �
E(r) 
 (4�/3)P(r); � is the molecular volume of the
solvent, and 
f(�)� is the Boltzmann average of the
orientation-dependent function of the solute–sol-
vent interaction energy w. Using the basic defini-
tion of electric displacement D(r) � E(r) 
 4�P(r)
and the Lorentz relationship between local and
macroscopic fields, that is, 3El(r) � [	(r) 
 2]E(r),
where 	(r) is the dielectric permittivity, expressions
for E(r) and D(r) can be obtained as a function of
El(r) and the orienting field using the Debye–Sack
approach, that is,

E�r� � El�r� �
4�

3 ��

�
El�r� �


f����

�
�� (5)

D�r� � El�r� �
8�

3 ��

�
El�r� �


f����

�
�� (6)

For an ionic source with charge q the orienting
function is given by f(�) � f(
 ) � cos 
, where 
 is
the angle formed by vectors r and �. The ion–
dipole interaction energy is given by w � ��El(r)-
cos 
, thus 
f(�)� � 
cos 
� � L(�El(r)/kT), where k
is the Boltzmann constant and L(x) � coth(x) � 1/x
is the Langevin function. Using the linear approxi-
mation D(r) � 	(r)E(r) (i.e., nonlinear effects ne-
glected) and E(r) � qr/	(r)r3, an equation for 	(r) is
obtained from the above equations that depends on
the distance r to the source [47, 48], namely,

	�r� � 	�r� � 1 �
4�

3 �	�r� � 2�
�

�

�
4��

q�
r2	�r�L�q��	�r� � 2�

3kTr2	�r� �. (7)

This equation describes the dielectric properties of a
liquid in the presence of a point charge as derived
from the LDS approximation (see a review in Ref.
[49]). Iterative or numerical solutions of this equa-
tion yield dielectric functions of the sigmoidal form
[33] (see below). For pure solvent the dielectric
function 	(r) is expressed in terms of measurable
quantities only. The Lorenz–Lorentz relationship
connects the polarizability of the solvent molecules
with the high-frequency (optical) dielectric constant
	� through �/� � 3(	� � 1)/4�(	� 
 2). Far from
the source Eq. (7) describes the static dielectric per-
mittivity of pure bulk solvent 	s, so an expression
for � is obtained, namely, �2 � (27kT�/4�)(	s �
	�)/(	s 
 2)(	� 
 2). This expression yields values
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of � that are too small when compared with the
dipole moment of water molecules, even in the gas
phase. This observation led to reaction field correc-
tions [32] to the LDS theory proposed by Onsager,
in which only part of the local field El(r), the so-
called directing field Ed(r), is responsible for the
orientational effects on the solvent molecules.
Therefore, only Ed(r) is used for the calculation of
the average 
f(�)�. The directing field can be ex-
pressed in terms of the orienting factor itself in the
form [50] Ed(r) � El(r) � R(r)
f(�)�, where R(r) is the
reaction field at position r in the liquid, given by

R�r� �
4�

3�

2�	�r� � 	��

2	�r� � 	�
2

�	� � 2�

3 �. (8)

With reaction field corrections (LDSO theory) a
modified expression for 	(r) is obtained [48], that is,

	�r� � 1 �
4�

3 �	�r� � 2�
�

�

�
4��

q�
r2	�r� L� q��	�r� � 2�

�3kT � �R�r��r2	�r�� , (9)

where R(r) � �R(r)�.
When the source of the field is a point dipole an

expression for 	(r) similar to Eq. (9) can be obtained;
an overview of the derivation is given below [48]. If
�s is the dipole moment of the source, the macro-
scopic field is given by E(r) � [3(�s � r)r � (r �
r)�s]/	(r)r5 where r is the position of the center of �
relative to the center of �s. At any given instant of
time the interaction energy between the solvent and
source dipoles � and �s is given by w � ���sr

�3(2
cos � cos 
 � sin � sin 
 cos �), where 
 is the angle
formed by vectors r and � (r � � � r� cos 
), � is the
angle formed by vectors r and �s (r � �s � r�s cos �),
and � is the dihedral angle defined by the vectors �
and �s, and vector r that connects their centers, as
the reference. In this case the calculation of 
f(�)� is
not straightforward and a general analytical solu-
tion is difficult to obtain. Under the approximation
of small dipole fields an expression is obtained as

f(�)� � 2 cos � L(�El(r)/kT). For a given spatial
orientation of �s the spherical symmetry that led to
Eqs. (7) and (9) is now broken and 	(r) depends on
the position r in the solvent and not only on the
distance r to the point source [48]. However, a
second Boltzmann average can be taken on all ori-
entations of the source dipole (i.e., on all possible
angles �), thus recovering the spherical symmetry

of the dielectric profile. In this case an expression
analogous to Eq. (9) above is obtained, namely,

	�r� � 	�r� � 1 �
4�

3 �	�r� � 2�
�

�

�
2��

�s�
r3	�r�L� 2��s�	�r� � 2�

�3kT � �R�r��r3	�r��, (10)

where the reaction field R(r) is the same as above
(the reaction field of the source is neglected in its
local orienting field for calculating the second av-
erage). Equation (10) is mathematically similar to
Eq. (9), and the dielectric functions obtained from
both equations exhibit sigmoidal behavior with the
distance r.

Continuum Electrostatics Based on
Screened Coulomb Potentials

For a source point charge q in a dielectric me-
dium it is always possible to define a screening
function D(r) such that the electric potential at po-
sition r can be expressed as �(r) � q/D(r)r. The
relationship between the physically measurable di-
electric function 	(r) and the screening function D(r)
is found from the definition E(r) � ���(r). For a
point charge this relationship is given by

	�r� � D�r��1 �
r

D�r�

d
dr D�r���1

. (11)

Once the dielectric function 	(r) is known from
theoretical considerations, for example, the LDSO
theory [cf. Eq. (9)], or experimental measurements,
D(r) can be evaluated from Eq. (11) (see below).
Both 	(r) and D(r) are sigmoidal functions and ap-
proaches the same asymptotic value as r increases
[33].

It may already be noticed that a continuum for-
mulation based on the LDS theory can be directly
related to atomic properties of the molecule, that is,
local charges, Q, and local dipoles, �s, which in turn
may be obtained using approximate quantum
chemical calculations. This procedure formally
links the screening functions D(r) with the molecu-
lar electron density obtained from ab initio calcula-
tions. A continuum approximation based on screen-
ing potentials for use in peptides and proteins has
been reported [33–36] and an overview of the ap-
proach is given below. The model, dubbed “SCP
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continuum model,” is based on D(r), not on 	(r),
and the precise form of D(r) is determined from the
parameterization of the model as reported else-
where [33, 34, 51].

Formally, once 	(r) is known, for example, from
Eq. (9), inversion of Eq. (11) can be carried out by
numerical integration to obtain D(r). From a prac-
tical point of view, however, it is useful to invert it
analytically. A first-order differential equation with
sigmoidal solutions is sufficient and was proposed
earlier [52], namely,

dD�r�

dr � 
�1 � D�r���Ds � D�r��, (12)

where Ds has the value of the bulk dielectric con-
stant and 
 controls the rate of increase of D(r).
Introducing Eq. (12) into Eq. (11) yields a quadratic
form in D(r) that can be solved as an explicit func-
tion of r and 	(r). A solution of Eq. (12) is given by

D�r� � �1 � Ds�/�1 � k exp���r�� � 1,

(13)

where k is a constant of integration and � � 
(1 
 Ds).
It is seen that the physics of the system [Q, �, �s, 	�,
etc, i.e., the quantities that define 	(r) in Eq. (9)] is
contained in the parameter 
 (or �), and this can be
calculated from experimental data in the limit of
simple systems. Moreover, this particular sigmoidal
form of 	(r) or D(r), i.e., solutions of Eq. (12), allows
a good fit of the screening obtained from experi-
mental data. Note that because 
 (or �) depends, in
particular, on atomic charges and dipoles of the
solute and can be obtained from the LDSO theory,
it is possible to derive a first-order, parameter-free
continuum model of solvation by combining quan-
tum chemistry and classic theory of liquids. This
procedure is formally proposed herein.

For a system composed of N charges qi the po-
tential can be expressed in the general form

��r� � �
i�1

N qi

D�r��r � ri�
(14)

at any arbitrary point r; here it is assumed that D(r)
and 	(r) are scalar functions. The exact form of D(r)
in Eq. (14) is not known in general and is one of the
fundamental questions in molecular electrostatics.
The simplifying approximation made for deriving
the SCP is to assume that D(r) can be expressed in

terms of distance-dependent screening functions
Ds(�r � ri�) centered at each atom coordinate ri. In
this case the potential is expressed as a superposi-
tion of the form (index s stands for “solvent” fol-
lowing previous notation)

��r� � �
i�1

N qi

Ds��r � ri���r � ri�
(15)

and, then, the position-dependent screening func-
tion D(r) is formally given in terms of the distance-
dependent screening functions by D(r) � ¥i qi/�r �
ri�/¥i qi/�r � ri�Ds(�r � ri�). Note that D(r) is a con-
tinuous function of the position (except at {ri}) and
depends on the particular distribution of charges in
the system, as expected.

From Eq. (15) and using a standard thermody-
namic path an expression for the total electrostatic
energy, UT, of a molecule in the polar liquid is
obtained [33, 34], which is given by

UT �
1
2 �

i�j

N qiqj

Ds�rij�rij
�

1
2 �

i�1

N qi
2

Ri,B
� 1

Ds�Ri,B�
� 1� ,

(16)

where the first sum is the interaction term and the
second, the self-energy contribution. In the context
of a molecule, unlike an isolated particle considered
above, Ds(r) represents the screening function that
accounts for all the screening mechanisms in the
system around a given particle; Ri,B is the effective
Born radius of atom i in the solvated molecule.

Combining LDSO and DMA
Approaches into the SCP Continuum
Model

NUMERICAL CALCULATION OF DIELECTRIC
AND SCREENING FUNCTIONS

Figure 1 shows the dielectric function 	(r) and
the associated screening function D(r) for a point
charge in water. Iterative solutions for other sol-
vents were reported previously [33]; solutions of
Eqs. (7) and (9) are symmetrical in Q. Here screen-
ing functions were obtained by a numerical integra-
tion of Eq. (11) with the condition that it reaches an
asymptotic value as r 3 �. The experimental data
used to solve these equations were as follows: Q �
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e, � � 0.82 D, 	s � 78.39, 	� � 1.78, � � 29.8 Å3, T �
298 K; with these values the polarizability � can be
obtained from the Lorenz–Lorentz relationship.
The dielectric function 	(r) shows a smooth increase
with the distance and reaches the bulk solvent
value at r � 15 Å (LDS) or r � 7 Å (LDSO). The
screening functions D(r) are steeper than 	(r) and
reach their asymptotic values at shorter distances
from the central charge, that is, at r � 11 Å (LDS) or

r � 5 Å (LDSO). The effect of the reaction field
corrections is to shift the profile toward smaller
values of r. As a general rule the larger is the charge
Q, the lower is the slope of 	(r) within the changing
region. This is clearly observed in Figure 2(a),
which displays 	(r) (LDSO) for different values of
the point charge Q � Ze. Figure 2(b) shows the
corresponding screening functions, D(r), obtained
from a numerical integration of Eq. (11). The range
of charges covers all values obtained from a parti-
tioning of the molecular electron density; in par-
ticular it includes partial charges as defined in
standard molecular mechanics force fields for mac-
romolecules. Table I shows the monopoles and di-
pole moments obtained from a DMA analysis of the
minimized structures of the N-acetyl-L-Alanine-N-
methylamide (atom names follows CHARMM no-
menclature). The calculations were carried out us-
ing density functional theory (DFT) with a
gradient-corrected three parameter B3LYP ex-
change-correlation functional [73, 74], and the
6-31G* basis set. Figure 3 shows 	(r) (LDS with Q �
e) and two additional D(r) curves, one calculated
numerically from the definition [cf. Eq. (11)] and a
second one from the proposed differential equation
[cf. Eq. (12)]; the experimental conditions are as in
Figure 1. For the value 
 � 0.011 Å�1 (� � 0.87 Å�1)
a good fit to the exact D(r) [cf. Eq. (11)] is obtained
at all distances, which deteriorates only at the
shoulder of the curve. However, because of the
large value of D(r) in this region, the difference in
the interaction energy calculated from these two
curves is negligible. For a set of experimental con-

FIGURE 1. The LDS and LDSO dielectric profiles, 	(r),
and the corresponding screening functions, D(r), in-
duced by a point charge Q � e in water (T � 298 K)
as a function of the distance, r, to the source; 	(r) were
obtained numerically from Eq. (7) (LDS) and Eq. (9)
(LDSO), whereas D(r) were obtained by numerical inte-
gration of Eq. (11).

FIGURE 2. (a) Dielectric and (b) screening functions in water induced by a representative set of point charges Q �
Ze as a function of the distance, r, to the source, at T � 298 K; 	(r) and D(r) were obtained numerically from Eqs. (9)
and (11), respectively (LDSO theory).

QUANTUM CHEMISTRY TO MOLECULAR MECHANICS

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 993



ditions (and a given solvent) a value of 
 can be
obtained that fits D(r) of Eq. (12) to the form of Eq.
(11). At a given temperature a curve 
(Q) can be
obtained as shown in Figure 4, which has an expo-
nential-decay type behavior. Similar curves can be
obtained for a point dipole, but this case is not
considered here. Suffice it to say that for a dipolar
source, the qualitative behavior of 	(r) is similar to
the case of an ion, but the increase of 	(r) with the
distance is faster than shown in Figure 1 [48].

DETERMINATION OF PARAMETERS AND
PARAMETER MISMATCH

Equation (16) has been used in a number of
problems involving peptides and proteins [33–36,
53, 54]. To be useful, the parameters � in the screen-
ing functions Ds had to be derived first. Chemical
atom-type parameters were optimized by fitting
experimental solvation energies of amino acid side
chain analogs [33]. This illustrates one of the draw-
backs of MM approximations over ab initio QM,

namely, the need to define empirical parameters
prior to carrying out calculations. As discussed
above, continuum models for use in macromolecu-
lar systems vary broadly in the way the potential
function is defined and in the parameter defini-
tions. The procedure reported in this paper aims at

TABLE I ______________________________________
Monopole and dipole components of a DMA of N-
acetyl-L-Alanine-N-methylamide.a

Atom Charge, Q Dipole moment, �

CAY �0.218 0.043
HY1 0.028 0.165
HY2 0.076 0.164
HY3 0.078 0.166
CY 0.956 0.305
OY �0.887 0.325
N �0.689 0.248
HN 0.332 0.064
CA 0.171 0.514
HA 0.035 0.166
CB �0.115 0.217
HB1 0.028 0.160
HB2 0.053 0.165
HB3 0.067 0.164
C 0.985 0.354
O �0.870 0.330
NT �0.725 0.208
HNT 0.400 0.091
CAT 0.150 0.511
HT1 0.032 0.162
HT2 0.040 0.163
HT3 0.073 0.170

a Charges Q are given in fractions of e and dipole moments �
in Debye. Atom names follow CHARMM force-field nomen-
clature.

FIGURE 3. Distance dependence of the dielectric
function 	(r) obtained from the LDS theory for a point
charge Q � e [cf. Eq. (7)] and the corresponding
screening functions D(r) obtained from a numerical inte-
gration of Eq. (11) (solid line), and as a solution of the
quadratic form obtained by introducing Eq. (12) [with
solutions given by Eq. (13); see text] into Eq. (11) (dot-
ted line): Q � e (Z � 1), 	s � 78.4, 	� � 1.78, T �
298 K.

FIGURE 4. Dependence of the parameter 
(Q) in the
first-order differential equation for D(r) [cf. Eq. (12)] with
the charge Q � Ze of the source (LDSO theory).
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minimizing this limitation in a continuum model of
solvation, in particular in the SCP-based model de-
scribed earlier [33–35].

Another difficulty arising from the need to de-
fine parameters a priori in MM force fields is that it
complicates comparing results obtained from dif-
ferent continuum methods. This occurs because it is
often difficult to ensure that the parameters defin-
ing each of the models to be compared have been
optimized to the same degree of accuracy or to
assess the level of physical information contained in
each model. Thus, the parameters defining each of
the models to be compared may be mismatched.
Because such parameter mismatch (PM) can have
broader implications regarding the reliability of a
particular model (as discussed in the introduction),
some of its consequences are detailed in the follow-
ing discussion. One form of the problem is well
represented by the frequently used comparison of a
mature approach, for example, the generalized
Born (GB) continuum model [55] in any of its many
forms with, say, linear dielectric screening in the
form [56] 	 � ar. In these analyses the mature
models include at least the electrostatic interactions
and the self-energy contributions. Moreover, the
parameters have been carefully optimized by fitting
results of Poisson–Boltzmann (PB) calculations (see
below) or experimental results such as solvation
energies. In contrast, no or little optimization has
been done for the general linear term 	 � ar 
 b.
Instead b is arbitrarily set to zero and a is often
given the value 1 or 2. No justification is given for
these values, and important parts of the physics of
solvation (e.g., self-energy) are also lacking. Be-
cause of these defects the linear dielectric, for ex-
ample, 	 � 2r, performs poorly in comparison with
an optimized model in describing the electrostatics
of solvation. Better parameterization of the linear
form was suggested earlier, for example, the form
[57] D(r) � 4.5r and the optimized form, D(r) �
6.7r � 8.57, had been proposed [58] by fitting to Eq.
(13). However, the reliability of these simple pro-
posals has not been fully explored.

A recently proposed approach for the rapid cal-
culation of solvation energies of proteins represents
another example of PM in the comparison of two
methods [59]. The method was designed to carry
out fast calculations of the Born radii, Ri, that ap-
pear in the interaction term of the GB model (i.e.,
the terms containing the quantity (RiRj)

1/2). The
authors intended to use their approach in the con-
text of a GB-like formulation. The approach con-
sisted in first dividing all pair interactions into three

classes: 1–2 (between covalent-bonded atoms), 1–3
(between two atoms covalently bonded to a com-
mon atom), and the rest of the nonbonded interac-
tion (1–4 and higher). It is noted, however, that MM
force fields use only the last class to calculate non-
bonded interaction energies. The authors used five
parameters for each of these three classes, although
for the 1–4 class three of the parameters were given
preassigned values [59]. Thus, the method pro-
posed used a set of 15 parameters, 12 of which were
optimized by fitting pair interaction energies to the
corresponding values obtained from solution of the
Poisson equation. In the optimization of their
method the authors used a set of over 50 proteins
that were also used for all the subsequent compar-
isons. The proteins ranged in size from �10 to �110
amino acids. For all the PB calculations and optimi-
zation the authors assigned the same internal di-
electric constant of 	i � 2 to all the proteins of the
set. In addition, the same probe radius and external
dielectric constant were used (see Ref. [59]).

The authors compared their method with a dis-
tance-dependent screening function similar to Eq.
(13), given by D(r) � A 
 B/(1 
 a exp(�br)). Here
a and b are the two parameters that were optimized
(A and B were chosen such that D(0) � 1 and
D(�) � 	s). The details of the procedure used to
optimize these two parameters are given in Ref.
[59]. In the optimization of D(r), apparently all three
classes of interactions (i.e., 1–2, 1–3, and 1–4 and
larger) were taken together to obtain the values of a
and b. However, the three classes had been opti-
mized separately, three sets of the parameter pairs,
a and b, would have been obtained. The drawback
of the approach used by the authors to optimize
D(r) is that it leads to an extremely distorted form of
the screening function because the fitting will nat-
urally emphasize the largest values of the target
function (1–2 and 1–3 pair interactions in this case).
This can be seen in Figure 5, where D(r) using the
reported values of a and b is plotted (DHMWC) along
with the form proposed originally [52] for the SCP
(DWDS). It is clear that DHMWC is very different from
DWDS, and for distances r � 10 Å DHMWC strongly
underscreens all electrostatic interactions. That
such PM can lead to artifactual results can be seen
from an earlier comparison of pair energies calcu-
lated with DWDS and with the original version of
the GB [55]. The scatter plot of these energies (Fig.
4 in Ref. [60]) showed a good agreement between
the two methods, in contrast to the findings in Ref.
[59]. The reason for this is that the effective screen-
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ing in the GB was essentially the same as that
provided by DWDS (see Fig. 3 in Ref. [60]).

In the previous sections the form of D(r) was
derived from basic electrostatic considerations, and
previous works have demonstrated that methods
yielding reasonable results screen the interactions
in a way that closely resembles D(r), including PB-
derived screening [61]. Therefore, it is not surpris-
ing that interaction energies calculated with
DHMWC do not compare well with GB or PB results
because of the mismatch in parameters.

Another fundamental problem related to the dis-
cussion above is the nature of the target function
used for parameter optimization. It is customary to
use results from PB calculations as the standard for
fitting and parameter optimization of some solva-
tion models. Such a procedure is reasonable be-
cause of the fundamental nature of the Poisson
equation and the rigorous statistical arguments that
leads to the nonlinear PB equation. Because the PB
equation can be solved only numerically when ap-
plied to macromolecules, it is necessary to make a
number of a priori assumptions when the PB
method is used to calculate electrostatic properties.
The most basic assumptions consist in assigning
values to the internal, 	i, and external dielectric
constant, 	s, and to define a location of the solvent/
solute boundary, i.e., to define a probe radius rp.
These assumptions are problematic because it is
known that the values assigned to 	i, and rp, al-
though reasonable, are arbitrary. In proteins typical
values used are in the range of 	i � 1–4, 	s � 80, and

rp � 0–1.4 Å, although other values have also been
used. It is known that numerical solutions of the PB
equation may be very sensitive to small changes of
these values [62] (see below). Proteins are nonho-
mogeneous systems whose internal dielectric val-
ues are not well defined, and to represent the inho-
mogeneity, different values of 	i have been
assigned to different regions of the same protein.
Moreover, as discussed above, it is not straightfor-
ward to define a sharp solute/solvent boundary,
because dielectric profiles in polar liquids vary
smoothly with the distance. This freedom of choice
may introduce a high degree of arbitrariness that is
transferred to the parameters of a solvation model if
simplistic PB results are used in its parameteriza-
tion.

The problem is quantitatively illustrated in the
scatter plot of Figure 6, which shows per-atom sol-
vation energies in a wild-type domain of Barnase, a
110 amino acid protein (pdb code: 1a2p). These
solvation energies were calculated with the UHBD
PB solver [63] using two sets of 	i and rp values: 	i �
1 and rp � 0 Å; and 	i � 4 and rp � 1.4 Å (	s � 80
for both cases). Most of the calculations in protein
electrostatics use values between these two limits.
Protein 1a2p is the largest molecule in the set of
50-plus proteins used in Ref. [59] and discussed
above (coordinates kindly provided by the au-
thors). The solvation energy of a given atom i is
calculated as the solvation energy of the whole

FIGURE 6. Scatter plot of atomic solvation energies
in Barnase (pdb code: 1a2p) for two sets of (	i, 	s, rp)
values (units in kcal/mol), at zero ionic strength calcu-
lated from the PB equation; the PB solver in the UHBD
[63] program was used (see text).

FIGURE 5. Screening functions calculated from differ-
ent parameterizations: Dwds(r) (as reported in Ref. [60])
and DHMWC(r) (as reported in Ref. [59]).
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protein when all charges (qj @j � i) are set to zero,
except the partial charge qi of atom i. The range of
solvation energies changes from 12 kcal/mol for
	i � 4, rp � 1.4 Å to about 55 kcal/mol for 	i � 1,
rp � 0 Å. Both the slope and the correlation (the
straight line is a linear fit) are strongly shifted from
the ideal (or desirable) value of one. More impor-
tant than the slope of the correlation is the large
number of outliers observed: atoms that display the
largest differences in energies with respect to the
straight line (in some cases about 30 kcal/mol) be-
long to exposed side chains in the protein. As a rule
the larger is the charge of an atom, the larger is the
difference in the calculated energy. This is very
unfortunate because charged groups are at the
same time more frequently found on the protein
surface. These exposed groups are also involved in
interactions and binding with other proteins and
ligands; thus, large errors in their solvation energies
may render the quantitative interpretation of a cal-
culation meaningless. In fact, the differences in en-
ergies observed in Figure 6 are unacceptable in
biological systems because errors on the order of
RT � 0.6 kcal/mol (room temperature) may already
have an important effect in the calculation of both
structure and dynamical properties, hence, on ther-
modynamic quantities. In contrast to exposed
charged groups, deeply buried groups are mostly
insensitive to changes in 	i and rp, and the smaller is
the charge of the atom, the smaller are the errors in
energy. Actually, buried uncharged groups contrib-
ute the most to the positive correlation observed in
Figure 6, especially in the region of small solvation
energies.

From the discussion above a question emerges as
to what set of values (i.e., 	i, 	s, and rp) should be
used in these simple PB calculations when optimiz-
ing parameters of a solvation model. In Ref. [59] all
the proteins of the set were assigned the same val-
ues of 	i, 	s, and rp, but any value in the range
considered in Figure 6 could have been chosen, or
even different sets of values for different proteins.
Moreover, the LDS theory shows that the rate of
increase of 	(r) with the distance depends on the
atoms, so an atom-dependent rp would be more
reasonable if a sharp boundary is to be defined in
the calculations.

It is clear, then, that to be able to reliably apply a
particular methodology to systems that may show
large variability in size scale, environment, and
chemical nature, a more rigorous approach is
needed to minimize empiricism and arbitrary as-
sumptions. It is proposed here that parameters de-

veloped for use in continuum models of solvent
effects should ideally include the following proper-
ties: (i) to have a clear connection with physical quan-
tities and experimental control variables (e.g., tempera-
ture and ion concentration); (ii) converge to quantities
that can be calculated from experimental data in the limit
of simple systems; and (iii) to be transferable between
molecular systems. These basic guidelines, which are
interrelated, would probably help to bridge the
QM–MM gap discussed in the Introduction and
form the basis of a more general model for use in
molecular systems of varying size scales. The im-
plementation outlined here is a first attempt to fol-
low these guidelines in a more systematic way than
previously pursued in the context of the SCP-ISM
for macromolecules.

For small molecules the LDSO theory and the
DMA or AIM methods can be combined self-con-
sistently for the ab initio calculation of molecular
structure in solution. Thus, an initial set of charges
{qi,0}i�1,N is obtained from a DMA analysis in vac-
uum (e.g., as in Table I for alanine dipeptide). These
charges are used to obtain atom-dependent screen-
ing {Di,0(ri)}i�1,N centered at the coordinates of each
nucleus, {ri}i�1,N. For this assignment the plot of
Figure 4 is used, which is independent of the nature
of the molecule, although the molecular structure is
implicit in the charge distribution. With this
vacuum-based set of screening functions a new set
of charges is obtained from the new optimized mo-
lecular structure. The new charges are then fed back
to the plot of Figure 4 and a new set of screening
parameters is obtained. The procedure is repeated
until convergence is attained. Note that a similar
self-consistent procedure was reported earlier for
another method [19, 64]. This procedure, valid in
the context of a pure QM calculation is not de-
scribed here.

A simplified but more practical implementation
for use in macromolecules can be used for calcula-
tions in the context of a MM force field as described
below. The main advantage of this procedure is that
the properties (i) and (ii) suggested above are nat-
urally satisfied, whereas directions are discussed to
attain point (iii) with the help of AIM theory. The
main idea is to use the partial charges of the force
field or from an ab initio method and to derive the
correct value of the parameters from Figure 4. After
a set of charges is available, Eq. (16) is used to
calculate the electrostatic component of the total
molecular energy of the MM force field as previ-
ously discussed [33, 34] (see also URL at Ref. [65]).
The key issue of this procedure is that it does not
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require a parameterization of the solvent model in
the usual (a priori) sense, so any new molecule can
be studied as long as a set of charges (and possibly
dipoles) is defined. This is particularly useful for
small molecules in the context of a MM calculation.
It is also useful for proposing an initial condition
for further refinement based on self-consistency of
the kind mentioned above or as the reference for a
perturbative approach. Also fundamental is that
the method would allow a great amount of flexibil-
ity if a polarizable MM force field is used to de-
scribe the solute because the parameters of the con-
tinuum model would adjust themselves in a
predicted way to the fluctuating charges and di-
poles in the molecule.

Figure 7(left panel) shows the in-vacuum energy
surface of the alanine dipeptide calculated using
the CHARMM force field (c31b1 version) with the
recently developed CMAP dihedral potential [66].
The calculation was carried out as described in a
previous publication [34]. This CHARMM/CMAP
combination along with the SCP-based continuum
model (SCP-ISM) was shown to reproduce struc-
tural and dynamic properties of proteins in long
dynamics calculations [35, 36, 67]. Figure 7(right
panel) displays the energy surface modified by the
solvent using Eq. (16) and parameters obtained
from Figure 4 using PAR22 charges [14]. Contours

are plotted at 1 kcal/mol increments from the
global minimum (C7

eq). It is interesting to compare
the SCP-ISM/CHARMM/CMAP surface of Figure
7(right panel) with Figure 6 in Ref. [10] and also
Figures 1 and 2 in Ref. [66]. The positions of the
minima [cf. Table II] are in qualitative agreement
with previous QM/MM calculations as well as with
statistical distributions obtained from a search in
the Protein Data Bank. The relative energies and
positions of the minima in the plot of Figure 7(right
panel) are shown in Table II. There are four well-
defined minima corresponding to the C7

eq, C7
ax, �R,

and �L and discussed in previous publications, al-
though the positions and relative energies have
changed, as expected. The most dramatic change is

FIGURE 7. (Free) energy surface (Ramachandran plot) of the alanine dipeptide using the CHARMM/CMAP force
field in vacuum (left panel) and with the SCP-ISM (right panel). Details of the calculation are reported in Ref. [35] (see
also URL at Ref. [65]) with screening parameters obtained from Figure 4. Atomic charges were obtained from the
PAR22 all-atom parameters of the CHARMM force field (c31b1 version). Contour plots are at increments of 1 kcal/
mol in both panels and the lowest energy corresponds to the C7

eq conformation (see Discussion in Ref. [34]).

TABLE II ______________________________________
Position and energy of the minima of the energy
surface of the alanine dipeptide in the (�, �)-space
(error estimated from the grid spacing used in the
calculations).

C7
eq C7

ax �R �L

Energy
(Kcal/mol) 0.0 3.7 1.1 2.7

(�, �) � 3° (�154, 160) (55, �154) (�104, 0) (61, 44)
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observed in the energy of the �L minimum that
drops from about 7.8 kcal/mol with the SCP-ISM/
CHARMM/PAR22 to about 2.7 kcal/mol in the
new implementation [66]. Interestingly, the energy
surface calculated with the SCP-ISM as imple-
mented into the c31b1 version of the CHARMM
force field, when used with the CMAP potential,
yields results quantitatively similar to those re-
ported above [36]. It is noted that incorporation of a
simple hydrophobic term proportional to the sol-
vent-accessible surface area does not change the
results beyond the expected uncertainty of the cal-
culations [36].

Conclusions

In this paper an approach is proposed for incor-
porating a solvent continuum model into micro-
scopic (QM), macroscopic (MM), and hybrid (QM/
MM) algorithms for calculating macromolecular
structure and properties of macromolecules. The
basis of the method is the multicenter-multipole
expansion of the electrostatic potential of a solute
molecule that leads to a local description of charge
and dipole moment. While such partitioning is not
unique, it can be based on reasonable mathematical
or physical arguments as exemplified by the AIM
method developed by Bader et al. [21–25] or Stone’s
DMA approach [26, 27]. When the system is im-
mersed in a continuum solvent, its potential can be
written in the form of Eq. (14), and introducing the
approximation that the position-dependent D(r)
can be expressed in terms of distance-dependent
screening functions, an expression for the total po-
tential �(r) in terms of atom-centered contributions
{�(r � ri)}i�1,N is recovered that can be formally
related to Eq. (2).

In the unified approach suggested here, the ne-
cessity for the a priori determination of the param-
eters defining the continuum model that is incor-
porated into the MM force field can be replaced by
a self-consistent approach. This approach is illus-
trated in Figure 4, which shows that the optimal
values of 
 [cf. Eq. (12)] depends on the charge, Q,
at a given temperature. A similar plot can be ob-
tained as a function of the magnitude of the dipole
moment �. As shown in the example, given a par-
ticular force field, the 
 can be determined directly
from Figure 4. The procedure was applied to the
alanine dipeptide, and the results show good agree-
ment with QM/MM calculations [10, 66]. Circum-
venting the need for the a priori determination of

parameters for a particular continuum model
avoids the type of PM discussed in the fourth sec-
tion. These include the PM between two ap-
proaches that are to be compared, and the PM that
might occur when parameters are fit to results from
other theoretical methods, such as the PB equation.
As shown in the scatter plot of Figure 6, the values
of the calculated interaction energies are very sen-
sitive to the values of 	i and rp used in the calcula-
tion. In particular, the interaction energies calcu-
lated from larger charge values are poorly
correlated. This sensitivity will certainly be re-
flected in the values of the fitted parameters and
may lead to severe distortion when the continuum
model is applied to real systems (for which 	i and rp

are not known).
The approach proposed herein also has implica-

tions if polarizable MM force fields are considered.
In these cases, the dielectric properties of the sys-
tem are expected to change in response to the local
dipole and charge distribution. If parameters are
obtained from fixed electronic structure, as is the
case in the majority of the continuum models used
in MM force fields for biomolecules, this adaptation
is not possible. The simple law displayed in Figure
4 that is followed by the parameter 
(Q) versus Q
(this numerical curve can be fitted accurately by the
sum of two simple exponential-decay functions)
can be further generalized to include the effects of
the dipole moment, namely, 
(Q, �). This expres-
sion of 
 as a function of Q and � makes it possible
to carry out “on the fly” recalculation of the posi-
tion-dependent screening. The adaptation of the
screening to fluctuating local charges and dipoles in
the solute offers a desirable flexibility that is lacking
in most continuum models of solvation in MM
force fields.

It is clear from the above discussion that a “pa-
rameter-free” continuum model is a desirable goal
and the procedure proposed in this paper is an
initial step in this direction. A complete formalism
for computer simulations of polymers and other
mesoscopic systems will be reported elsewhere.
The method of determining the function 
(Q),
shown in Figure 4, clearly conforms to conditions (i)
and (ii) discussed in the last section, but its trans-
ferability (condition iii) still needs to be established.
The original a priori determination of the parame-
ters [33, 35] of the SCP-ISM (i.e., the 
 or �) have
implicitly been assumed to be transferable, an as-
sumption that appears to be reasonable in view of
the successful results obtained in many standard
tests in proteins and peptides. However, as dis-
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cussed elsewhere [34], many of these tests would be
inadequate to assess the quality of a continuum
approximation. For this reason it is also expected
that the possibility of studying small molecules at
theQMlevelusingthemulticenter-multipole-LDSO–
based SCP approach described here would offer
more stringent tests for the quality of the contin-
uum approach. Calculations that seem relevant for
this task are the study of the effect of the solvent on
the conformations and vibrational and electronic
spectra of small molecules, in addition to compar-
isons with experimental data.

Finally, it is worthwhile to keep in mind that a
continuum approximation cannot describe all the
physics of solvation, as discussed in Refs. [35, 36].
In particular, hydrophobicity [68–71], hydrogen-
bonding interactions [51, 72] and, possibly, the local
granularity of the liquid around exposed atoms are
important physical effects that must be considered
when studying dynamic properties of biomol-
ecules.
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