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TECHNICAL PUBLICATION

ON THE RELATIONSHIP BETWEEN SOLAR WIND SPEED, GEOMAGNETIC ACTIVITY, 
AND THE SOLAR CYCLE USING ANNUAL VALUES

1.  INTRODUCTION

	 In order to explain the late-occurring geomagnetic peak in solar cycles, Feynman1 suggested 
decomposing the aa geomagnetic index into two components—one that is in phase and correlated directly 
with the sunspot cycle, the leading sporadic component, and the other that is out of phase and associ-
ated with interplanetary disturbances from the Sun, the residual or following recurrent component, which 
usually peaks after sunspot maximum (the exceptions are cycles 12 and 13) just before the next cycle’s 
sunspot minimum.2–5 Following Feynman’s approach, Hathaway and Wilson6,7 decomposed the aa geo-
magnetic record  and used the late-cycle recurrent peak to forecast the expected size of the next sunspot 
cycle (cycle 24), using both the observed and adjusted records of the aa index, where the adjusted record 
is one that compensates for changes in the repositioning of the magnetometers prior to 1957 that are used 
in the determination of the aa index. (See also Svalgaard, Cliver, and Le Sager.8) From their studies, it 
was determined that cycle 24 should be expected to be a cycle of larger than average size, comparable to 
cycles 21 and 22, the second and third largest cycles of the modern era. (See also Dikpati, de Toma, and 
Gilman.9)

	 It has long been believed that there should be a good correlation between geomagnetic activity and 
solar wind speed10 and, indeed, for periods of high coverage, a strong correlation has been found.11 Also, 
it has been found that a general increase in the aa index has occurred between 1868 and 2006, where this 
increase has been attributed to an increase in the strength of the polar magnetic field of the Sun.12 

	 In this Technical Publication (TP), the relationship between solar wind speed, geomagnetic activ-
ity (the aa index), and the solar cycle is reexamined using annual averages, where the solar wind speed is 
determined using the Omni-merged, 1-hr, 1 AU interplanetary (IP) data <http://cdaweb.gsfc.nasa.gov>.13 
This is the first of a two-part study of solar wind and the geomagnetic/solar cycle.
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2.  RESULTS AND DISCUSSION

	 Figure 1 displays the variation of annual averages of (a) sunspot number R and (b) the adjusted 
aa index for the interval 1860 –2006, where the adjusted aa index7 is merely the observed aa value for 
the interval 1957–2006 and the observed value plus 3 nT for the interval 1868–1956. Although Nevan-
linna and Kataja14 have extended the aa index for two additional solar cycles (1844 –1867) using hourly 
declination readings at the Helsinki magnetic-meteorological observatory (1844 –1880), these data have 
not been used in this TP. The thin, vertical lines mark the sunspot minimum years and the numbers refer 
to sunspot cycles 10–23, where cycle 23 is the current sunspot cycle that began in 1996. While sunspot 
cycles usually have a single, well-defined peak (Rmax) that follows sunspot minimum (Rmin) by 3–5 yr 
when described using annual averages, the geomagnetic cycle typically has multiple peaks, with the larg-
est (aamax) usually occurring during the declining portion of the sunspot cycle (as previously mentioned, 
the exceptions are cycles 12 and 13), just prior to the sunspot minimum of the following cycle. Also, the 
minimum value of the geomagnetic index (aamin) almost always has occurred in the year following the 
sunspot minimum year. (The exceptions are cycles 14, 15, and 19, which had aamin and Rmin occurring 
contemporaneously, and cycle 21, which had aamin occurring in 1980, some 4 yr past Rmin and 1 yr past 
Rmax, although a slightly larger local minimum value was seen at 1 yr past Rmin; the aamin value for 
cycle 11 likely occurred during the sunspot minimum year of 1867 and not 1868.)

	 From figure 1, Rmin is found to have varied between 1.4 (cycle 15) and 13.4 (cycle 22), having a 
90% prediction range of 7 ± 6.7 for the given sample size of 13 cycles. Also, Rmax is found to have varied 
between 63.5 (cycle 14) and 190.2 (cycle 19), having a 90% prediction range of 117.5 ± 70.9. The ratio 
(not shown) of Rmax to Rmin for the past 13 solar cycles is found to have varied between 10.38 (cycle 
20) and 74.21 (cycle 15), having a 90% prediction range of 22.3 ± 31.89. The value of R in 2006 measured 
15.2, a value that lies just outside the 90% prediction range for Rmin. Hence, the sunspot minimum year 
for cycle 24 likely will occur in 2007 (the annual average for 2007 has recently been determined to be 7.6, 
well within the 90% range for Rmin), or possibly 2008 if cycle 24 turns out to be a slow riser.

	 Likewise, from figure 1, aamin (in the vicinity of sunspot minimum) is found to have varied 
between 9 (cycle 14) and 20.2 (cycles 19 and 21; cycle 21 actually had a lower aamin in 1980 (18.5), well 
after its sunspot minimum year of 1976), having a 90% prediction range of 15.2 ± 7.1 for the given sample 
size of 12 cycles. (Cycle 11 is not included since its aamin probably occurred in 1867, before the start of 
the aa record.) Also, aamax is found to have varied between 20.5 (cycle 14) and 37.1 (cycle 23), with all 
cycles from cycle 18 onward having an aamax ≥30.3. The 90% prediction range for aamax is 29.7 ± 8.1. 
The ratio (not shown) of aamax to aamin for the past 12 solar cycles is found to have varied between 
1.62 (cycle 19) and 2.59 (cycle 12), having a 90% prediction range of 2.03 ± 0.6. The value of aa in 2006 
measured 16.2, a value within the 90% prediction range for aamin, and the value of aa for the first 7 mo 
of 2007 has averaged 15.6. Excluding cycles 12 and 13, which had aamax that preceded Rmax by 1 yr, 
aamax is found to have occurred after Rmax, on average, by about 3 yr (the range is 2–6 yr). (Cycles 12 
and 13 had slightly smaller local aamax values after Rmax, by 3 and 1 yr, respectively.)
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Figure 1.  Annual variation of (a) sunspot number R and (b) the corrected aa geomagnetic 
	i ndex for the years 1860–2006. The thin, vertical lines mark the sunspot minimum 
	 years and the numbers refer to the sunspot cycles 10–23. Notice that most cycles 
	 have their largest aa index after sunspot maximum (except cycles 12 and 13) 
	 and their minimum aa index value either in the sunspot minimum year or the year 
	 following the sunspot minimum year (except cycle 21).

	 Figure 2 shows the scatterplot of aa versus R for 1868–2006. All aa values are found to lie either 
on or above the given diagonal line aaR = 8.83123 + 0.06254R, where this equation is used to compute the 
leading sporadic component of the aa index (i.e., the solar cycle component).

	 Figure 3 depicts the residual aaI  = aa – aaR, or the following recurrent interplanetary component, 
having removed the leading sporadic component. The residual is believed to be associated with recur-
rent high-speed streams from coronal holes, which typically are at their greatest extent after sunspot 
maximum.15 Thin, vertical lines mark the sunspot minimum years; thick, vertical lines mark the sunspot 
maximum years; and the numbers 11–23 again refer to the sunspot cycles. For all cycles, except cycles 
12 and 13, the maximum value of the residual, denoted here as (aaI)max, occurs after sunspot maxi-
mum and ranges in value between 10.5 (cycle 14) and 24.3 (cycle 23), having a 90% prediction range of 
16.7 ± 7.4.
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Figure 2.  Scatterplot of the annual aa index values against R for the years 1868–2006. 
	 Notice that all aa index values lie on or above the line denoted aaR, which 
	i s used to compute the leading sporadic component of the aa index (i.e., 
	 the solar cycle component).
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Figure 3.  Annual variation of the residual or following recurrent interplanetary component 
	 of the aa index, computed as aaI = aa – aaR for the years 1868–2006. The thin, 
	 vertical lines mark the sunspot minimum years; the thick, vertical lines mark 
	 the sunspot maximum years; and the numbers refer to the sunspot cycles 11–23. 
	 Plainly, the maximum recurrent component of the aa index usually occurs after 
	 sunspot maximum (except cycles 12 and 13). Notice that the largest observed value 
	 of the recurrent component (24.3) occurred in 2003 during the decline of cycle 23.
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	 Figure 4 plots the annual variation of R, aa, aaI, the solar wind speed v (in km s–1), and the number 
of hours of solar wind observation (plots (a)–(e), respectively) for the interval 1950–2006. As before, thin, 
vertical lines mark the sunspot minimum years; thick, vertical lines mark the sunspot maximum years; 
and the numbers refer to solar cycles 19–23. Solar wind data are available for 1964–present, adapted here 
using the Omni-merged, 1-hr, 1 AU IP data (available at <http://cdaweb.gsfc.nasa.gov>).13 In particu-
lar, the annual solar wind speed used in this study is the average of the maximum and minimum hourly 
solar wind speeds for each day, weighted by the number of hours of daily observation. As an example, 
on January 1, 1964, solar wind speeds were recorded for 12 hr, having a maximum of 370 km s–1 and 
a minimum of 310 km s–1, thereby, inferring an average of the extremes of 340 km s–1. Observations 
are available for 29 of the 31 days of the month covering 558 hr (75% coverage). The average of the 
daily maximum-minimum averages, weighted according to the number of hours of daily observation, was  
369 km s–1 and this value represents the average solar wind speed for January 1964. For the remainder of 
the year, the average monthly solar wind speed/numbers of hours of observation were 352.9/228 (Febru-
ary), 0/0 (March–June), 517.5/111 (July), 453.6/159 (August), 463.4/237 (September), 459.8/396 (Octo-
ber), 430.7/249 (November), and 396/183 (December). For the year 1964, the average solar wind speed 
was 418.4 km s–1 based on 2,121 hr of observation (24.1% coverage), and it is this solar wind speed (and 
number of hours of observation) that is plotted in figure 4 for the year 1964. Inspection of figure 4 clearly 
shows that the solar wind speed v peaks after sunspot maximum for all observed cycles (cycles 20–23; 
observations began in November 1963). Interestingly, the highest average solar wind speed occurred in 
2003 (542.8 km s–1, based on 8,688 hr of observation or 99.2% coverage; coverage is greatest (>90% 
coverage) for the years of 1974, 1979–1981, and 1995–present), and the peak in solar wind speed for all 
cycles (except cycle 23) occurs 2 yr prior to the following cycle’s sunspot minimum year (cycle 23 actu-
ally has a secondary peak in 2005, measuring 469.9 km s–1 based on 8,689 hr of observation or 99.2% 
coverage).

	 Figure 5 shows the scatterplots of (a) aa versus v and (b) aaI versus v for 1964–2006. Plainly, both 
aa and aaI tend to increase in value as solar wind speed increases. Both correlations are statistically very 
significant, with the stronger one being between aaI and v. The inferred correlation has a coefficient of 
determination r2 = 0.748, implying that nearly 75% of the variance can be explained by the inferred regres-
sion. So, the peaks observed in the aa and aaI indices late in the cycle (after solar maximum) appear to 
be directly related to increased solar wind speed, which probably is the result of high-speed streams from 
coronal holes.15–21 

	 Figure 6 depicts (a) the cyclic variation of sunspot number <R>, (b) the aa geomagnetic index < aa >, 
(c) the following recurrent component < aaI >, and (d) the solar wind speed <v> for cycles 11–23, where 
each cyclic average is computed from sunspot minimum to subsequent cycle sunspot minimum. (Cycle 
23 is presumed to have ended in 2006 on the basis of annual averages.) For the first three parameters, all 
reveal a long-term increase over time, such that for cycle 24, the next cycle, one infers <R> = 82.6 ± 27.6, 
< aa > = 26 ± 4.3, and < aaI > = 12 ± 2.8, these estimates being the 90% prediction intervals. Thus, there is 
a 95% probability that cycle 24 will have <R> ≥ 55, < aa > ≥ 21.7, and < aaI > ≥ 9.2. Because of the close 
relationship between solar wind speed and, in particular, aa and aaI (fig. 5), the cyclic average of solar 
wind speed is inferred to have increased over time, as well. (Strictly speaking, the cyclic variation of solar 
wind speed <v> is indeterminate because of the brevity of the solar wind record, 1964–present, especially, 
as compared to the solar/geomagnetic record, which is considered reliable since the mid 1800s.)
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3.  SUMMARY

	 This study has shown that, on the basis of annual averages, solar wind speed is directly related to 
both the geomagnetic and solar cycles. Higher (lower) solar wind speed associates with higher (lower) 
values of the aa index, especially for the residual or following recurrent component of the aa index. 
Because there has been a long-term increase in the strength of the solar/geomagnetic cycles over time 
(cycles 11–23), it is inferred that the solar wind speed has also experienced a long-term increase.
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