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TECHNICAL PUBLICATION

PREDICTING THE SIZE AND TIMING OF SUNSPOT MAXIMUM FOR CYCLE 24

1. INTRODUCTION

	 Accurately predicting in advance the size and timing of sunspot maximum for an ongoing 
sunspot cycle continues to be one of the long-standing problems in solar physics, one that becomes 
quite relevant every 11 years or so, especially around the time of sunspot minimum (Rm).1–9 Accu-
rate prediction of the size and timing of sunspot cycles is important for a variety of reasons, in 
particular as related to climatic change and the effects of solar cycle-related phenomena, like earth-
ward-directed coronal mass ejections and solar flares, on human space flight and on our modern 
technological systems (satellite orbital dynamics, electrical distribution, airline operations, etc.).10–16 

	 Some 40 years ago, A.I. Ohl noted that the level of geomagnetic activity near Rm provides 
a reasonable estimate for the expected size of the ongoing sunspot cycle,17 usually about 3 years in 
advance of maximum amplitude (RM) occurrence. Since Rm has now been ascertained for cycle 
24, having occurred in December 2008 on the basis of the 12-month moving average (12-mma) of 
monthly mean sunspot number and since a minimum in geomagnetic activity in the vicinity of Rm 
(AAm) occurrence appears to have recently been seen in September 2009, a firm estimate of cycle 
24’s RM using the method of Ohl can now be made.

	 The purpose of this NASA Technical Publication (TP) is to give an estimate for the expected 
size and timing of the RM for cycle 24, one based on the updated inferred statistically significant 
relationship found between RM and AAm using 12-mma values (method of Ohl). Also, an alternate 
method for predicting cycle 24’s RM using a variation of Ohl’s method, one based on using 2-cycle 
moving averages (2-cmas) of RM and AAm, is given. Finally, the ascent duration (ASC), defined as 
the elapsed time between Rm and RM, is deduced for cycle 24 from the Waldmeier effect using the 
expected value of its RM.
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2. RESULTS

	 Figure 1 displays an epoch analysis of the variation of the 12-mma values of the AA-geo-
magnetic index in the vicinity of sunspot minimum (–18 ≤ t ≤ 18, where t is the elapsed time in months 
relative to E(Rm), the epoch of Rm), with the solid line representing the mean values of the AA 
index for cycles 12–23 and the filled circles representing values for cycle 24 (determined by the Brit-
ish Geological Survey).18 Across the top and to the right are denoted the occurrences (E(AAm)) and 
values (AAm) of the minimum AA-geomagnetic index for cycles 12–23. The minimum value of the 
mean occurs at about t = 4–6 months, having a value of 15.5 nT. Cycles 12, 13, 15, 17, 20, 21, and 22 
had their AAm occurrences within the interval t = 0–9 months, while cycles 16, 18, 19, and 23 had 
their AAm occurrences during the interval t = 12–17 months. Only cycle 14 had its AAm occurrence 
prior to E(Rm). Also, cycles 17–19 and 21–23 had AAm values above the mean, while cycles 12–16 
and 20 had AAm values below the mean.

	 Cycle 24’s AAm appears to have minimized at t = 9 months (i.e., September 2009), having a 
value of about 8.4 nT. This value is well below the mean and, in fact, is now the smallest value on 
record, falling below that previously found for cycle 14 (8.9 nT), the smallest sunspot cycle of the 
modern record (64.2). (The reader should note that all AA values prior to 1957 have been increased 
by 3 nT to account for changes in the repositioning of the magnetometers used in the determination 
of the AA index.19-20)

	 Figure 2(a) shows the variation of RM values for cycles 10–23, where the thin jagged line 
represents the actual cyclic values and the heavy smoother line represents the 2-cma values of RM 
(i.e., the trend line). In figure 2a, the filled circles represent longer duration cycles, those of minimum-
to-minimum period (PER) 11 years or more in length, while the filled triangles represent shorter 
duration cycles, those of PER less than 11 years in length. The little fs and ss appearing beside each 
cyclic value denote the ascent duration class for each cycle, where fast-rising (f) cycles have ASC < 48 
months and slow-rising (s) cycles have ASC ≥ 48 months. Interestingly, all f cycles tend to lie above 
the 2-cma trend line except cycle 18, and all s cycles tend to fall below the 2-cma trend line except 
cycle 15. Also, all even-numbered cycles tend to lie below the 2-cma trend line except cycle 22, and 
all odd-numbered cycles tend to lie above the 2-cma trend line without exception. The implication is 
that cycle 24 probably will be a slow-rising cycle with RM below its 2-cma trend line value, once that 
value becomes known (unknown until cycle 25’s RM is observed).

	 Figure 2(b) shows the corresponding cyclic AAm and 2-cma values of AAm, where the filled 
square represents the provisional minimum value of AAm for cycle 24. Comparison of the two 
curves reveals an unmistakable coupled behavior, especially as described using the 2-cma values. 
Increasing/decreasing values of AAm are strongly associated with increasing/decreasing values of 
RM. The suggestion then is that, because AAm for cycle 24 has decreased in value relative to cycle 
23’s AAm, RM for cycle 24, likewise, will decrease in value relative to cycle 23’s RM (120.8).
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Figure 2. Cyclic variation of (a) RM and (b) AAm for cycles 12–24.

	 Figure 3(a) displays the scatter plot of RM versus AAm for cycles 12–23 (the method of Ohl). 
The thin horizontal and vertical lines are the medians for RM and AAm, respectively. The results 
of statistical testing using Fisher’s exact test for 2×2 contingency tables is shown in the lower-right 
portion of figure 3(a).21 The probability (P) of obtaining the observed distribution or one more 
suggestive of a departure from independence (chance) is computed to be P = 0.1%, based on the 
sample size of 12 sunspot/geomagnetic cycles, suggesting a very strong association between the two 
parameters. The diagonal line running from the lower left to the upper right is the inferred regression 
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Figure 3.  Scatter plots of (a) RM versus AAm based on single-cycle values (the method 
	 of Ohl) and (b) RM versus AAm based on 2-cma values.

based on linear regression analysis with the line given as y = –30.492 + 10.134x, where y represents 
the predicted value of RM and x represents the observed value of AAm. The inferred correla-
tion has a coefficient of correlation (r) equal to 0.926 and a coefficient of determination (r2) equal 
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to 0.857, suggesting that about 86% of the variance in RM can be explained simply by the variation 
of AAm alone. The standard error of estimate (se) is estimated to be about 16.6 units of smoothed 
monthly mean sunspot number and the inferred linear correlation is found to have a confidence level 
(cl) > 99.9%, meaning that the inferred correlation is considered statistically very important.

	 Figure 3(b) is similar to figure 3(a), except now it is based on using the 2-cma values of RM 
and AAm (a variation of the method of Ohl). Although it is based on two fewer cycles, the inferred 
regression (based on linear regression analysis) is inferred to be slightly stronger, having r = 0.972, 
r2 = 0.944, and se = 8.7 units of smoothed monthly mean sunspot number. The inferred regression is 
y = –35.447 + 10.479x.

	 Using AAm = 8.4 nT for cycle 24, RM for cycle 24 is expected to lie within the lower-left 
quadrant of figure 3(a). The inferred regression equation yields RM = 54.6 ± 16.6 (i.e., the ±1 – σ pre-
diction interval). Hence, there is a 75% chance that cycle 24’s RM will measure ≤66.2, a 95% chance 
that it will measure ≤84.7, and only a 1% chance that it will measure ≥100.5.

	 On the basis of the observed 2-cma of AAm for cycle 23, equal to (17.5 + 2(15.8) + 8.4)/4 = 
 14.4 nT, one expects the 2-cma of RM for cycle 23 to lie in the lower-left quadrant of figure 3(b). The 
inferred regression equation yields the 2-cma of RM for cycle 23 to be about 115.5 ± 8.7 (the ±1 – s 
prediction interval). Hence, RM for cycle 24 can be crudely estimated to be RM = 4(115.5 ± 8.7) – 
2(120.8) – 158.5 = 61.9 ± 34.8. Because the average deviation between predicted and observed 2-cma 
values of RM is about 6.5, cycle 24’s RM, based on the 2-cma correlation, is estimated to be about 
62 ± 26.

	 Together, the two predictions strongly indicate that the RM for cycle 24 will be consider-
ably smaller than was observed for cycle 23 (120.8), measuring probably about 55–62 in terms of 
smoothed monthly mean sunspot number. Using these values, one can easily estimate the timing of 
RM occurrence relative to E(Rm) for cycle 24 using the Waldmeier effect, a loose but statistically 
significant relationship between RM and ASC.22

	 Figure 4 depicts the Waldmeier effect, plotting ASC versus RM, where the number appear-
ing beside each plotted point is the sunspot cycle number. Statistical testing, using Fisher’s exact 
test for 2×2 contingency tables, reveals a strong association between the two parameters, having 
P = 0.2%, meaning that the P of  obtaining the observed table or one more suggestive of inde-
pendence is only 0.2%. Thus, smaller RM cycles tend to have ASC ≥ 48 months (relative to 
E(Rm)), while larger RM cycles tend to have ASC < 48 months. Of the smaller RM cycles, all 
have had ASC ≥ 48 months, except cycle 13, with all smaller RM cycles having ASC ≥ 47 months.  
Furthermore, 5 of 7 smaller RM cycles have also been cycles of longer duration (PER > 11 years), 
the only exceptions being cycles 15 and 16. Because cycle 24 is predicted to be a smaller RM cycle, 
one infers that it too likely will be a slow riser (ASC ≥ 48 months) and quite possibly be a cycle of 
longer duration. This suggests that RM occurrence for cycle 24 very likely will occur after December 
2012, since E(Rm) for cycle 24 occurred in December 2008, and that cycle 24 very likely will end 
sometime in 2020 or later.



8

	 Also shown in figure 4 is the inferred regression, ignoring cycles 14 and 19, the extremes 
in RM and considered here as statistical outliers with respect to the Waldmeier effect. Presuming  
 RM = 55–62 for cycle 24, the ASC for cycle 24 is estimated to be about 58–59 ± 4 months (the ±1 – s 
prediction interval). Thus, RM for cycle 24 is, indeed, expected to occur sometime in 2013–14 unless, 
of course, cycle 24 turns out to be a statistical outlier. Interestingly, cycles 14 and 19, the cycles of 
extremes in terms of RM, are 5 cycles apart, and cycle 24 follows cycle 19 by exactly 5 cycles. Will 
cycle 24 also be a statistical outlier with respect to the Waldmeier effect? (The reader should note that 
cycle 9, which precedes cycle 14 by 5 cycles, also appears to be a statistical outlier with respect to the 
Waldmeier effect, having RM = 131.6 and ASC = 55 months.)
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Figure 4.  Scatter plot of ASC versus RM (the Waldmeier effect).

	 For convenience, table 1 is included to provide the reader with the exact values and dates  
for the selected cyclic parameters associated with the modern era sunspot cycles used in plotting 
figures 1–4.
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Table 1.  Selected solar cycle parametric values for cycles 10–24.

Cycle RM Rm E(Rm) ASC PER AA(Rm) AAm* RM(2-cma) AAm*(2-cma)
10 97.9 3.2 12-1855 50 135 – – 117.0 –
11 140.5 5.2 03-1867 41 141 – – 113.4 –
12 74.6 2.2 12-1878 60 135  9.8  9.7 94.4 –
13 87.9 5.0 03-1890 46 142 14.2 13.6 78.7  11.5
14 64.2 2.6 01-1902 49 139  9.1  8.9 80.4  10.7
15 105.4 1.5 08-1913 48 120 11.2 11.2 88.3  10.9
16 78.1 5.6 08-1923 56 121 13.4 12.4 95.2  13.1
17 119.2 3.4 09-1933 43 125 18.6 16.2 117.1  16.0
18 151.8 7.7 02-1944 39 122 26.2 19.3 156.0  18.7
19 201.3 3.4 04-1954 47 126 20.9 19.9 166.3  18.2
20 110.6 9.6 10-1964 49 140 15.2 13.8 146.8  16.8
21 164.5 12.2 06-1976 42 123 22.3 19.6 149.5  17.6
22 158.5 12.3 09-1986 34 116 18.3 17.5 150.6  17.6
23 120.8 8.0 05-1996 47 151 18.8 15.8 – 14.4 
24 –  1.7 12-2008 – –  10.4  8.4 – –

	 *means in the vicinity of E(Rm). For cycle 21, its true AAm occurred about 46 months after E(Rm), measuring 17.2. 
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3. DISCUSSION AND SUMMARY

	 Several years ago during the declining portion of cycle 23, efforts were made to reach a con-
sensus prediction for the size and timing of sunspot cycle 24. The outcome was a split prediction, 
some favoring a large RM and quick rise and others favoring a more subdued RM and slower rise. 
Pesnell provides a summary of some of these early attempts at predicting the size and timing of cycle 
24,8 as do Obridko and Shelting.7 Additionally, a useful Web site for comparing the many predic-
tions that have been made for cycle 24 is readily available for access.9

	 While many methods for predicting the latter-occurring RM of a sunspot cycle have been 
proffered, the method of Ohl seems to be one of the most reliable, having a ±1 – s uncertainty of 
about 17 units of smoothed monthly mean sunspot number. The difficulty associated with obtaining 
a singular consensus prediction of RM for cycle 24 was largely caused by its delayed minimum. Early 
on, because cycle 23 had an RM larger than the mean amplitude, statistically speaking, it could be 
argued that it was destined to be a cycle of shorter duration. If  true, its end (and consequently the 
conventional onset of cycle 24) was anticipated to occur prior to May 2007.23–26

	 Because the minimum for cycle 24 appeared most imminent in 2006, because a maximum in 
geomagnetic activity had occurred in August 2003 (the highest ever recorded for the 12-mma of AA), 
and because there exists a statistically significant relationship between the maximum of geomagnetic 
activity during the declining portion of an ongoing sunspot cycle and the size of the following cycle, 
these observations became the basis for the prediction of a large RM for cycle 24, which was also 
supportive of a particular flux-transport dynamo model prediction and of evidence for the deep 
meridional flow setting the sunspot cycle period.20, 27–32 It has since become apparent that E(Rm) 
for cycle 24 would occur later than 2006–2007, inferring that the initial prediction for cycle 24’s RM 
was premature.33–39

	 In this NASA TP, it has been shown that AAm for cycle 24 appears likely to have occurred 
in September 2009, some 9 months past cycle 24’s E(Rm), measuring about 8.4 nT, a value smaller 
than the smallest previous value on record (8.9 nT for cycle 14, also the smallest sunspot cycle on 
record). The consequence of this is that, unless cycle 24 proves to be a statistical outlier, its RM is 
now anticipated to be much smaller in size than previously forecast, possibly becoming the smallest 
of the modern era.40, 41 The method of Ohl predicts RM = 54.6 ± 16.6 (the ±1 – s prediction inter-
val), while using a variation of the Ohl method (2-cma values), RM for cycle 24 is predicted to be 
about 62 ± 26. A value of RM equal to 55–62 suggests from the Waldmeier effect that cycle 24 will 
be a slow-rising cycle, peaking probably about 58–59 ± 4 months (the ±1 – s prediction interval) after 
E(Rm) or sometime in 2013–14. Likewise, because cycle 24 is anticipated to be a slow-rising, small-
amplitude sunspot cycle, statistically speaking, it should also be a cycle of longer duration, inferring 
that the onset of cycle 25 should not be expected until sometime in 2020 or later. Predicting the over-
all shape of cycle 24, however, will not be particularly reliable for at least another 2–3 years,42–44 as 
will be predicting its effects on the space weather environment.45–47
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