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POTENTIAL FIELD EXTRAPOLATION USING
THREE COMPONENTS OF SOLAR VECTOR MAGNETOGRAM

WITH A FINITE FIELD OF VIEW

 G. ALLEN GARY

Space Sciences Laboratory/ES82, George C. Marshall Space Flight Center/NASA, Huntsville,  AL 35812, U.S.A.1

Abstract. The potential magnetic field from a finite planar boundary is extrapolated into the upper hemisphere
using all three of the magnetic field components. The method determines, first,  the transverse field assoicated
with the observed normal  magnetic intensity, and,  then by subtraction, the method determines the associated
transverse magnetic field observed in the interior (i.e., in the field of view) of the  magnetogram which is due to
the normal flux exterior to the field of view of the magnetograph.  The combination of the observed  normal flux
of  the interior and the approximation of the exterior normal flux is employed to calculate the potential field. The
formulation of  the problem results in an ill-posed integral inversion problem which is solved using the singular
value decomposition (SVD)  techniques in conjunction with an appropriate Tikhonov-Phillips filter. The use of
the technique is in correcting potential field calculations which are influence by out of view  fluxes, e.g. for a high
spatial resolution vector magnetogram with a small field of view in which there is no supporting data exterior.
Such a corrected potential field is needed for reference when specifying the nonpotentiality of a region (i.e.,
magnetic shear studies). The problem studied is also important in providing a regularized solution of the Cauchy
potential problem. The methods provides a much  larger range of convergence than the method of Gary and
Musielak (1992), and,  in fact, is stable in the total upper hemisphere.

1. Introduction

 The magnetic field extrapolation method derived herein uses all three components of a vector magnetogram
within a relative small,  finite field of view to determine a corrected potential magnetic field over the field of view
as influenced by the exterior flux. In the standard potential methods where one uses only the normal component, a
problem arises if, either the normal flux from an active region is not entirely captured by the magnetogram
because of the restricted field of view of the magnetograph, or one or more additional active regions outside the
field of view of the magnetogram effect the potential field configuration of the selected active region. This is
clearly seen in the soft x-ray images from Yohkoh. If only the normal magnetic field within field of view of a
magnetogram is used in a standard integral or Fourier potential method, the method will give a false potential
field since all the important surface field is not taken in to account. In order to try to correct this error, the
procedure we describe below uses the additional information contained in the transverse field within the
magnetogram to reconstruct a representative field for the normal component outside of the magnetogram. Hence
this extension of the normal field can be used  in an integral potential method to calculated the magnetic field
which includes the effects of both the normal field resolved by the magnetogram and a reconstructed magnetic
field outside of the magnetogram.The basic idea is that the magnetic field outside the magnetogram field of view
produces some effect on the transverse field of the magnetogram. Then by using the transverse field, the normal
magnetic field distribution outside the magnetogram can estimated.

There are many ways to extrapolate the solar magnetic field. The place of this potential method in terms of the
various schemes to extrapolate the magnetic field is shown in Figure 1. This method uses all three components of
the observed magnetic field to arrive a potential solution. General magnetic fields are characterized by being
potential or current carrying. The potential methods are separated into planar and spherical models. The first

                                                       
1  E-mail: Gary@SSL.MSFC.NASA.GOV



2

representation of a solar magnetic potential field was presented by Schmidt (1964, 1965, 1966) and used by
Harvey (1966). This solution was for a planar boundary with Bz given on the plane. Semel (1967) allowed the
inclined line-of-sight observations to be employed. These programs were integral solutions; an eigenfunction
approach was developed by Teuber (1982) which used fast Fourier transforms. The unique method described here
extends the planar representation by using the full content of the vector magnetogram.

The spherical geometry case has a long history, starting with Gauss’ spherical harmonic analysis of the earth’s
magnetic field. Altschuler  and Newkirk was the first to developed an eigenfunction spherical potential model for
the whole disk with an upper source surface. A finite-difference approach was developed by Adams and Pneuman
(1976). A much faster code was developed by Riesebiedder and Neubauer (1979) using specific orthogonality
relations. A formulation by Levine et al. (1982) employed a non-spherical source surface. These methods used
integrated observations of Bl over an entire solar rotation. Observations using instanteous observations were
developed. Sakurai (1982) developed a Green’s function approach whcih had the source surface at infinity. Kopp
and Poletto (1990) using eigenfunction approach developed a code with a finite-variable  distance source surface.
The vector magnetograms could be used to extend to spherical representations for finite field of views, but only
the planar case is given herein.
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Figure 1. Solar Magnetic Field Extrapolation Methods. The divisions of the various magnetic field
representations are shown. The main division is between the potential and current carrying fields. The potential
field are subdivided geometrically into planar and spherical boundary conditions. The regions with current are
subdivided inot force-free and non-force-free regions. The extrapolation method using all three components,
discussed herein, in shown in relation to the other methods. Its uniqueness is in extending the field of view by
employing the transverse components to estimate the out of  view flux.
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For regions which carried currents, in which on has a linear force-free field condition,  Nakagawa et al. (1977),
Chiu and Hilton (1981), and Alissandrakis (1982) developed Green’s function and eigenfunctions solutions. For
nonlinear fields the problem is much harder (Gary 1990). Mikic et al. (1988m 1989, 1990) , Wu  et al. (1990) ,
and Roumeliotis (1994) have developed approximate methods to handle the nonlinear force-free field case.  For
current-carrying fields the transverse components are used either to determined the  linear constatnt α  by a least
square solution (Kress 1897) or are needed  to extrapolate the field;  and the formulation given here is obviously
not appropriate for the current carrying filelds. However, potential field  theory still remains an important  part of
the analysis of the solar magnetic fields, (e.g. in shear analysis) and the corrections given herein can be important
in given  the potential field. Furthermore, the regularization schemes can be carried into the nonlinear regime
(Morozov 1993).

Figure 2.  Illustration of  the effect of  out of view flux contributions.  (A)  A double dipole configuraton is seen in
the field of view of the magnetogram. The normal magnetic field intensity is seen as gray levels and the
transverse field is shown as arrows. (B) The same configuration as in panel A but with an additonal dipole
configuration outside the field of view (as given by D) with the effect of the exterior configurations being
apparent at the edge of the field of view (black arrow). (C) The transverse field of configuration A is subtracted
from  transverse field of configuration B to produce the transverse field of the exterior field as seen in the
magnetogram. (D) The exterior field of view, unseen by the magnetogram , is shown.  Its  contribution in the
interior field of view is just that given by panel C.

An illustrated effect of the influence of external flux on the transverse field  within field of view of  the
magnetogram is given in Figure 2. The panel A , B, and C are in the field of  view of  the magnetogram whereas
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panel D is exterior to the field of  view of  the magnetogram. Panel A is a synthetic magnetogram of two dipoles
with no external dipoles outside the field of view.  In panel B the effects of two additional exterior dipoles are
seen where the transverse field above the positive (light) region in B is influenced by the effect of the negative
field outside the field of view (i.e. panel D). Panel A is the potential solution of panel B given the
flux seen only in panel B. The effect the  exterior field can be determine by subtracting the transverse filed
generated by the interior field (i.e. the potential field) from the observed transverse field. This result is given by
panel C. The main point of this paper is to use the field in panel C to estimate the flux as given in panel D for the
potential case of  a planar boundary.

A motivation of  this approach is that the potential field  gives the three components of the field, Bx, By, Bz, from
one scalar function φ. Hence the Bx component is given by

 B
n r

da B
r

dax z= =∫ ∫
∂φ
∂

1 1

Hence, given Bx we can solve for Bz in a classical integral inversion problem. This is what we set out in this paper
to specifically show by using a regularization scheme to handle the ill-posedness of the problem. The ill-
posedness is the classical Fredholm integral equation of the first kind (Craig and Brwon 1986).

In §2 the general Biot-Savart law is given for the magnetostatic problem and in §3 the formulation of the inverse
problem is layed out. In §4 the numerical problem is formulated with specific numerical examples given in §5. In
the conclusion (§6) we discuss the theory relevancy to the Cauchy problem.

2. Extended Biot-Savart Law

We will use the extended Biot-Savart law giving the magnetic field within a volume V bounded by the surface S.
This formula is derived by starting from the vector form of Green’s second identity,

∫V  (Q⋅∇×∇×A - A⋅∇×∇×Q) dv’  =  ∫S (Α×∇×Q - Q×∇×A)⋅ n da’

and letting  A be the magnetic vector potential and Q be the appropriate Green’s function, i.e.

B =∇×A,           and          Q=∇(1/r) × a,

where a is an arbitrary, but fixed, unit vector and r= | x-x’ |  is the distance between the field point and the
source point. The magnetic field anywhere in the volume, B(x) , is given explicitly by the electric current
density within the volume, J(x’) , and the magnetic field components on the boundary surface,  n ⋅ B(x’)
and n × B(x’) , which receives addition contribution from the electric currents on the surface and exterior
to the volume. The extended Biot-Savart law is given by the following formula (Stratton 1941 sec. 4.14):

B(x)= µ/4π ∫V  J(x’)×∇’(1/r) dv’  - 1/4π ∫S (n×B(x’))×∇’(1/r) da’   - 1/4π ∫S  (n⋅B(x’)) ∇’(1/r) da’.

In the appendix an alternate derivation of this equation is given. We note that  the magnetic field intensity
components used in the surface integrals are not the potential field solution  and  the field in the volume is
not even force-free since J≠0.

3. Formulation of the Inversion Integral

In this section, we consider the flux contribution outside the magnetogram and show how these
contributions can be used for the potential case.  In the standard methods, the assumption is that Bz=0
outside  the field of view (or periodicity).  In this section an inversion integral is derived to give an
estimate of the flux outside of the field of view.  Now, for the case of only subsurface electric  currents,



5

the volume integral is zero and the two surface integrals are equal; hence, for the potential field, the
equation becomes simply,

B(x)=   - 1/2π ∫S  (n⋅B(x’)) ∇’(1/r) da’,

which was used by H. U.Schmidt (1963)  for solar magnetic field extrapolation. Now if we consider the
problem of the upper half plane, with  the contribution from the covering spherical shell being zero, i.e.
conserved flux,  then the last equation can be written as an integral over the region of the magnetogram M
and an integral over the region outside of  M, called  Γ\M, where the plane z = 0 is Γ:

B(x)=   -1/2π ∫M (n⋅B(x’)) ∇’(1/r) da’  - 1/2π ∫Γ\M (n⋅B(x’)) ∇’(1/r) da’

We now rearrange the equation in terms of the unknown contribution from the region Γ\M, i.e. outside
the field of view of the magnetogram, and write the normal and transverse components out explicitly. The
normal component is

n⋅ 1/2π ∫M (n⋅B(x’)) ∇’(1/r) da’ = - n⋅ 1/2π ∫Γ\M (n⋅B(x’)) ∇’(1/r) da’ - n⋅B(x)

and, more importantly, the transverse component is

 n× 1/2π ∫Γ\M (n⋅B(x’)) ∇’(1/r) da’ = - n× 1/2π ∫M (n⋅B(x’)) ∇’(1/r) da’ - n×B(x)

Now if we evaluate the above equations with x on the surface in M, i.e. within the field of view. Then
the normal compoent integral gives us nothing new since the left hand side of the equation is zero. This
comes from the  identity2,  n⋅∇’(1/r)=0 for x’=Γ\where  z=z’=0 and  r ≠ 0; and for a spherical cap C about
the singularity point

- n⋅ 1/2π ∫C (n⋅B(x’)) ∇’(1/r) da’ - n⋅B(x) ≡ 0.

The transverse integral equation above, however, provides us the additional information, for x ∈Μ, it
states that part of the transverse field in the magnetogram x ∈Μ is produced by the flux outside  in Γ\M
and this is equal to difference of the transverse field produced from only the field in M and the observed
transverse field in the magnetogram, M. Hence we have an integral equation for the normal component of
the field outside of the magnetogram, i.e. for n⋅B(x) for x ∈ Γ\M, see per Figure 1.

 Hence obtaining the normal component for the entire plane we can the obtained  the potential field
which accounts for the magnetic flux outside of the magnetogram. Writing the transverse integral
equation out into its component form, we have:

                                                       
2 Note that  for  a small region about the point z=z’=0 and r=0 where there is the singularity, we can
write

∇ ⎛
⎝⎜

⎞
⎠⎟ = ∇ ⋅ ∇⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= ⋅∇⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ = −∫ ∫ ∫ ∫2 21 1 1 1
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dv
r

dv
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r r

r dn
∂

∂
π

Ω
Ω

which produces the identity.
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where z=z’=0.Then we have a pair of integral equations that we must solve for Bz(x’,y’) for (x’,y’)
outside of the magnetogram field of view, i.e.(x’,y’) ∈ Γ\M.  Inverting either of the last two equations are
theoretical equivalent in term of solving for Bz, but we will carry both equations by using complex
notation.  Multiplying the second equation by ι and summing the equations, we have
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where the right hand side of the equation is defined to be F(x,y) and is known from the direct observation
of the vector magnetograph. This equation has the form of Fredholm integral equation of the first kind:

c

d

za

b
K x y x y B x y dx dy F x y∫ ∫ =( , , ’, ’) ( , ’, ’) ’ ’ ( , )

where we wish to determine Bz. However, we note that (x’,y’) ∈ (a,b) ∈ Γ\M  but (x,y) ∈  M. The
inversion of this integral equation is a classical ill-posed problem (e.g., Glasko, 1984, Groetsch 1984,
Craig and Brown 1986). However, various schemes have been developed to stablized the inversion. In the
next section, the method of regularization is applied to the corresponding set of  equations.

4. Numerical Inversion Technique

Numerical calculation of the integrals are obtained by integrating over individual, small grid cells, in
which the magnetic field does not vary significantly, and summing. The average of the field within the
grid cell is Bz . In the numerical equations, the following notation is used for the  ith grid cell:  ξ= x - x’

and  η= y - y’. The integrals over M and Γ\M and over the appropriate grid cells defined by    (ξ1 , ξ2 ,   η1 ,
η2 )  with fixed (x,y) is approximated by the following sum over grid cells:
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where  we have the variables ξ1 ,=x-x’1,  ξ2 ,=x-x’2,   η1 =y-y’1,    η2 =y-y’2  and  ∆x∆y  is an element of area
given by  (ξ1 −ξ2))(η1 −η2).  The integrals can be evaluated (cf. J. W. Harvey 1966) and they become3:
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For the case η=ξ=0  the logarithmic expression for the integral in M is non-singular with the intergral
being zero for the cell centered on (ξ,η)=(0,0). Below we can consider either the real or imaginary part of
the equation, and there by recover  Bz exterior data separately by using either the  Bx or the By interior
data.

Now we can evaluate the Fredholm integral equation using Singular Value Decomposition (SVD)
regularization  techniques. We have the linear system,

B x y K x y x y F x y j Nz i i j j i i
i

N

i i( , ’, ’) ( , , ’ , ’) ( , ),
=
∑ = ≤ ≤

1

1

where xi’,yi’ ∈ Γ\M  and  xj ,yj ∈ M ,or in operational notation we have

 K B Fz =

                                                       

3  The equations can be derived using Gradshteyn and Ryzhik (1965) equations 2.264.6 (p.83) and 2.271.4 (p. 86). Note, if we
define the center of a square cell to be (xi,yi) and x1’= xi  −∆/2, x2 ’= xi +∆/2 , y1‘’= yi  −∆/2 ,  and y2 ’= yi  +∆/2 , then we have
that ξ1,2= ξ ±∆/2 and η1,2= η±∆/2. Furthermore K(x, y, xi’, yi’) = K(ξ,η).
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This system of unknowns Bz  (xi’,yi’) can be ill-posed by not having a uniquely determined solution or the

solution can not depend continuously on the data contained in F(xj,yj). Using a Tikhonov-Phillips filter in
the SVD formulation, we can stabilize the approximation. This filter solves the  Tikhonov regularization
problem of minimizing

K B F Bz z− +
2 2 2γ ,

  where γ is a called the regularization parameter, and it is a solution of

(K K I) B K Fz
∗ ∗+ =γ 2

(Kress 1989, Natterer 1986). The regularization parameter introduces a smoothness condition on the

solution of  Bz  .

The  SVD of K gives K in the form

K UWV= ∗

where * indicates the transpose of the matrix, U and V are orthonormal, i.e.

U Uik in
i

N

kn
=
∑ =

1

δ     for 1 ≤  k ≤ N, 1 ≤  n ≤ N

V Vik in
i

N

kn
=
∑ =

1

δ     for 1 ≤  k ≤ N, 1 ≤  n ≤ N

and W is diagonal with diagonal elements wk,  i , i.e. the singular values of  K , (Press,  Flannery,
Teukolsky, and Vetterling 1986, section 2.9, p. 53). Then the generalize inverse is given by

K VW U1 1− − ∗=
 where instabilities occur for small wi’s in the formal solution

[ ] [ ] ( )[ ]B K F VW U Fz i

1

i

1 *

i
= = =− − −

= =
∑ ∑w U F Vk
k

N

jk j ij
j

N
1

1 1

..

The filter smooths out the singular functions assoicated with the small singular values, i.e., the high
frequency components (Craig and Brown 1986, Natterer 1986). Using the  Tikhonov-Phillips filter,
1/(1+(γ/wk)

2,  we have the regularized (stable) solution

[ ]B z i

k

kk

N

jk j ij
j

Nw

w
U F V=

+= =
∑ ∑2 2

1 1γ
.

The effect of the magnetic flux outside of the magnetogram can now be accounted for within the context
of the regularized solution of the inverse matrix equation. The regularization process provides a stable
algorithm for constructing an approximate solution which accounts for numerical and  stochastic errors.

5. Application

5.1. A SPECIFIC NUMERICAL EXAMPLE.

In this section, a specific numerical application will be given.  First, however, we will consider the
interior Schmidt inversion problem, i.e., the problem above except that one of the transverse components
of the magnetic field is given within the field of view and the longitudinal field is derived.  Then, we will
consider the exterior Schmidt inversion problem in which an area of exactly the same size adjacent to the
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magnetogram contains the flux to be resolved. The magnetogram lies in the region:  -10 ≤ (x,y)  ≤10. The
elemental cell size are 2×2 in each case, which give an array size of 11×11 for Bx or with a column vector
of  121 elements. Hence the K-matrix is a 121×121 matrix for these numerical examples. The normal
fluxes will be defined by pistion functions, i.e., by a radii and a constant values within these radii. The
configuration will be the same as in Figure 2.

In terms of the first numerical application, lets consider the interior Schmidt inversion problem . The
problem is still ill-posed but the conditions number (cond(K) = ||K|| ||K-1||) for the associate matrix is
smaller since the matrix elements of  K decrease like ( )≈ ∆ m a x( )ξ 2 , as  ξ =x-x’  (or η = y-y’)

increases, and for the exterior region the distance are larger.  If  cond(K) is not too large, the problem is
said to be well-conditioned and the solution is stable with respect to measurement noise;  otherwise, the
solution is ill-conditioned (Bertero 1986, Press et al. 1986). In both the interior and exterior problem the
matrix K is singular, but in the interior problem, the rank of  K is larger.  This is why we consider this
stable solution first, but we also consider it since it is heuristic easier to concieve.

 In Figure 3, we show the results of the numerical solution of the interior Schmidt inversion problem. In
the top panel (A, B, C) the actual field components are shown (Bz, By, Bz). In the second row of panels
(D, E, F) the inverted values of  Bz is given using Bx and γ’s of  10-8, 10-4,  and 10-2.

In Figure 4, the Green’s function for a specific field coordinates are shown for both x and y-components.
The asymmetric nature of  the functions are clearly seen. The K-matrix is a collection of  these fucntions
off set by the specific field coordiantes.

In Figure 5, we show the results of the numerical solution of the exterior Schmidt inversion problem. In
the top panel (A, B, C) the actual field components are shown (Bz, By, Bz). In the second (third) row of
panels (D, E, F) the inverted values of  Bz is given using Bx (By) and γ’s of  10-8, 10-4,  and 10-2.  In this
figure the exterior  field is composed  of  two symmetric magnetic fields situtated above the field of  view
of the magnetogram. An equivalent noise levels of 10 G is introduce. In the “observed” Bx and By
components.

In Figure 6, we show the results of the numerical solution of the exterior Schmidt inversion problem. In
the top panel (A, B, C) the actual field components are shown (Bz, By, Bz). In the second (third) row of
panels (D, E, F) the inverted values of  Bz is given using Bx (By) and γ’s of  10-8, 10-4,  and 10-2.  In this
figure the exterior  field is composed  of  two offset magnetic fields situtated above the field of  view of the
magnetogram. An equivalent noise levels of 0.1 G is introduce. In the “observed” Bx and By components.
The domination of  the near exterior field leads to a solutions dominated by that  “sunspots’’.

5.2. METHOD OF ESTIMATING THE REGULARIZATION PARAMETER

The regularization parameter stabilizes the inversion process by filtering out the singular functions. The
‘’solutions’’ of  the regularization mehtods depends on the selection of the appropriate  regularization
parameter, i.e. filter. Tikhonov and Arsenin (1977) show the connection of optimizing the regularization
parameter with the Wiener filter, i.e. the mean least square filter. Hence the determination of the
regularization  can be determined by statistical arguments. This argument uses extra information to
stabilize  the method and uses Baysian strategies by involking a priori probability distribution for the
solution (Craig and Brown 1986, Turchin et al. 1971). Such arguments use the size of the errors. An
alternative approach, that uses the actual errors, instead of the assumed error distributions, is the
generalized cross-validation method (Bates and Wahba 1982, and Bertero 1986). The idea is to use the
data points themselves to predict a ‘’good’’ value of the regularization parameter by being able to predict
the missing data points. This is seen that  form the Tikhonov-Phillips formulation that we can write down
the following formulae that predicts the value of Bx from the intial input via the solution of  Bz:

 ′ = = +− − ∗ ∗ −B K B K K (K K I) Bz
’
x x

1 1 2 1γ .
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Then minimizing the norm ||B’x − Bx ||2 leads to the generalized cross-validation.  Golub et al. (1979)
show that the genralized cross-validation formula V(γ)  can be approximated in the following form which
is computational  faster:

[ ] [ ]V
N

Tr I A
N

I A Bx( )
~

( )
~

( )γ γ γ= −⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

−
1 1

2

2

2

2

,

where

~
( )

*

*
A

KK

KK I
γ

γ
=

+ 2
,

and N2 is number of  elements in the array. The generalized cross-validation is plotted in figure 7.
For small noise a local minimum is assured. (Tikhonov and Arsenin 1977,p. 165).

Since the basic effect of the regularization parameter γ is to effectively smooth the solution, we can also
select γ by choosing the solution which ‘’best’’ matches the smoothness of the magnetic field normal
component in the observed field of view. This assumes a priori knowledge of the equal likelyhood of the
two fields being of equal smoothness. However, we are accuractually better off than this simple
assumption since we are using the solution to solve of the potential field in the interior. Therefore the
effects  of  the solution is smoothed out further by the integration distance for the exterior field. In figure 7
we plot the results of the various figure of merits to determine the regularization parameter and the actual
error. The two smoothness criteria  are ||∇Bz||

2 and |∂2Bx  / ∂x2+∂2By  / ∂y2|2. All the criteria give the same
value for the regularization parameter. These methods look for solutions with small derivatives and hence
impose smoothness, i.e. the avoid large amplitude variations which made the initial problem ill-posed by
removing the high frequency characteristics of the problem. The ill-poseness of  the problem has been
corrected by  a priori  knowledge of  the nature of the solution.

5.3. GENERALIZING THE TECHNIQUES

The generalization of the problem is to specify the geometric configuration of the grid outside of the
magnetogram without a priori knowledge of the position of the exterior points. Assuming that within the
magnetogram we have a N by N grid of cells, then outside of the magnetogram we have to have a
collection of N by N grid of cells surrounding the magnetogram in order to keep the SVD matrices
squared, for simplicity. If the area of the grids outside of  the magnetogram, i.e. in Γ\ M, is the same area
as magnetogram, ∆2, then the number of rows and columns that are added, m, around the magnetogram to
have the same number of grid cells outside equaling to the number inside is given by

m m
N N= − = −2 1

2 2
or

’∆ ∆
∆

,

 where N’∆=√2 N ∆ and N’∆ is the outside dimension of the extended area; N2  is the number of cells in
the magnetogram. Then m/N is the ratio of the linear increase of the extended bounds on  the
magnetogram.

There is no reason we could not consider the grid cells outside of the magnetogram to be larger. For large
grid cells in Γ\M, we can take the linear increase of the extend bounds to be 3, and  the new grid cell
linear dimension to by N/n,  where we have  N (N2/n2 +1)1/2 = 3 N. (For numerical evaluation we wish to
have N/n an integer.) Hence we have the extended region to eight times the area of the magnetogram
when we take exterior grids be about three times larger, actually 2√2. Because of the square of 2, the
actual grid pattern will necessary be modified, giving some rough outer edges, in order to keep the square
matrix and square grid configurations.  The mathematical algorithm for the generalization is the same as
given above.

 6. Conclusion
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In the classical potential field extrapolation process from a planar boundary, we need only the normal
component  over  the entire plane wiht the additional assumption that the net flux in zero. If we have data
from only a finite field of view then the basic assumption is that the flux outside the viewing area in zero.
We have considered in the text the solution of the potential extrapolation problem using the three
components of the observed magnetic field to extrapolate the field. We have effectively thaken the three
components of the observed region and extrapolated the field. This is the same problem posed by the
Cauchy problem for extrapolating the magnetic field ( Wu, et al. 1990, Gary and Musielak 1992). In each
case the field in ill-posed and regularization techniques must be imposed. Here we have shown a potential
solution which can be used to solve a specific problem of a finite field of view magnetogram being
influence by flux outside of the field of view. Futhermore, the Cauchy solution does not blowup as a
function  of height. However, we have not investigated the error as a function of height.
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Appendix A.  Extended Biot-Savart Law

This appendix derives the generalized Biot-Savart law given by equation (3) in the text.  Starting from the
Gauss’ ivergence theorem ∫ ∇⋅ A  dv = ∫ A⋅n da and letting A = φ∇ψ and using the idenitity
∇⋅A= ∇⋅(φ∇ψ) = φ∇2ψ+∇φ⋅∇ψ , we have ∫ (φ∇2ψ+∇φ⋅∇ψ) dv = ∫ φ ∇ψ⋅n ds = ∫ φ ∂ψ/∂n. Now
interchanging φ and ψ and subtracting the two equations, have Green’s second identity or Green’s
theorem:

( )φ ψ ψ φ φ ∂ψ
∂

ψ ∂φ
∂

∇ − ∇ = −∫ ∫2

v s
dv

n n
da( ) ,

which relates a volume integral  to the a surface integral about the  enclose the volume. If we let  φ=Bx ,
Bx , and Bx   and let ψ=G(x,x’), and sum the three components, we have a vector form of the Green’s
theorem:

( )B B B n n B∇ − ∇ = ⋅ ∇ − ⋅ ∇∫ ∫2 2G G dv G G da
v s

( ) ( ) ,

( cf. Jackson  1963, eqn. 9.68 p. 283). The function is the Green’s function which is choosen such that

∇ = −2 4G x x r( , ’) ( )πδ ,

then allows the magnetic field intensity to be written as the following

B x G dv G G da
v s

( ) ( ) ( )= − ∇ − ⋅ ∇ − ⋅ ∇∫ ∫
1

4

1

4
2

π π
B B n n B

There are three special choices for G(x,x’) for the upper half-plane case with a planar boundary at z=0;
the choices are (a) G(x,x’)=1/|x-x’|, (b) G(x,x’)=1/|x-x’|-1/|x-x*’|, or  (c) G(x,x’)=1/|x-x’|+1/|x-x*’|,  where
x=(x,y,z) are the field points, x’=(x’,y’,z’) are the source points and  x*=(x’,y’,-z’) are the image points.
The case (a) leads to the formulation that we consider in more details. In case (b) we have G(x,x’) = 0 on
the surface,  i.e. the harmonic Dirichlet Green’s functions   for   the      half-plane    ,and   case (c) we
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have ∇ G(x,x’) = 0 on the surface, i.e.,  the harmonic Neumann Green’s functions for the half-plane (Duff
and Naylor 1966, p. 272). For a potential field, Case (b) can be shown to lead to the same set of equations4

which are derived from considering ∇×∇×B= ∇ 2 B=0 for the case J=0.

Now consider the integrand

[ ]= ⋅ ∇ − ⋅ ∇B n n B( ) ( )G G

and using the identities (a)  n×(B×∇G) = B(n⋅∇ G) - (n⋅Β) ∇G; (b) ∇ G×(n×B) = n (B⋅∇ G) - Β(n ⋅∇G);
(c) (n⋅ ∇)(GB)= B(n⋅∇ G) + G (n⋅ ∇)Β ; we have

[ ]= ⋅ ∇ − ⋅ ∇( )( ) ( )n B B nG G2

[ ] ( )( ) ( ) ( ) ( ) ( )= ⋅ ∇ − × × ∇ − ⋅ ∇ − ⋅ ∇ + ∇ × ×n B n B n B n B n BG G G G G

[ ] ( )( ) ( ) ( ) ( ) ( )= ⋅ ∇ − × × ∇ − ⋅ ∇ − ⋅ ∇ − × × ∇n B n B n B n B n BG G G G G

Now using the identities (d) ∇ ×(GB)= G(∇ ×B) + B ×∇G and (e) ∇⋅( BG) = B⋅∇ G+ G∇⋅ B, we have

[ ] ( )( ) ( ) ( ) ( ) ( ) ( )= ⋅ ∇ + × ∇ × − ∇ ⋅ − ⋅ ∇ − × × ∇ − × ∇ ×n B n B B n B n B n BG G G G G G

By using the identities 5 (f) ∫ n⋅ A da = ∫ ∇⋅ A dv ; (g) ∫ n×A da = ∫ ∇×A dv ;  (f) ∫ φ n  da = ∫ ∇φ dv where
the surface integrals enclose the volume, the first three terms on the [ ] when integrated of the volume
gives zero, since ∇ ×∇ × (GB)= ∇ (∇⋅(GB))- ∇ 2 (GB). Hence we

 ( ) ( ) ( )[ ]B x G dv G G G da
v s

( ) ’ ’ ’ ’= − ∇ − − ⋅ ∇ − × × ∇ − × ∇ ×∫ ∫
1

4

1

4
2

π π
B n B n B n B

The second term of the surface integral can be written using, first ∇×B=µJ, and then identity (g) above,
and final using ∇×µJ= ∇×∇×B= ∇ (∇⋅ Β)+ ∇ 2 Β,

( )[ ] ( )( ) ( )− × ∇ × = −∇ × − ∇ × = −∇ × − ∇∫ ∫ ∫G da G G dv G G dv
s

v v

n B J J J B’ ’ µ µ µ 2

                                                       
4 If G=0 on the surface then we have

B x G dv G da
v s

( ) ( )= − ∇ − ⋅ ∇∫ ∫
1

4

1

4
2

π π
B B n

and expanding

 ( )− ∇ = − × ∇ × − ∇ ×∫ ∫ ∫
1

4

1

4 4
2

π π
µ
π

G d v G n B d a G J d v
v v v

B ( )

and we have the magnetic field intensity in terms of the volume current density and the component of B on the surface

B x G J d v G d a
v s

( ) ( )= − ∇ × − ⋅ ∇∫ ∫
µ
π π4

1

4
B n

For G(x,x’)=1/r -1/r*, we have ∇G= 2zk/r . The volume integral represents the magnetic field from the volume currents and
their image currents. Redefining the variable the formulation can be seen to that dicussed by Hagyard, Low, and Tandberg-
Hanssen 1981.

A similar equation is obtained if ∇G=0 on the surface; starting with

B x G d v G d a
v s

( ) ( )= − ∇ − − ⋅ ∇∫ ∫
1

4

1

4
2

π π
B n B

and expanding the volume integral as above and using the identities c, d, and e above. However, the Green’s function have
different definitions/.

5 These formulae do not apply at x=x’, but if the singularity is excluded by taking the appropriate surfaces, the contribution of
the region around the singularity gives a zero contribution in the limit as the surface closes around the singularity  (Jackson
1963, p. 284).
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Therefore

( ) ( )[ ]B x G dv G G da
v s

( ) ’ ’ ’= − × ∇ − ⋅ ∇ − × × ∇∫ ∫
1

4

1

4π π
J n B n B

or for G=1/r=1/|x-x’| we have

( ) ( )B x
r

dv
r

da
r

da
v s s

( ) ’ ’ ’ ’= − × ∇⎛
⎝⎜

⎞
⎠⎟

− ⋅ ∇ ⎛
⎝⎜

⎞
⎠⎟

− × × ∇ ⎛
⎝⎜

⎞
⎠⎟∫ ∫ ∫

1

4

1 1

4

1 1

4

1

π π π
J n B n B

The first surface integral is the double layer configuration with the monopole surface charge
configuration. The second surface integral is the surface current contribution. The two integrals are
identical.

Appendix B.  Schmidt Method and the Green FuntionOperator

The formulation given in the text was employed to test the numerical codes. It is important to note that
the matrix operator K in the equation KxBz=Bx and KyBz=Bx are similar and the nature of the matrix is
seen the Figure B1 below.
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