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Abstract. An X-ray or EUV image of the corona or chromosphere is a 2D representation of an extended

3D complex for which a general inversion process is impossible. A specific model must be incorporated in

order to understand the full 3D structure. We approach this problem by modeling a set of optically-thin

3D plasma flux tubes which we render these as synthetic images.  The resulting  images allow the

interpretation of the X-ray/EUV observations to obtain information on (1) the 3D structure of X-ray

images, i.e., the geometric structure of the flux tubes, and on (2) the internal structure using specific

plasma characteristics, i.e., the physical structure of the flux tubes. The data-analysis technique uses

magnetograms to characterize photospheric magnetic fields and extrapolation techniques to form the field

lines. Using a new set of software tools, we have generated 3D flux tube structures around these field lines

and integrated the plasma emission along the line of sight to obtain a rendered image. A set of individual

flux-tube images is selected by a non-negative least squares technique to provide a match with an observed

X-ray image. The scheme minimizes the squares of the differences between the synthesized image and the

observed image with a non-negative constraint on the coefficients of the brightness of the individual flux-

tube loops. The derived images are used to determine the specific photospheric foot points and  physical

data, i.e., scaling laws for densities and loop lengths. The development has led to computer efficient

integration and display software that is compatible for comparison with observations (e.g., Yohkoh SXT

data, NIXT, or EIT). This analysis is important in determining directly the magnetic field configuration,

which provides the structure of coronal loops, and indirectly the electric currents or waves, which provide

the energy for the heating of the plasma. We have used very simple assumptions (i.e., potential magnetic

fields and isothermal corona) to provide an initial test of the techniques before complex models are

introduced. We have separated the physical and geometric contributions of the emission for a set of flux

tubes and concentrated, in this initial study, on the geometric contributions by making approximations to

the physical contributions. The initial results are consistent with the scaling laws  derived from the Yohkoh

SXT data.

Subject Headings: Sun: magnetic fields, Sun: coronal loops
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1. Introduction

 1.1 HISTORICAL BACKGROUND

As a historical introduction to the subject of rendering solar magnetic structures, we note that
using magnetic field extrapolations to infer the 3-dimensional (3D) structure of coronal loops
started with the computer code devised by Schmidt in the early 1960’s (Schmidt 1965; Harvey
1966,  Harvey 1969, Schmidt 1964).  Rust was the first to  use Schmidt’s extrapolation scheme
to compare the 3D magnetic field structure with the coronal loops (Rust, 1966; Rust and Roy,
1971; Rust, 1970). At the Crimean Astrophysical Observatory a similar code was developed by
Godovnikov  and  Smirnova (Godovnikov and Smirnova, 1965).  Rust’s comparisons showed a
good correlation of the current-free field lines with the direction of the coronal loop structures.
The set of field lines closely matched the observations at the limb, even though there was a time
delay  between the Hα observation and the magnetogram. The good correlation was
accomplished, in part, by eliminating regions which showed substantial evolution. The result of
this study was a confirmation of potential-like configurations of the coronal loops in terms  of
position, orientation, and height. However, nothing was stated concerning the line-of-sight
effects, even though, in these limb observations, the brightening at the loop tops were used
implicitly to set the heights of the field-line extrapolations. The brightenings are obviously the
results of  line-of-sight  effects. In this paper we will develop a specific treatment of the coronal
X-ray structures by synthesizing  line-of-sight images of an optically thin plasma for comparison
with observations.

 The coronal loops were observed in prominences in the 1860’s and Fox photographed and
descriped them in 1908 (Fox 1908, Bray et al. 1991).  It was the spectrographs at Yerkes and
Mt. Wilson Observatories that allowed Fox,  Pettit, Ellison, and Hale to analyze the
prominences, and it was the birefringent filter that allowed Lyot to photograph the  fine scale
loop structures. Such detailed observations of Hα loops, with the introduction of photoelectric
magnetographs in the 1950-1960’s, led  Rust to his study.

 The introduction of X-ray observations from rockets, Skylab and SMM allows analysis of the
field-line extrapolations with these observations ( Webb 1981; Sheeley et al. 1975; Hoyng et al
1981.; Poletto et al. 1975; Levine 1976). The analysis of soft X-ray images from Skylab in terms
of quasi-static coronal loops leads to a set of scaling laws relating the maximum temperature,
base pressure, and length of the loops (Rosner, Tucker and Vaiana 1978). Within the more
recent Yohkoh observations, scaling law analysis continues to be refined giving better statistics
in relating  density, pressure, and arclength of loops (Reale and Peres 1995;  Ciaravella et al.
1996; Kano and Tsuneta 1995; Yoshida and Tsuneta 1996). The present approach discussed
herein extends the previous analyses by forming images for comparison with observations using
scaling laws relationships. The resulting image of  a set of potential flux tubes for an active
region which best represents the soft X-ray observations determines a 3D model for the region.
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The method here employs both physical and geometric data. Using such an approach, we will
overcome the problem that  the locations of the loop foot points are difficult to identify (Yoshida
and Ogama 1995). The uncertainty of the loops’ lengths would be of the order >±0.9x103km
(Kano and Tsuneta 1995), which can lead to an uncertainty in the derived scaling law
parameters. Although lower temperature sensitive observations can improve the foot point
locations, one cannot follow the coronal loops to the photosphere (i.e., the “foot-a-sphere”)
(Yoshida et al. 1995). Determining the foot points is only one example of the usefulness of the
general approach described here, i.e., matching the coronal structures to specific points in the
photosphere via the potential extrapolation.  Specifically, the comparison of the synthesized
images  and observations identifies the appropriate field lines through which the foot points can
be determined.   As we shall show, the development of a flux-tube image technique provides a
much deeper insight into the 3D structures of  the corona.

1.2 APPROACH

  The approach used is to employ a magnetic model: either a potential or force-free magnetic
field extrapolation of  a magnetogram to obtain a set of 3D magnetic field lines. Having these
field lines, the geometry model for the flux tubes is defined by a set of  vertices which are
generated by using the conservation of flux. These flux tubes are filled with an optically thin
plasma as given by a specific  physical model of the plasma and the flux-tube images of these are
produced by an imaging technique. With a set of individual coronal flux-tube images, a positive
linear combination is constructed into a soft X-ray image in order to assign the particular
emission characteristic to each flux tube when compared with observations.  This  inversion
technique employs a nonnegative least squares approach. Such analysis provides a much better
understanding of the strengths and weaknesses of the specific models and parameters used in
creating the field lines and the physical characteristics of the flux tubes. We have emphasized the
geometric contribution in this paper, as compared to Alexander and Katsev (1996) , who recently
studied the problem emphasizing the physical component.

Out  of  such an analysis the parameters and the assumptions for the various magnetic,
geometric, and physical models can be pursued. The approach will help to answer questions such
as:  Where are the specific foot points in the photosphere for the heated X-ray flux tubes and
what is unique about these photospheric regions? What are the specific emission features and
temperatures  for the X-ray loops? What is the volume filling factors for the heated X-ray loops?
What is the nature of  the diffuse background fog associated with the active regions? What
contributions are the nonpotential, nonforce-free magnetic fields near the photosphere? What is
the model for the specific excitation channels from the photosphere to the corona?

 Because of the historical use of field lines in comparing the magnetic structure with the observed
topology of observational images, we will first start with some appropriate comments of their use
and some new findings using them (Section 2.1). Also as a preamble to the full treatment of
transparent flux tubes which uses optical thin flux tubes, we will show a view of  field lines with
their “solid” flux tubes drawn (Section 2.2). This immediately draws attention to the expansion
of the flux tube with height. Then the main emphasis of the paper is presented with the method of
rendering the soft X-ray flux tubes and the inversion technique which is used to determine the
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relative emission strength of the individual flux tubes (Section 3.0) . With the assistance of the
appropriate scaling laws, these relative strengths are then used to obtain a set of physical
parameters for each flux tube (Section 4.0). For example, having the length and equating the
emission factor to brightness of the loop, we can obtain a scatter diagram consistent with the
scaling laws.

2. Representations

2.1 FIELD LINES

 Field-line configurations provide a unique analysis method to derive information from solar
magnetograms. The field-lines configurations have been used to determine the consistency and
interconnection of the photospheric and chromospheric magnetic fields. The early extrapolations
of magnetograms used current-free fields situated about active regions (Schmidt 1965; Semel
1967). As stated above, the agreement between the chromospheric linear features and the
photospheric field extrapolations were generally good for potential-like fields. Nakagawa
(Nakagawa 1973; Nakagawa and Raadu1972; Nakagawa et al. 1971;  Raadu and Nakagawa
1971; Wellck and Nakagawa 1973) and Levine (Levine 1975; Levine1976; Levine and Altschuler
1977) studied linear force-free fields for highly nonpotential regions and showed some
consistency for these fields for a few active regions. Then Mikic and Wu and others (Mikic,
Barnes, and Schnack 1988,  Mikic, Schnack, and Van Hoven 1989,1990, Mikic and McClymont
1994; Roumeliotis 1994; Wu, Chang and Hagyard 1985; Wu et al. 1990; Wu and Sakurai 1990,
Gary 1992) developed force-free extrapolations using vector magnetograms with some success.
Because, in highly sheared regions the extrapolated potential field deviates from the observed
transverse field, Hagyard and others (Hagyard 1988; Hagyard 1990; Moore, Hagyard and  Davis
1987, Wang 1992) have detailed these differences in the shear analyses, which used extrapolated
transverse potential field in comparison with the observed transverse field. P. Démoulin and
others (Démoulin et al. 1994; Démoulin et al. 1993; Somov 1992) have employed the magnetic
field extrapolations to determine the separators and separatrices to determine the places within
active region complexes where reconnection can occur. Then the field extrapolations have been
used in (1) the  mapping of the connectivity of field lines, (2) the study of  magnetic separators
and separatrices, (3) the study of 3D topological structures in large scale coronal features (e.g.,
hairy-ball models), (4)  the comparison with potential and force-free fields, and (5) MHD
modeling.

   There is yet a great deal to be learned about the 3D structures of coronal fields. Moreover,
there is one area which has almost been overlooked that can contribute to the analysis of  the
solar magnetic configurations, in particular to the analysis of high resolution SXT images from
Yohkoh. This is the area of image analysis which extends the field-line analysis.

  As an introduction to 3D image analysis,  Klimchuk has analyzed a set of coronal loop images
from SXT for  cross-sectional properties (Kimchuk 1995; Klimchuk et al.1992) with extension
by McClymont and Mikic (1994). We review Klimchuk’s work here since it provides a transition
between field-line analysis and the 3D rendering analysis presented later. It also shows, using
potential flux tubes, that the analysis is consistent with the basic assumptions to be employed. His
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summary observations were: (1) flux tubes have circular cross sections, (2) filled flux tubes have
approximately uniform density cross sections, (3) cross sectional radii are similar for all loops,
and (4) cross sectional radii of each loop are approximately constant. The conclusions (3) and (4)
are consistent with the results from potential field-line calculations as shown in Figures 1 and 2.
The data in these figures are associated with Active Regions 7645 and 7646/7647 on 1994
January 4.  The coronal field lines were generated using Sakurai’s potential code (Sakurai 1981)
for spherical geometry and using the KPNO magnetogram  of 1631UT (see Fig 1.). In Figure 2a
the flux-tube ratio of radii, R, normalized to the apex value is plotted vs the normalized distance
from the apex of  each loop. Most of the field lines have a ratio between 1.0 and 0.25. The 60
representative field lines were selected by the strength of  flux distribution algorithm for foot-
point selection. The field lines with a R > 0.5 at the end  of  the loop are very short loops which
can be identified in Figure 2b. In Figure 2b the inverse ratio of the radii, R-1, is plotted vs the
arclength from apex in units of  Mm. In both plots of Figure 2, the radii are derived using the
conservation of magnetic flux, i..e., r/ro= (B/Bo)

-1/2, i.e. using the simple “microscopic” definition
(McClymont and Mikic 1994). ( For the average R an empirical model R = exp(-kR(cos(πL/2)-1)
can be given, where R is the radius of some representative circular loop and k~2/R is the vertical
scale height for an exponentially decreasing magnetic field.) It is seen from Figures 2a and 2b
that over more than 75 per cent of the length of the field line, the radius changes less than a
factor or 2.  McClymont and Mikic (1994) in an re-analysis of Klimchuk’s observations used a
force-free field extrapolation and used the 85 per cent point as their “foot point”. Hence, using
their results and considering the aspect ratio of the flux tubes, the potential field data of  Figure 2
are consistent with Klimchuk’s fourth observation, especially considering that SXT images are
not sensitive to temperatures lower than ~2.5 MK, i.e., the lower section of the  legs are not
seen, and the force-free field analysis.  For this nearly-potential transequatorial complex
considered here, there is no need to consider the force-free field arguments imposed by
McClymont and Mikic (1994). Apparently, the current systems in this complex are negligible.

 The SXT images of active regions as seen on the limb of the sun (e.g., Fig.3, Tsuneta 1996)
show that there is a preferred mean height for the distinguishable coronal structures. This is
related to the scale height of the loops. This mean height would imply a fairly consistent radius,
which is consistent with Klimchuk’s third observation, if we assume results of  Figure 2 (also see
section 2.2 below).

 We also note that the circular cross section implies that the observed line-of-sight path through
the flux tubes is �� =2(h(2h-R))1/2  as seen perpendicular to the longitudinal axis,  where h is the
distance of the line-of-sight path from the edge of the flux tube of radius R. Hence at � =R ,
h=R(1-(3/4)1/2)=0.13, and, hence, only at the edge, the last 13% of the cross section, does the
intensity profile (�) change by an additional factor of 2. Hence, Klimchuk’s first observation (1)
implies his observation (2). His analysis of images provides some important points, although
consistent with potential fields,  and provides a prelude and impetus to further image analysis.
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 2.2 SOLID FLUX TUBE

 We have employed the flux-tube radii with the field-line calculations above. It is instructive to
see the field-line plots with the associated flux tubes shown explicitly. In Figure 3 we have
plotted the flux tubes associated with the same data set as Figures 1 and 2, keeping the base
radius ro constant. It is obvious that the higher reaching flux tubes have larger radii, which is a
result of the lower associated field strength at the apex regions of these loops. If one mentally
extracts the set of the very high flux tubes and selects only the remaining ones with
approximately the same height, then the same diameters are seen, viz r/ro= (B/Bo)

-1/2 and are
consistent with observation. Also, if the lower legs of the flux tubes are removed, as they would
be in soft X-ray images due to the lack of emission at the lower chromospheric temperatures, the
cross sectional radii of each loop would be approximately constant.

 We now will consider flux tubes which are physically more relevant, i.e., optically thin flux
tubes.

2.3 RENDERING OPTICALLY THIN FLUX TUBES

 A thin coronal magnetic flux tube or loop is here defined by a bundle of exterior field lines
connecting two compact photospheric areas of opposite magnetic polarity, such that  all interior
field lines pass through both end regions. Each end region is simply connected.  (Generally, the
central interior field line of a flux tube is considered when one draws only field lines.)  Hence,
flux tubes are separate, slender tubes of small cross sections in which the enclosed plasma is
relatively isolated by the magnetic field (Parker 1979 p.123; Bray et al.1991, p.262; Priest 1982,
p. 108).

Observationally, loop-like structures have been observed during eclipses and with coronagraphs,
heliospectrographs, EUV and X-ray telescopes, and are classified as open/closed hot/cool loops
(Webb 1981). Hence, the earlier work by Rust (1966) and a continued process through Skylab,
SMM, and Yohkoh eras have developed the consistent picture of the connection between the
coronal loops and the observed coronal structures. We will now consider how to render these
quasi-static hot, closed coronal loops that make up the majority of features seen in a soft X-ray
image. However besides the individual loops, there is also an overall  faint, diffuse emission
associated with active regions. This diffuse emission could be related to (1) unresolved multi-
loops heated by a basal process or/and (2) the point spread function of the X-ray telescopes. The
effect of  the point spread function of the Skylab X-ray imaging instruments is apparent when
those images are compared to the Yohkoh/SXT images. For the SXT images, the faint, diffuse
emission only reduces the contrast of the individual recognized loops, and is not considered here,
but should be addressed in a detailed analysis.

The basic property of the flux tube is that the magnetic flux is conserved along the flux tube,
∇⋅B=0. The flux tube is not  required to have a circular cross section, but  we have assumed a
circular cross section which is consistent with a uniform pressure distribution within the loop.
Hence, if the base radius is ro and the base field strength is Bo, then the radius of the flux tube
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behaves as r=ro(B/Bo)
1/2.  In using this approach we assume that the flux tube is thin, i.e., no flux

tube expands into an adjacent flux tube. If we start at the, say, foot point of positive longitudinal
field with a circular cross section for the flux tube, then the derivation from a circular cross
section is dependent on the distribution of the field lines at the other (negative) foot point. The
correction for non-circular flux tubes can be made using a set of field lines; this correction has
not been applied in the results presented here. The correction would be to establish the flux tube
geometry by using a set of foot  points defining a circular cross section at only one end of the
flux tube and following the associated field lines to the other foot point.

 We ignore the small confining current for the flux tubes, i.e., we assume that the magnetic field
produced by the confining current is much a weaker than the field defining the field lines. Hence
the field-extrapolation procedure will not have to produce the confinement current. Hence, it is
assumed that the dominating field is a potential field and the flux tubes with different pressures
and temperatures can coexist by small currents about the flux tubes which are not drastically
changing the  global potential field configuration, i.e., ∆p<< B2/8π. 

Furthermore, we will assume quasi-static equilibrium. Since Lorentz forces vanish in the
direction of the magnetic field, identically  B⋅(j×B)=0, and the force balance equation leads to
hydrostatic equilibrium along the field line:   B⋅(-∇p+ ρ∇Φ)=0.  Then, following Bray et al.
(1991, p.289), the pressure along a particular field line is given by

p p e
d

= ∫−
( ) ( )0

1

Λ ζ
ζ

,

where Λ(z) is the pressure scale height at z, and
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The scale height is between 50 Mm < Λ < 200 Mm for  0 < z < Rs and  for a canonical coronal
temperature of  T~2×106 K. The scale height Λ and the maximum z for a coronal loop, zmax, are
such that zmax/Λ < 1,  and the electron number density shows generally little variation along an
isothermal portion of a flux tube,
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where Ne = π ρ/ µ mH. We will assume the loops being rendered are in isothermal hydrostatic
equilibrium.

 The thermal plasma emission spectrum has been calculated in detail (e.g. Mewe et al. 1985,
1986). In general, thermal bremsstrahlung accounts for the shape of the soft X-ray emission.
When broadband filters are employed , the inclusion of the line emissions does not change the
general shape of the emission profile, but specific calculations can be preformed to account for
these lines.. The thermal free-free bremsstrahlung emission flux, jλ, per unit volume per steradian
per wavelength interval is given in the first order by simply
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where  Ni is the number density of ions and g is the Gaunt factor which is ~1 for the corona
(Culhane 1969; Elwert 1961; Gibson 1973; Lang 1980; Maggio and Peres 1996). This emission
distribution maximizes at λ = 72/T6 Å. Since hc/λkT~1  and Ne = Ni, then jλ ~ Ne

2/T1/2, and if the
corona is assumed isothermal, then the emission is related to the square of the density  jλ ~ Ne

2.

For the purpose of rendering the magnetic flux tubes, the response to the soft X-rays from free-
free emission can be any simple response curve since we will assume an isothermal plasma. With
the additional complexity, the thermal spectrum of Mewe et al. (1985,1986) could be combined
with the X-ray instrument response curves (e.g., Yohkoh SXT Operation Manual 1992).

 Alternatively, we could improve the thermal emission model by introducing the remarkably
robust scaling laws. However, in the present paper we will derive the associated relationships
with the scaling laws. These models can be determined by selecting any two parameters from po,
L, Tmax, or EH, where po is the base pressure, L is the loop’s semi-length, Tmax is the maximum
temperature at the top of the loop, and EH is the heating per unit volume. Following Serio et al.
(1981) and A. Maggio and G. Peres (1996), these quantities are linked by the scaling laws:

( )T p L eo

L

max

/
.

.4
*= ×

−

1 103 1 3
0 04

Λ ,

E p L eH o

L

= −
−

105 7 6 5 6
0 05

/ /
.

*Λ ,

where Λ∗ = 2kT/µmHg* is the pressure scale height evaluated at the loop apex (Ciaravella et al.
1996; Maggio and Peres 1996). Assuming uniform pressure and heating rates along the loop, the
analytic solution relating arclength s and temperature T along the loop is

( )[ ]s T s T
p

T f T To( ) ( )
.

. ,max max= +
×

× +−2 5 10
9 6 10 1

5

0

16 3 ,

where f(T,Tmax)=arcsin(T/Tmax)-(T/Tmax)(1-(T/Tmax)
2)1/2 and To=T(s=0) ~ 2×104K (Rosner,

Tucker and Vaiana  1978). However, over a majority of the loop the temperature is  ~Tmax (e.g.,
see Fig. 2 in Serio et al 1981; Reale and Peres1995). The scaling law is insensitive as to how the
heat is deposited along the loop (Kano and Tsuneta 1995). The scaling law may be different for
transient and quasi-steady loops (Shimizu 1994; Shimizu et al. 1994; Kano and Tsuneta1995).
Hence, the results presented here may have wide scatter plots due to the effect of  having some
non-stable loops included.

 Significantly, the 3D emission pattern from a flux tube can be separated into the physical and
geometric contributions. The physical part depends on the internal plasma structure of the flux
tube - the thermal emissivity, temperature, density of electrons and ions, etc. For the Yohkoh
observations, the temperature can be obtained from the SXT multi-filter observations. However,
for this initial study we will fix the free parameters of the physical contribution part of the flux-
tube models and consider only the geometric contributions. This is due to the approximation of
the isothermal nature of each individual flux tube, hence the density dependency will be related to
the emission strength of the overall value of the individual flux tube. The geometric part depends
on the line-of-sight integration through the flux tube. Using a set of field-line data given by the
field strength B(s) and the coordinate r(s) along the field line and a base radius of ro, we can
construct  a circular flux tube in three dimensions, as per Figure 3.
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 Since the physical condition of steady coronal loops depends only on the local heating
deposition within the loops and is determined independently of the neighboring loops, this
implies that the steady coronal loops with various temperatures and pressures are isolated entities
of the solar corona (Kano and Tsuneta 1995). Therefore, the 2D rendering of a coronal loop,
when the physical contribution is constant, for each individual flux tube, results in determining
only the line-of-sight segment within the flux tube. The solution of this plasma-volume rendering
problem is to define the set of voxels which defines the flux tube. Having these voxels, we can
assign to each voxel (a cubic volume element) a numerical value of the emissivity of the
contained plasma. We redefine the coordinate system by rotating the coordinates so that we have
a new z-axis co-linear with the line-of-sight direction. Then to define the “brightness”
contribution for each image-plane pixel, we collapse the line-of-sight contributions by summing
the voxels in the new z-direction to obtain a 2D image of the flux tube for a specific “look”
direction (see Drebin, Carpenter, and Hanrahan (1988) for a discussion of the voxel technique).
We assume an optically thin plasma with ignorable opacity.

 Having the field lines, the main geometric problem in computational-volume rendering is how to
specify the volume occupied by the voxels when one generates the line-of-sight paths.  The
continuous 3D space, R3,  is replaced by discrete 3D voxel-space Z3 of  an array of points. The
solution we use is a nearest-neighbor volume-rendering technique. An entire volume (a cubic
frame buffer) containing a flux tube is divided into small voxels, i.e., an array of voxel tessellates
Z3. Each voxel contains a coordinate-defining index (i,j,k). One foot point of the flux tube
longitudinal axis defines the starting voxel for the search. All surrounding voxels are checked to
determine if they are within the flux tube. We check the six direct neighbors (face neighbors) and
the twelve indirect neighbors (edge neighbors), but the eight remote neighbors (corner
neighbors) are not checked since we are dealing with an extended flux tube (Kaufman, 1987).
The contiguous voxels within the flux tubes are mapped out. This scheme avoids investigating
the entire volume and only a “skin” of voxels around the  flux tube is explored unnecessarily.
Having these voxels the 2D rendering is straight forward, e.g. in IDL reference the library
programs project_vol or voxel_proj (see Figures 4 and 5). The Interactive Data Language (IDL)
(@Research Systems, Inc.) is employed on a Silicon Graphics SGI 4D/480 RE Power Series
computer for both the rendering and non-negative least squares inversion routine.

3.0  Inversion Techniques

3.1 BASIS FUNCTIONS

The mathematical basis of forming the images and selecting the appropriate coefficients is
discussed in this section. If we form images with m×m pixels, then each image and  any linear
combination can be considered as a vector of m2 elements. Using a set of individual loop images
{f}, we define a finite-dimensional linear sub-space using the linear combination

V f f f fn n= + + + +α α α α1 1 2 2 3 3 � ,

 to form an arbitrary vector V within the subspace. Here V is an image of n loops and  the αi’s
are scalar “brightness” coefficients of the individual loops. Within this linear space forming the
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complete image, the images of the individual loops form an independent sub-set of basis
elements. This is seen since the potential or other extrapolation methods of the field provides a
one-to-one mapping of the foot points, i.e., the foot points form a unique pair of position
coordinates ( a positive Bz foot point and a negative Bz foot point), and no two identical images
can be generated from a signal set of foot points, since all the other loops are either greater or
lesser in extent across the specific neutral line in the same direction, providing for unique images.
Of course, a necessary condition is that only one foot point for any of the loops is generated
within an individual image pixel. No two loops can have the same image due to the unique foot
point locations and the higher loops will also be more extended in width. In particular the image
pixel size will place a limit on the number of independent loop images. However, this can be
tested in the application to insure linear independency of the images by employing the Gramian
condition (Hilderbrand 1952).

3.2  NON-NEGATIVE LEAST SQUARES METHOD

 The inner product (f,g) in this space, Rm×m-space, is the regular vector dot product and we can
define the projection of f in the direction of φ by proj(f:φ)=(f,φ)φ, where (φ,φ)1/2=1. Furthermore
for an observed image h and given a set of defined flux-tube loop images, fi’s, we can define the
sum

S h f h f f f f n mum n n= − = − − − − − ≤α α α α α1 1 2 2 3 3
2

� ,

which assumes the minimum if we chose
α k kh f= ( , ),

i.e., a least squares solution (Davis 1963) . This assumes that all the flux tubes are optically thin
so that the images can be summed linearly. When the images do not form an orthogonal sub-
space, we can still form the least squares solution subject to the constraint that all the α’s are
nonnegative, i.e., the images of the loops have only a positive contribution. For this purpose the
Kuhn-Tucker conditions of the least squares solution are imposed. If f is the matrix formed by
the n-column vectors of the images (m2 elements) and α is the n-vector form by the αi’s, then the
resulting Kuhn-Tucker theorem is then given as follows:
                       An n-vector α is a solution of the least square solution of minimizing
                       ||h-αf|| subject to the constraint α>0 if and only if there exists a k-vector
                       y = (f, fα-h) and a partitioning of the integers 1 through k into the subsets
                       �  and � such that:
                                                     αi=0 for  i∈�              αi>0 for i∈�

                                                      yi>0 for i∈���            yi=0 for i∈�

(Lawson and Hanson 1974).
 The derivation of the theorem uses the fact that the vector y = (f, fα-h) is the negative gradient
vector of  1/2||fα-h||2 and is related finding the minimum of the norm.  An appropriate FORTRAN
computer algorithm is given by Lawson and Hanson (1974) for solving the constrained linear
least square problem. The problem is one of searching along the negative gradient of the least
square norm while keeping α>0. The problems of noise, under determinacy, and column
degeneracies are handled by employing the property that one linearly independent column vector
is added or removed at each step using QR decomposition methods in  solving the multiple linear
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regression equation h - α f = 0 for the various α’s needed in the  Lawson-Hanson algorithm. In
the software developed, an IDL External_Call routine was used to employ the Lawson and
Hanson algorithm directly.

3.3 PROCESS OVERVIEW

The overall set of programs is shown in the flow chart of Figure 6. For the data used in this
paper,  the  KPNO longitudinal magnetogram used was obtained on 1994 Janurary 4 at 1631
UT. The FITS formatted 512×512 magnetogram with 4.88 ×4.88 arcsec pixels was used
uncorrected for rotation and saturation. A 200×200 sub-image about the transequatorial active
regions AR 7645 and AR 7646/47 was extracted. A Yohkoh SXT  AlMg  image taken on the
same day at 0735 UT with 4.92×4.92 arcsec pixels was used. From the full disk FITS image, a
sub-image was extracted, rescaled, and registered with the magnetogram.  Both sub-images are
then scaled up to a 400×400 pixel image to provide spatial resolution in the rendering analysis.
Using this sub-image of the full magnetograph, a set of  290 potential field lines was generated
using the line-of-sight, spherical model of Sakurai’s potential code (Sakurai 1981) in which the
foot point distribution is determined by the strength of the flux distribution. The field lines
generated are viewed as from Earth and are imported into a program to render each field line that
has both photospheric foot points within the field of view of the sub-image field of view. The
short field lines with a total arclength <24 arcsec are also rejected from the analysis since they
contribute very little to the overall image and interfere with the current codes’ performance. A
flux rendering program is used to produce an optically thin flux-tube image of each of the
remaining field lines. Per computation pass, the rendering program assumes that each flux tube
has a standard radius (e.g. 0.8 pixel ) at the photosphere for the set of  field lines. Starting at a
foot print the voxels are determined by the nearest neighbor technique described above. Then
each voxel within a flux tube is assigned an emission value of 1 and the values are summed along
the line-of-sight direction, e.g. z-axis, to give a pseudo-image of  the flux tube. A correction to
the sum is applied so that the hydrostatic equilibrium scale height is taken into account. The
correction is very small as we shall see. This is done for each flux tube and  for each a separate
image is obtained for each flux-tube loop (fi’s). Using the sub-image of  the Yohkoh image (h)
and the loop images (fi’s) we minimize || h-αf || using the Lawson-Hanson algorithm which
maintains the constraint α >0, and obtain the brightness coefficients αi for each flux tube of
length Li. Hence we obtain a corresponding image to the observed image with the given
assumptions. We shall now give the specific results for the active regions investigated.

4. Results

4.1 SINGLE LOOP

Before we present the multi-loop configurations we present a single flux loop configuration.
Figure 4 gives a single image of a rendered flux tube showing the flux tube in five different
orientations. We will assume that any combination of flux-tube loops  remain optically thin,
hence this allows the linear combination of images to be valid. This allows the formation of
complex images via a sum of single loop images. This simulates an unchanging flux tube rotating
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from the east limb to the central meridian longitude.  The emission properties of a single X-ray
loop is simulated. On the limb the effect of the conservation of  flux is seen in the expanding flux
tube. As the flux tube is rotated the line-of-sight effects become more apparent. The line-of-sight
effects are not very apparent on the limb in the case shown since the plane of the loop is
perpendicular to the line of sight. On the limb the main line-of-sight effect is due to the thickness
of the tube as the radius of the tube expands. When the flux tube is seen on the central meridian
the line-of-sight effects of  looking down through the legs of the tube are apparent. Hence the
bright regions of the tube has shifted from the apex on the limb to the legs on the disk. Since the
line of sight is not symmetric down both legs, one leg appears brighter. A  photospheric field-
strength difference would change the  radius of the tube at the different foot points and could
also cause a difference. In the last panel of Figure 4 we have the same loop shown except the
effect of hydrostatic scale factor is not included. The loop height is 0.5×105 km and the scale
height is 0.4176×105 km, typical of  an isothermal corona of T=6.2×106K and a perfect gas.

4.2 MULTI-LOOP IMAGING BY SUMMATION

 For a set of  loops the combined image is just the sum of the individual loop images since we
have assumed an optically thin plasma. This allows the linear superposition and provides a simple
method of creating a combined image without having to have all the flux tubes in the z-buffer at
the same time and doing a sum there. Figure 5 shows the results of a multi-loop imaging
technique. This image begins to resemble an X-ray image for multi-loops. The contrast is much
higher than the images from an X-ray telescope due to the background emission and the
scattering in the instrument.  Again the line-of-sight effects are clearly seen being produced by
the width of the flux tube, the longitudinal views, and now the overlapping of flux tubes. One can
see “loop top” brightenings as a consequence of loops overlapping in the field of view, and, of
course, they have no relation with loop “interactions” in the physical sense. Such a geometric
analysis will be important in understanding the reported findings of  “coronal loop interactions”
(CLIs), in which the brightening at two overlapping loops is reported as a physical effect
(Airapetian and Smartt 1995, Smartt, Zhang, and Smotko 1993). It  is clearly seen in the
reconstructed images that the loop top brightenings can be due to a geometric effect; however
the  brightness could vary as a function of time if the density and/or temperature varies.

4.3 INVERSION SOLUTIONS

The inversion process will now be illustrated by taking a Yohkoh SXT image (Figure 1) and the
flux tube that have been rendered into images and determining the appropriate brightness
coefficients associated with each flux tube. Figures 7, 8 and 9 provide a set of images of the 1994
January 4 transequatorial active regions derived from the inversion process. A base radii of  ro=
0.25, 0.25 and 0.75 were used in the Figures 7, 8 and 9, respectively. The original SXT subimage
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had 400×400 pixels  (16.4×16.4 arcmin) for the region selected and there were 290 field lines
used in the inversion process, with the reduction of  field lines not closing within the field of view
and the removal of very short field lines (s < 24 arcsec), the number of  field lines was reduced to
187 with ~5% more rejected by the non-negative least squares  inversion process.

In testing the inversion process the 400×400 images were averaged into smaller arrays, i.e.
images of 20×20, 40×40, 80×80 and 200×200, to test the effect of the array size on the resulting
pseudo-image and the brightness coefficient and, hence, to test the non-negative least squares
method. As expected, the number of flux tubes used by the inversion process was reduced. For
an increased average pixel size giving a 20×20 array, 46% field lines were deleted by the non-
negative constraint, as compared to the 400×400 case.

A comparison of the resulting 400×400 pseudo image with the SXT image shows similarity in
the brightness of the main active regions, the x-type neutral point between the active regions, and
the same general field configuration. The high contrast on the pseudo-image is the first point of
departure between the two images. An arbitrary diffuse emission can be introduced into the
pseudo-image and the resulting contrast will match the observation much closer. The basis for
such an introduction is not explored in this paper.

Since the field of view is more than 16×16 arcmin, we conjecture that most of the differences
between the large, long  flux-tube loops of the  pseudo-image and the observations are mainly
due to the effect of  a source surface which would affect the longest, highest field lines the most
(e.g., Poletto and Kopp 1988). This effect will be studied in a later paper. Other effects might be
the field lines selected and hence related to the number of field lines used. An increase in the
number of field lines would allow the rendered flux tubes to span the image space more
effectively.

4.4 SCALING LAW RESULTS

In order to show the usefulness of this approach in determining physical parameters of  the flux
tubes we investigate the brightness coefficients in connection with the scaling laws. The analysis
by Kano and Tsuneta (1995) of  observations by SXT in terms of the scaling laws support, in
part, the early Skylab results by Rosner, Tucker and Vaiana (1978); however these later
observations include transient brightenings and resulted in a revised scaling law. Furthermore, the
analysis by Yoshida and Tsuneta (1996) provides data on the structure of the temperature and
density variation across active regions; the SXT image  “can serve as pressure and density
maps”. The results of  our image analysis relate directly to these  papers. In Figure 10 the
relationship between the brightness coefficients and the loop lengths is given along with reference
curves which plot I=L-2. An individual data point is derived from the brightness coefficients (via
section 5.2) for a specific flux tube and hence a specific length as given by the potential field
extrapolation. Using the scaling laws, emission per unit volume is  jλ ~ L-2 T-7/2 , if we relate this
directly to brightness of the loops we obtain the set of references curve given in Figure 10.
Hence for a given maximum temperature, the emission should be defined by an L-2 curve. The
variation of  temperature from loop to loop should change by a factor of less than 4, i.e., 2 MK
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to  8 MK; and then the maximum change in brightness as the result of temperature changes could
be a factor  of  ~100. The other variation in the scatter plot can come from (1) partial
contributions from multi-loops, (2) the natural spread in the scaling laws, (3) transient loops
which follow different scaling laws, (4) temperature variations, and (5) temperature sensitivity
effects of  SXT. Here we have shown the results are consistent with the scaling laws.  The
derivation of the specific scaling laws requires the inclusion of a detailed physical component
which would be more complete than the isothermal assumption made herein.  If we fix L, the
brightness is a function of T-7/2  and we can use the relationship to determine T, if we can
eliminate the diffuse background component.

5. Conclusion

We have given the theoretical and numerical treatment of  a unique method for rendering plasma
flux-tube emission in soft X-rays. A potential extrapolation method has been employed along
with an isothermal corona. This was initiated to show the usefulness of the method and more
complex cases can now be considered in terms of the extrapolation field and the physical
assumptions concerning the flux tubes.  The imaging method does converge as a function  of  the
brightness coefficients since the non-negative least squares is a stable process. This paper is an
exploratory paper using standard techniques in terms of simple models. It produces images very
consistent with observations in terms of both the linear features and the physical scaling laws.
The findings imply that further work in this area will provide a useful tool for understanding the
3D structure of the corona and the strengths and weaknesses of the scaling laws.  Further
development to be pursued includes using (1) field-lines extrapolations to define the flux tube,
instead of using the conservation of flux and circular cross sections, (2) more complex field
configurations, e.g., source surface potential models and force-free magnetic field models, (3)
actual scaling laws for non-isothermal models, (4) actual thermal spectrum and instrument
response functions, (5) unsaturated magnetograms, and (6) expanded mathematical, physical, and
computer algorithms.
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                          Figures Captions

Figure 1. Transequatorial Active Region 7645 and 7646/7647 on 1994 January 4.
(a) Yohkoh SXT image (0735UT) shows the associated 3-6×106K degree X-ray emission as
obtained by the AlMg filter, (b) KPNO magnetogram (1631UT) shows the associated
longitudinal magnetic field in the region of  16×16 arcmin,  (c) the magnetic field lines generated
by Sakurai’s spherical potential code is shown as viewed from Earth, (d) the same magnetic field
lines as in(c) are shown in profile. No source surface is employed as is apparent in the profile
view.
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Figure 2. Potential Flux-Tube Characteristics. (a) The normalized ratio R of the
cross sectional radii vs normalized arclength (L) along the loop from the apex is plotted.  Only
one side of each loop is used. The shorter field lines have a higher R value at a normalized
arclength of L=1, i.e., the short loops have a smaller change in the field strength along the loop.
(b) The reciprocal normalized flux ratio R-1 of the cross sectional radii vs the arclength  from the
apex measured in Mm is plotted.



21

 Figure 3. Solid Flux Tubes Displayed for the Active Regions 7645 and
7646/7647. Only the outer surface of the flux tubes are shown. The expansion of the flux tube is
displayed, with the highest flux tubes having the largest radii. The field lines used in generating
this plot are the same as Figure 1c and 1d. The same initial photospheric radius is constant all the
flux tubes (4 arcsec). The changes in the radius of the flux tubes are due only to the change in the
magnetic field.
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Figure 4. Single Plasma Flux Rendering.  (a-e) A flux tube is seen as it would appear rotating
onto the sun’s disk in a series of images from the eastern limb to disk center in 5 steps with north
up. The different line-of-sight effects are seen.   In the last panel (f), the same disk center image
of (e) is given for the flux tube except without the hydrostatic corrections. The images were
composed of 400×400 pixels using  potential field lines from Figure 1.
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Figure 5. Multi-Flux-Tube Rendering. (a-e) A series flux tubes with the
hydrostatic correction is seen as it would appear rotating onto the sun’s disk as per Figure 4. The
line-of-sight effects of  over-lapping images are seen. On the limb the main effect is enhanced
loop top brightening. On the disk center the location and strength of the brightening change as
the aspect angle is changed. In the last panel (f), the same disk center  orientation of (e) is given
for the flux tube except without the hydrostatic corrections.
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Figure 6. A Flow Chart of the Inversion Technique. A Yohkoh image is extracted
and field lines are generated from a magnetogram. Then each field line is rendered into a flux
tube. This set of individual images of coronal flux tubes (fi) is summed to form a pseudo-image
of soft X-ray emission. The individual image coefficients (αi) are determined by minimizing
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difference ||h-αf||2 between the pseudo-image (αf) and the observed soft X-ray image (h).

Figure 7. Comparison of the Resulting Image and Yohkoh SXT Images with a
Base Radius fixed at r0=0.25.  The differences seen arise from the high contrast resulting from
not having a diffuse component in the analysis and the narrow flux tubes resulting from the given
base radius. The differences in some of the large linear features may be due to  a number of

effects listed in the text.

Figure 8. Comparison of the Resulting Image and Yohkoh SXT Images with a
Base Radius fixed at r0=0.50. The expanded loops configuration gives an image with striking
similarities in terms of the overall linear structures and the location of the x-type neutral point,

especially under the assumption of a potential configuration and an isothermal environment
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Figure 9. Comparison of the Resulting Image and Yohkoh SXT Images with a
Base Radius fixed at r0=0.75. The x-type neutral point has been filled in be the expanding loops.
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Figure 10. Scatter Plot of Brightness Coefficients vs Arclength. The
relationship between the brightness coefficients and the loop lengths is given along with
reference curves which plot I=L-2 which indicate the consistency with the RTV scaling laws.


