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The minimum dissipative rate (MDR) method for deriving a coronal non-force-free magnetic
field solution is partially evaluated. These magnetic field solutions employ a combination of
three linear (constant-a) force-free-field solutions with one being a potential field (i.e., a=0).
We examine the particular case of the solutions where the other two a’s are of equal
magnitude but of opposite signs. This is motivated by studying the SOLIS1 vector
magnetograms of AR 10987 which show a global a value consistent with an a=0 value as
evaluated by ([0xB),/B, over the region. Typical of the current state of the observing
technology, there is no definitive twist for input into the general MDR method. This suggests
that the special a-case, of two a’s with equal magnitudes and opposite signs, is appropriate
given the data. Only for an extensively twisted active region does a dominant, non-zero a
normally emerge from a distribution of local values. For a special set of conditions, we find: (i)
The resulting magnetic field is a vertically inflated magnetic field resulting from the electric
currents being parallel to the photosphere, similar to the results of Gary and Alexander
(1999). (ii) For o ~ (Omax/2), the Lorentz force per unit volume normalized by the square of the
magnetic field is on the order of 1.4x10™ cm™. The Lorentz force (L) is a factor of ten higher
than that of the magnetic force d(B2/8T[)/dz, a component of L. The calculated photospheric
electric current densities are an order smaller than the maximum observed in all active
regions. Hence both the Lorentz force density and the generated electric current density seem
to be physically consistent with possible solar dynamics. The results imply that the field could
be inflated with an over pressure along the neutral line. (iii) However, the implementation of
this or any other extrapolation method using the electric current density as a lower boundary
condition must be done cautiously, with the current magnetography.

Magnetic Fields, Coronal Extrapolations, Inflated Magnetic Fields, Non-force-free fields

Introduction

Considerable effort has been spent in specifyiegdynamics of solar plasmas by
employing conservation laws that relate to constsaon the electromagnetic
fields and plasma flows; since their solutions lead representation of a relaxed
state of the plasma. To include non-equilibrium aod-force-free plasmas with
helicity injection, the minimum dissipative rate tmeds have been introduced.
The minimum dissipative rate (MDR) method for derg/the coronal magnetic
field is based, in part, on the principle that tieéaxed state of a plasma has
minimum Ohmic dissipation with a constant globadlidigy; that is, the magnetic
energy dissipation is minimized (Bhattacharyya &ala 2004; Bhattacharyya et

! Synoptic Optical Long-term Investigation of the Sun (SOLIS), a National Solar Observatory facility.
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al. 2007; Dasgupta et al. 2008, Hu et al. 2008 &HDasgupta 2008) Motivated
by Hu et al.’s (2008) application of the MDR methioda solar active regiomve
examine and evaluate this approach further using a special subset of solutionsin
order to determine the magnitude of the resulting forces and their feasibility for
solar magnetic field extrapolation.

The general resulting MDR equations with non-foitee solutions are extensions
of the linear force-free-field equatiamxB = a B, but assume different variational
equations (or constraints) as the starting poirite MDR approach for the
magnetic field is similar to Chandrasekhar & Walgg1958) approach in which
a variational approach is used, given the meanrsqoarrent density and the
maximum magnetic energy, to obtain the field maigrfeeld equationIx[0xB =

o B, whose solutions include a wider class of solitran the constawt- force
free solutions. By a variation of the constantgloOhmic dissipation rate given
the constraint of a constant relative magneticciiglione can derive the restricted
MDR magnetic field equationlxOx[0xB = a B (Appendix B). The special case
of the general MDR equations which we study is gibg OxOx0xB = a(IxB.
This is a restricted form of the most general Bidtaryya et al. (2007) two fluid
MRD field equation, derived from an extended vaoial function. These MDR
equations are discussed in the next section. Foipwhat section there is a
discussion of a special MDR field solution whiclsuks in an inflated magnetic
field. We derive several relationships betweenditgliand magnetic energy. We
then examine the consequences of the MDR methagm@ied to a simple bipolar
active region, which motivated in part, this study.

MDR Method

In this section we give a background to the genBlattacharyya et al. (2007)
MDR magnetic field solution stemming from a vameial approach. First we
will consider the related following single-fluid wational problem which leads to
nonlinear non-force-free-field solutions (Dasgugtaal. 1998). Given (i) the

Ohmic dissipation ratef), in terms of a constant electric resistivg &nd the
electric current densityj), asR = |y n j> dv, and given (ii) the relative magnetic
helicity® (Kw), in terms of the magnetic field) and its vector potential (A), as
Kw = [v(A+Ap)([B-B,) dv, the MDR variational o®(Ky - € R)=0 as function of
B(x,y,z), with € the Lagrange multiplier, leads to the following RRDEuler-
Lagrange equation

(Ox[Ox[xB) = € B, (1)

wheree = € u?n (see Appendix B for the derivation). This derivatiassumes a
single fluid in a closed system and the slightlgisgve plasma is relaxed under

’Fora parallel electric circuit, a simple introductory example of the MDR method is given in
Appendix A.
*The hypothesis for the constancy of the magnetic helicity is based on the following two
concepts. Woltjer’s (1958) theorem states: the magnetic helicity Ky =[v AB dV is an invariant
for a perfectly conducting measure in a closed volume. For a plasma where the characteristic
diffusion time (T4) is much larger than the plasma velocity time scale (T4 =L/wv), Ry,= T4 /Ty,
magnetic helicity is approximately conserved (Taylor 1974; Golub & Pasachoff 1997, p. 223) .
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the constraint of constant helicity and minimum Ghndissipation. The
nonlinear non-force-free field solution of Equati¢l) can be constructed by a
superposition of three linear force-free field simns (Dasgupta et al. 2008). The
more general magnetic field equation derived by tBicharyya et al. (2007)
assumes a two-fluid resistive plasma with congtetitity injection that balances
the helicity dissipation. Following Hu and Dasgui2®08), the resulting field
equation can be expressed in terms of a triplepgroduct of the field in the form:

OxOxOxB + a; OxOxB + b, (IxB =0, (2)

with & and B system constants involving the plasma descriptonl the
Lagrange multiplier (Hu et al. 2008). Again ashwiEquation (1), the solution of
Equation (2) is a superposition of force-free fistdutions given by

B(x,y,z) = (w1 Ba(x,y,2)+ 0Ba(x,y,z)+ w3 Bs(x,y,2) )/3  (3)
whereB; satisfies the linear (constant-alpha) force-fieklfequation,
UxBi(x,y,z) = 0 Bi(x,y,z) fori=1,2,3, (4)

where theni's are scalar constants( Hu & Dasgupta 2008).d¥seare weighting
functions which can be formally used to satisfy leetor magnetic field lower
boundary conditions, in a global sense (see HU.€208€8). For simplicity, in
Equation (3) we will assume later an equal weigistridhution of the three
component fields. A benefit of the solution is thila¢ constant fields can be
evaluated quickly. In the derivation of Equation, (Bhattacharyya et al. (2007)
assumed a two-fluid plasma, an incompressible fl@av,constant helicity
dispersion rate, a constant diffusion rate, anam@stant thermal diffusion rate.
Since thex values are global constants the general solutbtise MDR methods
are limited in the sense the solutions can onlyesgnt a global average solution.
However, given the longitudinal and transversedfiad the lower boundary (e.g.,
photosphere) and allowing the six parameters (thweand threew) to be
determined by the lower boundary conditions, a mimation of the errors
between the observed and the MDR solutions havduped relatively small
errors when compared with a nonlinear force-fietd fextrapolation (Hu et al.
2008).

Inflated Field Solution — A Special Case

We now show (i) that the non-force-free composiutson using the linear-
force-free-field solutions, Equation (3), satisfidse Euler-Lagrange magnetic
field solution (Equation (2)), (ii) that,@nd k can be easily evaluated, and (iii)
that the speciat-case gives an inflated field solution. By subsiitu of B(X,y,z)
(Equation (4)), we have

OxB = (01 w;By + 0,0, B+ 0130 Bs)/3, (5)
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Ux[xB = ( 1% W;By + O,° B+ 05°0); Bs )/3, (6)

OxOx0OxB = ( 0;® ;B + a1,° WsB,+ 05% ;B3 )/3. (7)
The Euler—Lagrange equation becomes,

[0® By + 01, 1,By+ 05> ;B3 ]+ a; [0;° W By + 0, W,By+ O5° ;B3 ] + by [0 0By + 0,
B+ 03 wsB3 ] =0, (8)

and sinceB; are independent functions, we have the followhrgé equations,

013+ di (112+ bl 01=O, (9)
a23+ a1 022+ bl a2=0, (10)

G33+ ai 032+ bl G3=0. (11)

Multiplying Equation (9) byu32 and subtracting from it the product of Equation
(10) with a4 the value of bis obtained,

b, = 0;05. (12)
Substituting b into Equation (9), we obtain
a; =-04-03. (13)
Hence the magnetic field equation is
OxOx0xB — (a,+03) OxO%B + 0,03 [0xB =0, (14)
Substitution for @and h into Equation (10), with unequalvalues, gives
o, = (0 +05) 0, + (0,050, =0, (15)

which implies thati,=0.

Hu & Dasgupta (2008) considered the specific cdse;® -03 and a,=0, which
reduces Equation (2) to

OxOxOxB = o’00%B.  (16)

As they point out, this equation is equivalent &kimg an extra curl of the
Chandrasekhar-Woltjer result. For this casesf -a; with equal weighting (i.e.,
w=w,=0x), there is no dominant twist to the field lines,wewer the field is
inflated as compared to the potential field. Thigation aspect can be seen from
the fact that the,jcomponents are null,§0), so that all the electric currents are
parallel to the photospheric surface, which cabtgefield to inflate. With equal
weighting functions, this is seen from Equation#ere we have for the normal
z-components,

j. =(0xB), = Oy (By), - 01 (B3), =0. (17)

The identity holds since the normal z-componentshef field is the same for
eitherajor -a;. From Gary (1989), for field of finite energy, thecomponent of
linear FFF solution can be written as

Bz(x,y,z) - J'J' [J'J' BZ(X’,y',Z=0) e-zm‘ux’ -21vy’ dx'dy'] e-kz +2Tiiux - 2Tivy du dV, (18)

where K= 4ré(u*+v?)-a? , and the solution is independent of the sigui.okt is
assumed that the photospheric boundary conditiosush that the Fourier
transform for B,(x’,y’,z=0) vanishes for the frequency domaif+yf)<o?.
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Magnetic Energy and Helicity

In this section we derive closed expressions fagma#c energy and the magnetic
helicity, and interrelate these quantities. Fifsbwever, we relate the global
linear force-free parameters to the individualoy's of Equation (4). Following
from the last paragraph, all z-components ofBhéeld are equal, &1(z=0)), =
(B2(z=0)), = (B3(z=0)),), at the photosphere (z=0). Hence

0O6=(0xB),/B, =(0; By + O By+ 03 B3),/ (By + B+ Bs),= (a; + 0+ O3) at z=0. (19)

Sinceaq, is zero, it will not always be shown explicitly. A mean globab; values can be
derived from a vector magnetogram define the surthety-values used in the
special or general MDR method. Equation (19) result of assuming an equal
distribution among the three constanttomponent fields g;, i=1,2,3). If the
contributions are unequally weighted witty, w,, and w; then the equation is
altered accordingly, i.e{as= w0, + Wy 0+ W3 O3 with W+ W+ W3 =1).

The current helicityt{; is defined
H=l iB dv, (19)
Hence for a volume V and from Equation (3), weehav
H, = (0,+0,+0s) (1/W) [y |B*] dV. (20)
Furthermore with the total energy defined by

“MDI'magnetogram .
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Figure 1. The MDI/SOHO and EUVI/STEREO data show the location for the AR 10987
(2008/03/08) on the solar disk. The insert with a linear scaling of the magnetic field shows that
the active region is an average bipolar region.
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Figure 2. National Solar Observatory’s SOLIS vector magnetogram data of AR 10987 is shown in
the panels for the components of the magnetic field (B,, B,, B,) and|B|, the electric current
density (j,), and the force-field parameter a. Only o values are calculated for |B,|>10G and
| Biransverse | >100G are assumed significant. In the upper right-hand panel, the a values outside of
these restrictions have been set to zero. These panels illustrate the limited area of significant
physical input that influences the coronal field models.

=(1/2p) v [B*] dv (21)
then by Schwarz inequality of Equation (24) we have
|+ =l 1iB] dv < (2u/n) [(lv nIF*1 dv) (2/2wly [B%] dv) ]2 (22)

| #] < [2u/MRE" 1> (23)

Hence theOhmic dissipation rat@® for a given total magnetie’ sets an upper bound
on the current helicity. Equation (23) is giveraatheoretical limit for the relevant MDR
method, but are of limited practical interest. Thest important physical quantity in a
non-force-free magnetic field solution is the résgl Lorentz force density, which is
discussed next.

Lorentz Force

Since a linear combination of constantorce-free fields is not force free, we
have non-zero Lorentz forces for the MDR field siolus. The value of the
Lorentz force is given in this section. For the metir fieldB in Gauss anf=4tg,
the Lorentz force density in erg &ris given as

L.=jxB (24)

Le = (1/p) (0 By + 03 Bs) X ( By + By+ B3) (25)
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L= (1/”) {al B, XB, + 0, B; XBs +
(0 Bg xB]_ + 03 B3 sz} (for

0,=0) (26)
For |o; | and |os|  less than
Omax (=217L), then |Lf <

|0max/1| [B: + Bs| |B], and for the
case [B;+Bs|<|B| then |L{ <
|omaxtt| B?, i.e. a small fraction
of the magnetic energy
pressure gradient. This
inequality is expected whe
the potential field compone
B, is the dominate componer]
of the total field. L is the
width of the magnetograni
used in calculating thg
constanta force-free fields.

nT

0.5

o values

1
0

Bz (G)

-1000 -500 1000

D
Figure 3. The local variation of the force-free field
parameter O is derived from the SOLIS vector
t magnetogram data set. To avoid weak signal-to-noise
values, the values of o calculated are limited to |B,|>10
G and Biransverse>100 G. From these values the mean
value is <0> = -0.003 and the standard deviation is
0.075, hence the data is consistent with a potential field

(a=0).

An estimate of the maximun
pressure gradient is dfBm)/dx

~ ( Max|B(z=0)P /D, where D is the separation

of the major magnetic concentrations. Assuming B3~thén
LF/[d(BZ/gT[)/dX] < amax BZ/[BZmax 3amax] (27)

Le/[d(B*/8T0/dX]< B*/B* v (28)

Typically the plasma pressure gradients and floidd are needed to balance the

Lorentz forces. For the data set described nexg¢ tésulting value of

L/[d(B?*/8)/dx] versus height is

given in Figure 6.

Figure 4. (a) The results of MRD field lines calculations for 0=[0.02,0.,-0.02] show the field lines
superimposed on a grey-scaled B, image. From this perspective, the field lines are very similar to
the potential field results. (b) The TRACE image for this region AR10987 is shown to the right.
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Data Set

Typical of the state of thg
observing technology, vecto
magnetograms of an active regign
show no consistentt value over
the region yielding no definitive Ly
input into the MDR method. Only i R
for extensively twisted activg RS
regions does a dominant set of ol
values emerge (cf. Gary 1995). 0 20 40 60 80 100 120

The physical limit of calculating | _ _ F
is set by the generation of Figure 5. The vector field for MRD horizontal electric

hcurrents at the photosphere for 0;=0.02 shows that

ted f . ff the electric currents are parallel to the surface for
are generated Irom seeing eflec Stx3= -0; and 0,=0. These currents inflate the

polarimetric noise, imprecise d&- nagnetic field (cf., Figure 9). The vectors are shown
ambiguitization, and spatial on a gray scaled image of |B|.

resolution, with larger errors in the
umbra regions (Gary 1995). Even
though the selected active region does not haveorairdént twist, for our
guantitative study, the active region AR10987 isdusince it is a typical isolated,
simple bipolar region. It allows a simple field ¢igmiration to be employed in the
numerical studies. The physical setting of theaeds given in Figure 1 showing
the SOHO/MID data for the active region AR 109872008 February 28 and an
EUV image from STEREO. The vector magnetogram fata the NSO/SOLIS
archives is shown in Figure 2. This data allowsltioval variation of the force-free
field parameter versus field strength derived fream= (CxB),/B, (Figure 3). In
Figure 3, the set of the noisiestdata has been eliminated and yet there is no
trend for any specific alpha value. Because of this need not attempt a
numerical search for the beastset using the minimum between the observed and
calculated transverse differences. This data (EiQQ) confirms that there is no

-

anomalous electric currents whid

Figure 6. The field lines for two sets of a-values, {a;}= [0,0,0] on the left (a), a potential solution,
and {a;} =[0.048,0.0,0.-048] on the right (b), show the inflation of the field lines as a result of the
horizontal currents. A horizontal reference line is at half the box height.
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significant twist to the region
and the speciala case, §;

}=[ ai,0, <ai], is consistent with
the data (cf. Equation (19)). In
the following we investigate
this speciala set (e.g., Figure
4).

Results

For the AR 10987 and using
the MDR field solution, we
have generated the magnet

field, electric currents, and Figure 7. For AR 10987, this illustration shows the
Lorentz forces for selected direct.ion of the Lorentz force vectors .for a set. of
electric currents generated by MDR field solution
cases ofx sets {]l} = [G i,0.,-0 with a set a values of the form [q;,0,- a;]. For this
i] for o < amnma=21UL, i.e. a | case, the electric currents (two set of 3 thinner lines)
values given unique solutiong circulate in a plane perpendicular to the photosphere.
with finite energy (Gary 1989) Explicit calculations show that there is a downward
Here L is the width of the force above the magnetic inversion line.
magnetogram which can be inp
pixels or physical units depending on the use efdther spatial dimensions. Hu
et al. (2008) describe the general method of thecsen of thea sets employing
both dual and single level magnetograms. Currahttyuse of magnetogram data
makes this problematic, and we have averted thescese in lieu of attempting to
understand some of the physical consequences oMiR method. Figure 4
shows the magnetic field lines f¢n;}=[0.02,0,-0,02] using the inverse pixel
scale and with L=1280,,=0.049. The electric field density vectors at the
photosphere (z=0) are shown in Figure 5, whereeti®no vertical component,

jz=0. These currents inflate the field. UsiangE [0,0,0] and }= [0.048,0.0,0.-

048], this inflation is
103 == ' 3~ | seen in Figure 6 by
N 0=10020.00-0.02) E comparing a set of
< g | field lines viewed
202l T el 1% | perpendicular to the
3 : 13 photosphere for_ _egch
S Marlsl 2 o set. The initial
g NN Q photospheric foot
g 10F <> — 18 points are the same in
g NN S | each case. The
£ | inflation of the field is
1 . \, -, | @ | consistent with the
1 10 100 observations made by
Height (pixels) F| Gary & Alexander
Figure 8. The variation of maximum |B| and average |B| is (1999) in which the
plotted versus height. The variation 2f maximum |j| versus field lines of an
height is scaled up by a factor ozf 10°. Hence the maximum inflated AR 7999
electric current density is 1 mA m°, comparable with observed
values. appeared to match the
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Yohkoh/SXT observations. In their case the resgltlrorentz force is ~10
G?/cm’ resulting from the electric density of ~0.0{8 m™?. In that study the
horizontal electric currents were induced by radgisiretching the magnetic field;
in this study the horizontal currents generaterdiated field. As illustrated in
Figure 7, the resulting Lorentz forces squeezeptlasma above the magnetic
inversion line by opposite directed forces.

Using {a;}=[0.02,0,-0,02] in Figure 8, we show the heightrigéion of the
maximum and average magnetic field strength |B| #wed maximum current
density |j|. The calculations were performed fa28<128x128 cube with a pixel
unit equivalent to 2” (or 1450km) using numericaligst Fourier transform
solutions of the three constamtforce-free-field components. Her || and di3
have been selected to have their values approdyndi®lf of maximum
allowable for finite energy solutions, and hence sepresentative solutions the
resulting Lorentz forces. The maximum |j| at thetphphere is ~2 mA fwhich
is an order of magnitude smaller than the maximdrthe normal component j
seen in typical solar active regions (Gary & Dénmodl995). This infers that the
electric currents are not unphysical and are cterdisvith observations.

Using the same set, we show in Figure 9 the height variation & thaximum
and average Lorentz forces per unit volume. Theimam Lorentz force per unit
volume is 10 erg cm®. The other curves show these values normalizetido t
square of the magnetic field and are in units ofeise pixel length. For
comparison the vertical magnetic pressure grademiotted showing that the
Lorentz force is an order of magnitude higher &t shirface and this difference

0=[0.02,0.00,-0.02]

102

TT T rrrm

Lorentz Force per unit volume

2L VI AeREe N _

107¢ e o3

oo AN N\ <Lp>/<B?> N A ]

104 L AN

1 10 100
Height (pixels) Figure

Figure 9. The variation of the maximum (max) and average (<>) values of the Lorentz force
Lr is plotted vs. height. Various normalizations of the values by the square of the
magnetic field are shown along with the vertical magnetic pressure gradient. These
results are for an o set of a = 0.02,0.,-0.02]; however if a ;% 03, i.e., a=[0.02,0.,-0.01], the
resulting values are similar, with Ly becoming slightly smaller, due to the electric field
being more aligned with the magnetic field. Hence the case shown is an upper limit for
log| > |os].
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increases exponentially with height. Near theaef the gravitational force per
unit volume is shown on the ordinate as a solidleiat a value of 7.9x10ergs
cm™ but is scaled to match the inflated {l6cales of k and d(B/8m)/dz. This
indicates that both the magnetic pressure grafiiece and the gravitational force
are too small to counter the Lorentz force; hemesgure and fluid forces must be
introduced to produce a stable plasma. How thismpemented physically is yet
to be detailed in the MDR approach. The Lorentzdatirections are illustrated in
Figure 7. This shows the Lorentz force being outivMiom the central coronal
arch connecting the two main (opposite) magnetieceatrations (umbrae) of the
active region. This infers that the forces betwebhe main magnetic
concentrations would push the plasma togethertreguh an increased pressure
over the magnetic inversion line. This could thaflate the field further. The
weaker force exterior to the magnetic concentratiovould result in some
unspecified external force, such as plasma presdiveeted inward toward the
active region.

Conclusion

We have evaluated the MDR method for deriving aowal non-force free
magnetic field solution and examined the particdase of the solutions where
the other twan’s are equal but of opposite signs. This speciakda consistent
with the observations of active region AR 10987 wehiecala values evaluated
by (OxB)./B, over the region are consistent with a zero nedttvidor the special
case of §;} = [a,0.,- a ], the resulting magnetic field is a vertically inBat
magnetic field resulting from the electric current®ing parallel to the
photosphere. If the electric currents (as seenigurE 7) inflate active region
fields in general then these currents could beomsiple for producing a north-
south asymmetry in the observed helicity, howeveis effect would be solar
cycle dependent which it is not (Pevtsov 2008).réfaee, the only direct effect
of an inflated field is the result of Gary and Adexder (1999). The Lorentz force
is a factor of ten higher than the magnetic formmponent, d(B8m)/dz. Most of
the force is countered by an opposite directedefort either side of the magnetic
inversion line. This could lead to an increasedsguee above the inversion line
and further inflate the field. The calculated phaptaeric electric current densities
are an order smaller than the maximum observedciivearegions in general.
Hence the electric currents and Lorentz forces igéee seem not to be unrealistic
with respect to possible solar dynamics. We comdgthr the comments made by
DeRosa et al. (2008) in that without improved additgonal plasma data, we
advise that the implementation of this or any o#isdrapolation using the electric
current density as a lower boundary condition nbgstione cautiously. The MDR
method is more appropriate for theoretical invedians rather than analysis of
the magnetic field configurations for active regiofowever, this study of the
special a-case infers that a general inflation of the maignéeld could be
consistent with the observations.

| am grateful to Q. Hu, R. Moore, S. Suess, and S. T. Wu for useful discussions. | would like to
acknowledge A. Norton at the National Solar Observatory for her assistance in preparing the
SOLIS vector magnetograms for this research.
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Appendix A. Ohmic Heating in Parallel Resistor Circuit

The following is a simple example using the minimdissipation rate assumption
to derive information about a physical system @geire Al). It assumes that the
irreversible process of energy loss from elecewistivity is characterized by the
minimum value of the entropy production, the ta@dmic heating loss rate. For
an electric circuit with two parallel resistors &d R and the associated currents
I, and b, the Ohmic heating is given by

E=1>Ry+1,>R, or E=1,°Ry + (I-L)°R,, (A1)

where | is the total current in the circuit. Thenimum Ohmic heating rate is
obtained at the extrema when the current in theragestors is varied, i.e., at the
point given by

12



Minimum Dissipative Rate Selected Case

dE/dll =2 |1 (R1+ Rz)'z | R2=0 (AZ)
Hence the minimum dissipation rate gives the distion of the currents:
l1=1/(Ri/Ry +1), (A3)

l=1/(Ry/R. +1). (A4)

Note that the minimum heating rate given by Equa(id2) gives the voltage
across the resistors as per Ohm'’s Law, i.e., Eoud@A2) gives,

2 |1 (R1+ R2 ) = 2 (|1+|2) Rz
or
l;R1=1; R,

Hence the minimum dissipation rate in this eleatnicuit is consistent with the
Ohm'’s laws.

0.6

R1=0.6, R3=06
Reff=03

I —

I —

Appendix B.
Variational Solutions
for Magnetic Fields
Solutions

Il
~— Total Current I=1

I
n
T

L7 | Ri=03 Ry=06
.- Reff = 0.2

Total Ohmic Heating

E=
o

N

T

|

\

1

S e e R1=0.1, Rp=06
' Reff = 0.0857

From a variational of the total o . . R
energy given a constant global 00 02 04 06 08 10 ,
magnetic he||C|ty 11 = Current Through Resistor R1 Fi

Figure Al. The total Ohmic heating rate (E) is plotted
dw=8[ (1/2u)yB*dV- €J,AB | asa function of the electric current I, through resistor

dV]=0, [MKS units] (B1) R, for a set of two parallel resistor values (Ry, Ry).
The minimum values are given by Equation A2 and
Woltjer (1958) derived, for a since the total current is I=1, the heating rate is
closed system, the linear force-| numerically equal to the effective resistance (Re) of

field equation: the parallel resistor circuit.
[IxB = aB. (B2)

From a variational of the total magnetic energyegia constant global mean-
square current density,

dw=3[ (1/2n) [yB*dV- efynj?dv]=0, (B3)

Chandrasekar &Woltjer (1958) , for a closed systeenived the magnetic field
equation,

OxOxB=a’B. (B4)

In a similar manner, but for an open system, uliegvariational of the constant
Ohmic dissipation rate given constant relative nedigrhelicity,

dw=93[fynjdVv- € [, (A+A,)[B-B,) dV] =0, (BS5)
we can derive the field equation
OxOx[0xB = aB, (B6)
which is the same as Equation (1).

13
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The proof of Equation (B5) is as follows. Startimigh Equation (B5) and
substitutingu j = 0xB, we have

dw =3[ [y (n/u?) (OxB)> dV - € [, (A+A,)(B-B,) dV]]=0  (B7)

(L*/M) dw= |y [2 (OxB)IIx 3B) - & 3(A+A,)[(B-B,) - & (A+A,)B(B-B,) ] dV=0 (BS)

where €' = en/p?. Now using the triple scalar product in the faaff{x b) = b
(Ox a) - Olaxb) , we have the following,

2 (OxB)[[x éB)= 2 dB[[IIx[1xB) -2 OI(Ox B)x dB] (B9)
and
EO(A+A,) e (OxA-OXA,)+E(A+A,) e & (Ox A-[OxA,) =

£(5A)e((OxA)-(0xA,)) +€ A (0% (A+A,) ) -€ Oe((A+A,) X S A) . (B10)
Substitution yields the following for the bracketrh [ ] of Equation (B8):
2(Ox B)e(Ox 0B)+ € &( A+A,)*(B-B,) + E(A+A,)*d(B-B,) =

20Ae (OxOx[Ox B) -2[0 «((OxOxB) x 0A -2 Oe[(0xB)*xdB
+€(OA)o((OxA)-(OxA,)) +£ O A o([Ix(A+A,) ) -€0e((A+A,) OA (B11)
The equation (B7) becomes

dw/n = |2(0x B)e(0x 3B)+ £ & A+A,)*(B-B,) + £(A+A,)*5(B-B,) dv=
=[ 3Ae [2 (OxOx Ox B) +&((OxA)-(O%A,))+€ (0% (A+A,) ) ] dv +
+[Oe[-2(0x Ox B) x 5A -2[(0x B)x 3B -& ((A+A,) x3A)]dv =0  (B12)

The second integral, which can be written as ddhewing surface integral,

[2 (@xOxB) e (dnxdA ) +]238B « ( jxdns) + € (A+A,) * (dNsxdA )
is zero since it can be converted to a surfacegiatevia Green’s theorem and
imposing the boundary conditions of Dasgupta €1998) i.e.,d0Axdn=0 and
jxdn,=0. The integrand in the first integral must be z&irewe in the volumedA is
arbitrary, hence

(OxOx0xB) = € B. (B13)

Appendix C. Discussion of Units

The force-free-field parameter is expressed in the unit of inverse lengtf)(L
giving the value ofiB = (OxB) in units of G crit. The relation to current density
(j=aB/p) is given by the conversion relation 1 G tm 1.2x10* A cm’ If the
pixel units areAx= 1 arcsec themx=0.725x18 cm and ifa=0.01 in units of
inverse pixels, thea=0.01/0.72%10° cni*= 0.013&10°% cm™. Gary (1987) gives
maximum of the force-free field parameter for feladf finite energy as
Omax=217128=0.049 in pixel units for an array size of J@&els. Hence, for a
value ofa=0.01 pixel* value and for an electric current density j 0{®8x10°
cm?)(100G)(1.210% A cm?G cmi®)= 1.66x10* A cm? = 1.66x10% A m? ,
the Lorentz force is £ j aB = (0.013%10° cm*)(100Gf= 1.38x10" G* cmi'=
1.38<10* erg cn® given that | is perpendicular to B. The ratio lOf/[Ey =
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1.38x10* / 3.99%x10* =0.346, where the Je magnetic density is JE=B%8m ergs
cm? for B in Gauss.
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