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    The minimum dissipative rate (MDR) method for deriving a coronal non-force-free magnetic 

field solution is partially evaluated.  These magnetic field solutions employ a combination of 

three linear (constant-α) force-free-field solutions with one being a potential field (i.e., α=0).  

We examine the particular case of the solutions where the other two α’s are of equal 

magnitude but of opposite signs. This is motivated by studying the SOLIS
1
 vector 

magnetograms of AR 10987 which show a global α value consistent with an α=0 value as 

evaluated by (∇×B)z/Bz  over the region. Typical of the current state of the observing 

technology, there is no definitive twist for input into the general MDR method.  This suggests 

that the special α-case, of two α’s with equal  magnitudes and opposite signs, is appropriate 

given the data. Only for an extensively twisted active region does a dominant, non-zero α 

normally emerge from a distribution of local values.  For a special set of conditions, we find: (i) 

The resulting magnetic field is a vertically inflated magnetic field resulting from the electric 

currents being parallel to the photosphere, similar to the results of Gary and Alexander 

(1999). (ii) For α ~ (αmax/2), the Lorentz force per unit volume normalized by the square of the 

magnetic field is on the order of 1.4×10
-10 

cm
-1

. The Lorentz force (LF) is a factor of ten higher 

than that of the magnetic force d(B
2
/8π)/dz, a component of LF. The calculated photospheric 

electric current densities are an order smaller than the maximum observed in all active 

regions. Hence both the Lorentz force density and the generated electric current density seem 

to be physically consistent with possible solar dynamics.  The results imply that the field could 

be inflated with an over pressure along the neutral line. (iii) However, the implementation of 

this or any other extrapolation method using the electric current density as a lower boundary 

condition must be done cautiously, with the current magnetography.  

Magnetic Fields, Coronal Extrapolations, Inflated Magnetic Fields, Non-force-free fields 

 

Introduction 

 
Considerable effort has been spent in specifying the dynamics of solar plasmas by 
employing conservation laws that relate to constraints on the electromagnetic 
fields and plasma flows; since their solutions lead to a representation of a relaxed 
state of the plasma. To include non-equilibrium and non-force-free plasmas with 
helicity injection, the minimum dissipative rate methods have been introduced. 
The minimum dissipative rate (MDR) method for deriving the coronal magnetic 
field is based, in part, on the principle that the relaxed state of a plasma has 
minimum Ohmic dissipation with a constant global helicity; that is, the magnetic 
energy dissipation is minimized (Bhattacharyya & Janaki 2004; Bhattacharyya et 

                                                             
1
 Synoptic Optical Long-term Investigation of the Sun (SOLIS), a National Solar Observatory facility. 
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al. 2007; Dasgupta et al. 2008, Hu et al. 2008, Hu & Dasgupta 2008)2. Motivated 
by Hu et al.’s (2008) application of the MDR method to a solar active region, we 
examine and evaluate this approach further using a special subset of solutions in 
order to determine the magnitude of the resulting forces and their feasibility for 
solar magnetic field extrapolation.  
 
The general resulting MDR equations with non-force-free solutions are extensions 
of the linear force-free-field equation ∇×B = α B, but assume different variational 
equations (or constraints) as the starting point. The MDR approach for the 
magnetic field is similar to Chandrasekhar & Woltjer’s (1958) approach in which 
a variational approach is used, given the mean-square current  density and the 
maximum magnetic energy, to  obtain the field magnetic field equation ∇×∇×B = 
α B, whose solutions include a wider class of solutions than the constant-α  force 
free solutions.  By a variation of the constant global Ohmic dissipation rate given 
the constraint of a constant relative magnetic helicity, one can derive the restricted 
MDR magnetic field equation ∇×∇×∇×B = α B (Appendix B). The special case 
of the general MDR equations which we study is given by ∇×∇×∇×B = α2∇×B. 
This is a restricted form of the most general Bhattacharyya et al. (2007) two fluid 
MRD field equation, derived from an extended variational function. These MDR 
equations are discussed in the next section. Following that section there is a 
discussion of a special MDR field solution which results in an inflated magnetic 
field. We derive several relationships between helicity and magnetic energy. We 
then examine the consequences of the MDR method as applied to a simple bipolar 
active region, which motivated in part, this study. 

 

MDR Method 

 
In this section we give a background to the general Bhattacharyya et al. (2007)  
MDR magnetic field solution stemming from a variational approach.  First we 
will consider the related following single-fluid variational problem which leads to 
nonlinear non-force-free-field solutions (Dasgupta et al. 1998).  Given (i) the  
Ohmic dissipation rate (R), in terms of  a constant electric resistive (η) and the 
electric current density (j), as R = ∫V η j

2
 dV,  and given (ii) the relative magnetic 

helicity3 (KM), in terms of the  magnetic field (B) and its vector potential (A), as 
KM = ∫V(A+Ap)⋅(B-Bp) dV, the MDR variational of δ(KM - ε’  R)=0  as function of 
B(x,y,z), with ε the Lagrange multiplier, leads to the following MDR Euler-
Lagrange equation  

(∇×∇×∇×B) = ε B,          (1) 

where ε = ε’ µ2/η (see Appendix B for the derivation). This derivation assumes a 
single fluid in a closed system and the slightly resistive plasma is relaxed under 

                                                             
2
 For a parallel electric circuit, a simple introductory example of the MDR method is given in 

Appendix A. 
3
 The hypothesis for the constancy of the magnetic helicity is based on the following two 

concepts. Woltjer’s (1958) theorem states: the magnetic helicity KM = ∫V A⋅⋅⋅⋅B dV is an invariant 

for a perfectly conducting measure in a closed volume.  For a plasma where the characteristic 

diffusion time (τd) is much larger than the plasma velocity time scale (τd =L/vv), RM,= τd /τv, 

magnetic helicity is approximately conserved (Taylor 1974; Golub & Pasachoff  1997, p. 223) .  
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the constraint of constant helicity and minimum Ohmic dissipation.   The 
nonlinear non-force-free field solution of Equation (1) can be constructed by a 
superposition of three linear force-free field solutions (Dasgupta et al. 2008). The 
more general magnetic field equation derived by Bhattacharyya et al. (2007) 
assumes a two-fluid resistive plasma with constant helicity injection that balances 
the helicity dissipation. Following Hu and Dasgupta (2008), the resulting field 
equation can be expressed in terms of a triple curl product of the field in the form: 

 

∇×∇×∇×B + a1 ∇×∇×B + b1 ∇×B = 0,           (2) 

 
with a1 and b1 system constants involving the plasma description and the 
Lagrange multiplier (Hu et al. 2008).  Again as with Equation (1), the solution of 
Equation (2) is a superposition of force-free field solutions given by  
 

B(x,y,z) = ( ω1 B1(x,y,z)+ ω2B2(x,y,z)+ ω3 B3(x,y,z) )/3       (3) 

 
where Bi satisfies the linear (constant-alpha) force-free field equation, 
 

∇×Bi(x,y,z)  = αi Bi(x,y,z) for i=1,2,3,            (4) 

 
where the αi’s  are scalar constants( Hu & Dasgupta 2008). The ωi’s are weighting 
functions which can be formally used to satisfy the vector magnetic field lower 
boundary conditions, in a global sense (see Hu et al. 2008).  For simplicity, in 
Equation (3) we will assume later an equal weight distribution of the three 
component fields. A benefit of the solution is that the constant-α fields can be 
evaluated quickly. In the derivation of Equation (2), Bhattacharyya et al. (2007) 
assumed a two-fluid plasma, an incompressible flow, a constant helicity 
dispersion rate, a constant diffusion rate, and a constant thermal diffusion rate. 
Since the α values are global constants the general solutions of the MDR methods 
are limited in the sense the solutions can only represent a global average solution.  
However, given the longitudinal and transverse field at the lower boundary (e.g., 
photosphere) and allowing the six parameters (three αI and three ωi)  to be 
determined by the lower boundary conditions, a minimization of the errors 
between the observed and the MDR solutions have produced  relatively small 
errors when compared with  a nonlinear force-free field extrapolation (Hu et al. 
2008).    

Inflated Field Solution – A Special Case 

 
We now show (i) that the non-force-free composite solution using the linear-
force-free-field solutions, Equation (3), satisfies the Euler-Lagrange magnetic 
field solution (Equation (2)),  (ii) that  a1 and b1 can be easily evaluated, and (iii)  
that the special α-case gives an inflated field solution.  By substitution of B(x,y,z) 
(Equation (4)), we have  

 ∇×B = (α1 ω1B1 + α2ω2 B2+ α3ω3 B3)/3 ,                 (5) 
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 ∇×∇×B = ( α1
2
 ω1B1 + α2

2
 ω2B2+ α3

2ω3 B3 )/3  ,     (6) 

 ∇×∇×∇×B = ( α1
3
 ω1B1 + α2

3
 ω3B2+ α3

3
 ω3B3 )/3.  (7) 

The Euler–Lagrange equation becomes,  

    [α1
3
 ω1B1 + α2

3
 ω2B2+ α3

3
 ω3B3 ]+ a1 [α1

2
 ω1B1 + α2

2
 ω2B2+ α3

2
 ω3B3 ] + b1 [α1 ω1B1 + α2 

ω2B2+ α3 ω3B3 ] =0,  (8) 

and since Bi are independent functions, we have the following three equations, 

α1
3 

+ a1 α1
2 

+  b1 α1
 
= 0,     (9) 

α2
3 

+ a1 α2
2 

+  b1 α2
 
= 0,     (10) 

α3
3 

+ a1 α3
2 

+  b1 α3
 
= 0.     (11) 

Multiplying Equation (9) by α3
2 and subtracting from it the product of Equation 

(10) with α1
2, the value of b1 is obtained, 

b1 = α1α3.        (12) 

Substituting b1 into Equation (9), we obtain 

a1 = -α1-α3.    (13) 

Hence the magnetic field equation is  

∇×∇×∇×B – (α1+α3) ∇×∇×B + α1α3 ∇×B = 0,           (14) 

Substitution for a1 and b1 into Equation (10), with unequal α values, gives 

α2
3 

– (α1+α3)α2
2 

+ (α1α3)α2
 
= 0,     (15) 

which implies that α2=0. 
 
Hu & Dasgupta (2008) considered the specific case of α1= -α3 and α2=0, which 
reduces Equation (2) to  

∇×∇×∇×B = α2∇×B.      (16) 

As they point out, this equation is equivalent to taking an extra curl of the 
Chandrasekhar-Woltjer result. For this case of α1= -α3 with equal weighting (i.e., 
ω1=ω2=ω3), there is no dominant twist to the field lines, however the field is 
inflated as compared to the potential field. The inflation aspect can be seen from 
the fact that the jz components are null (jz=0), so that all the electric currents are 
parallel to the photospheric surface, which cause the field to inflate. With equal 
weighting functions, this is seen from Equation (5) where we have for the normal 
z-components, 

jz =(∇×B)z = α1 (B1)z - α1 (B3)z  ≡ 0.    (17) 

The identity holds since the normal z-components of the field is the same for 
either α1or  -α1. From Gary (1989), for field of finite energy, the z-component of 
linear FFF solution can be written as 

Bz(x,y,z) = ∫∫  [ ∫∫ Bz(x’,y’,z=0) e
-2πiux’ -2πivy’

 dx’dy’] e
-kz +2πiux - 2πivy

 du dv, (18) 

where k2= 4π2(u2+v2)-α2 , and the solution is independent of  the sign of α. It is 
assumed that the photospheric boundary condition is such that the Fourier 
transform for  Bz(x’,y’,z=0)  vanishes for  the  frequency domain (u2+v2)<α2. 
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MDI magnetogram
    2008/03/28

STEREO A EUV (24o ahead)

   AR 10987 
(linear scale)

AR 10987 
    13o W     

AR 10988
    10o E     

AR 10980 
    38o E     

 

Figure 1. The MDI/SOHO and EUVI/STEREO data show the location for the AR  10987 

(2008/03/08) on the solar disk. The insert with a linear scaling of the magnetic field shows that 

the active region is an average bipolar region. 

 

Magnetic Energy and Helicity 

 
In this section we derive closed expressions for magnetic energy and the magnetic 
helicity, and interrelate these quantities.  First, however, we relate the global 
linear force-free parameter αG to the individual αi’s of Equation (4). Following 
from the last paragraph, all z-components of the Bi field are equal, ((B1(z=0))z = 
(B2(z=0))z = (B3(z=0))z), at the photosphere (z=0). Hence  

αG=(∇×B)z/Bz =(α1 B1 + α2 B2+ α3 B3)z/ (B1 + B2+  B3)z= (α1 + α2+ α3) at z=0.  (19) 

Since α2 is zero, it will not always be shown explicitly. A mean global αG values can be 
derived from a vector magnetogram define the sum of the αi-values used in the 
special or general MDR method.  Equation (19) is a result of assuming an equal 
distribution among the three constant-α component fields (Bi, i=1,2,3). If the 
contributions are unequally weighted with  ω1, ω2, and ω3 then the equation is 
altered accordingly, i.e., ( αG = ω1α1 + ω2 α2+ ω3 α3 with ω1+ ω2 + ω3  = 1 ). 
  
 
The current helicity HJ is defined  

HJ = ∫V  j⋅⋅⋅⋅B  dV,     (19) 

 Hence for a volume V and from Equation (3), we have  

HJ = (α1+α2+α3) (1/µ) ∫V  |B
2
| dV.    (20) 

Furthermore with the total energy defined by 

E
T
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Bx By α

Bz jz |B|

Figure 2. National Solar Observatory’s SOLIS vector magnetogram data of AR 10987 is shown in 

the panels for the components of the magnetic field (Bx, By, Bz) and|B|, the electric current 

density (jz), and the force-field parameter α. Only  α values are calculated for |Bz|>10G and 

|Btransverse|>100G are assumed significant. In the upper right-hand panel, the α values outside of 

these restrictions have been set to zero. These panels illustrate the limited area of significant 

physical input that influences the coronal field models. 

 

=(1/2µ)  ∫V  |B
2
|  dV    (21) 

then by Schwarz inequality of Equation (24) we have 

|HJ| =∫V  |j⋅⋅⋅⋅B|  dV  ≤  (2µ/η) [(∫V  η|j
2
|  dV) ((1/2µ)∫V  |B

2
|  dV) ]

1/2
    (22) 

|HJ| ≤  [2µ/ηR E
T
 ]

1/2
  (23) 

Hence the Ohmic dissipation rate R for a given total magnetic E
T sets an upper bound 

on the current helicity.  Equation (23) is given as a theoretical limit for the relevant MDR 
method, but are of limited practical interest.  The most important physical quantity in a 
non-force-free magnetic field solution is the resulting Lorentz force density, which is 
discussed next. 

 

Lorentz Force 

 
Since a linear combination of constant-α force-free fields is not force free, we 
have non-zero Lorentz forces for the MDR field solutions. The value of the 
Lorentz force is given in this section. For the magnetic field B in Gauss and µ=4π, 
the Lorentz force density in  erg cm-3 is given as    

LF = j x B  (24) 

LF = (1/µ) (α1 B1 + α3 B3)  ×××× ( B1 + B2+ B3)    (25) 



Minimum Dissipative Rate Selected Case 

 

7 

Bz  (G)  

Figure 3. The local variation of the force-free field 

parameter α is derived from the SOLIS vector 

magnetogram data set. To avoid weak signal-to-noise 

values, the values of α calculated are limited to |Bz|>10 

G and Btransverse>100 G. From these values the mean 

value is <α> = -0.003 and the standard deviation is 

0.075, hence the data is consistent with a potential field 

(α=0). 

 

 

Figure 4. (a) The results of MRD field lines calculations for α=[0.02,0.,-0.02] show the field lines 

superimposed on a grey-scaled Bz image. From this perspective, the field lines are very similar to 

the potential field results. (b) The TRACE image for this region AR10987 is shown to the right. 

 

LF = (1/µ) {α1 B1 ××××B2 + α1 B1 ××××B3 + 

α3 B3 ××××B1 + α3 B3 ××××B2 }   (for 

α2=0)    (26) 

 
For |α1 | and |α3|   less than 
αmax (=2π/L), then |LF| <  
|αmax/µ| |B1 + B3| |B|, and for the 
case |B1+B3|<|B| then |LF| <  
|αmax/µ| B2, i.e. a small fraction 
of the magnetic energy 
pressure gradient. This 
inequality is expected when 
the potential field component 
B2 is the dominate component 
of the total field.  L is the 
width of the magnetogram 
used in calculating the 
constant-α force-free fields. 
An estimate of the maximum 
pressure gradient is d(B2/8π)/dx ~ ( Max|B(z=0)|)2 /D, where D is the separation 
of the major magnetic concentrations. Assuming D~L/3 then 

LF/[d(B
2
/8π)/dx] < αmax B

2
/[B

2
max 3αmax]    (27) 

LF/[d(B
2
/8π)/dx]≤ B

2
/B

2
max.  (28) 

Typically the plasma pressure gradients and fluid force are needed to balance the 
Lorentz forces. For the data set described next, the resulting value of 
LF/[d(B

2
/8π)/dx] versus height is given in Figure 6. 
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F

Figure 5. The vector field for MRD horizontal electric 

currents at the photosphere for α1=0.02 shows that 

the electric currents are parallel to the surface for 

α3= -α1 and α2=0. These currents inflate the 

magnetic field (cf., Figure 9). The vectors are shown 

on a gray scaled image of |B|.  

 

 

Figure 6. The field lines for two sets of α-values, {αi}= [0,0,0] on the left (a), a potential solution, 

and {αi} =[0.048,0.0,0.-048] on the right (b), show the inflation of the field lines as a result of the 

horizontal currents. A horizontal reference line is at half the box height. 

 

Data Set 
 
Typical of the state of the 
observing technology, vector 
magnetograms of an active region 
show no consistent α value over 
the region yielding no definitive 
input into the MDR method.  Only 
for extensively twisted active 
regions does a dominant set of  α 
values emerge (cf. Gary 1995). 
The physical limit of calculating α 
is set by the generation of 
anomalous electric currents which 
are generated from seeing effects, 
polarimetric noise, imprecise de-
ambiguitization, and spatial 
resolution, with larger errors in the 
umbra regions (Gary 1995).  Even 
though the selected active region does not have a dominant twist, for our 
quantitative study, the active region AR10987 is used since it is a typical isolated, 
simple bipolar region. It allows a simple field configuration to be employed in the 
numerical studies. The physical setting of the region is given in Figure 1 showing 
the SOHO/MID data for the active region AR 10987 on 2008 February 28 and an 
EUV image from STEREO. The vector magnetogram data from the NSO/SOLIS 
archives is shown in Figure 2. This data allows the local variation of the force-free 
field parameter versus field strength derived from  α = (∇×B)z/Bz  (Figure 3). In 
Figure 3, the set of the noisiest α data has been eliminated and yet there is no 
trend for any specific alpha value. Because of this we need not attempt a 
numerical search for the best α-set using the minimum between the observed and 
calculated transverse differences.  This data (Figure 3) confirms that there is no 
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B

B

j j

LF

B

B

j

LFLF
LF

+
-

Figure 7. For AR 10987, this illustration shows the 

direction of the Lorentz force vectors for a set of 

electric currents generated by MDR field solution 

with a set  α values of the form [αi,0,- αi]. For this 

case, the electric currents (two set of 3 thinner lines) 

circulate in a plane perpendicular to the photosphere. 

Explicit calculations show that there is a downward 

force above the magnetic inversion line. 
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3
. Hence the maximum 

electric current density is 1 mA m
2
, comparable with observed 

values. 

 

significant twist to the region 
and the special α case, {αi 
}=[ αi,0, -αi], is consistent with 
the data (cf. Equation (19)).  In 
the following we investigate 
this special α set (e.g., Figure 
4). 

 

Results 
 
For the AR 10987 and using 
the MDR field solution, we 
have generated the magnetic 
field, electric currents, and 
Lorentz forces for selected 
cases of α sets {αi} = [ α i,0.,- α 

i] for α < αmax=2π/L, i.e. α 
values given unique solutions 
with finite energy (Gary 1989).   
Here L is the width of the 
magnetogram which can be in 
pixels or physical units depending on the use of the other spatial dimensions. Hu 
et al. (2008) describe the general method of the selection of the α sets employing 
both dual and single level magnetograms. Currently the use of magnetogram data 
makes this problematic, and we have averted this exercise in lieu of attempting to 
understand some of the physical consequences of the MDR method. Figure 4 
shows the magnetic field lines for { αi}=[0.02,0,-0,02] using the inverse pixel 
scale and with L=128, αmax=0.049. The electric field density vectors at the 
photosphere (z=0) are shown in Figure 5, where there is no vertical component, 
jz=0. These currents inflate the field. Using{αi}= [0,0,0] and {αi}= [0.048,0.0,0.-

048], this inflation is 
seen in Figure 6 by 
comparing a set of 
field lines viewed 
perpendicular to the 
photosphere for each 
α set. The initial 
photospheric foot 
points are the same in 
each case. The 
inflation of the field is 
consistent with the 
observations made by 
Gary & Alexander 
(1999) in which the 
field lines of an 
inflated AR 7999 
appeared to match the 
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Figure 9. The variation of the maximum (max) and average (<>) values of the Lorentz force 

LF  is plotted vs. height.  Various normalizations of the values by the square of the 

magnetic field are shown along with the vertical magnetic pressure gradient.
 
 These 

results are for an α set of α = 0.02,0.,-0.02]; however if  α 1≠ α3, i.e., α= [0.02,0.,-0.01], the 

resulting values  are similar, with LF becoming slightly smaller, due to the electric field 

being more aligned with the magnetic field. Hence the case shown is an upper limit for 

|α1| > |α3|.    

 

Yohkoh/SXT observations. In their case the resulting Lorentz force is ~10-6 
G2/cm4 resulting from the electric density of ~0.079 µA m-2.  In that study the 
horizontal electric currents were induced by radially stretching the magnetic field; 
in this study the horizontal currents generate an inflated field.  As illustrated in 
Figure 7, the resulting Lorentz forces squeeze the plasma above the magnetic 
inversion line by opposite directed forces.  
 
Using { αi}=[0.02,0,-0,02] in Figure 8, we show the height variation of the 
maximum and average magnetic field strength |B| and the maximum current 
density |j|. The calculations were performed for a 128×128×128 cube with a pixel 
unit equivalent to 2” (or 1450km) using numerically fast Fourier transform 
solutions of the three constant-α force-free-field components. Here |α1| and |α3|  
have been selected to have their values approximately half of  maximum 
allowable for finite energy solutions, and hence are representative solutions the 
resulting Lorentz forces. The maximum |j| at the photosphere is ~2 mA m-2 which 
is an order of magnitude smaller than the maximum of the normal component jz 
seen in typical solar active regions (Gary & Démoulin 1995). This infers that the 
electric currents are not unphysical and are consistent with observations. 
 
Using the same α set, we show in Figure 9 the height variation of the maximum 
and average Lorentz forces per unit volume. The maximum Lorentz force per unit 
volume is 10-5 erg cm-4.  The other curves show these values normalized to the 
square of the magnetic field and are in units of inverse pixel length. For 
comparison the vertical magnetic pressure gradient is plotted showing that the 
Lorentz force is an order of magnitude higher at the surface and this difference 
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increases exponentially with height.  Near the surface, the gravitational force per 
unit volume is shown on the ordinate as a solid circle at a value of 7.9x10-9 ergs 
cm-4 but is scaled to match the inflated (106) scales of LF and d(B2/8π)/dz. This 
indicates that both the magnetic pressure gradient force and the gravitational force 
are too small to counter the Lorentz force; hence pressure and fluid forces must be 
introduced to produce a stable plasma. How this is implemented physically is yet 
to be detailed in the MDR approach. The Lorentz force directions are illustrated in 
Figure 7. This shows the Lorentz force being outward from the central coronal 
arch connecting the two main (opposite) magnetic concentrations (umbrae) of the 
active region.   This infers that the forces between the main magnetic 
concentrations would push the plasma together resulting in an increased pressure 
over the magnetic inversion line. This could then inflate the field further. The 
weaker force exterior to the magnetic concentrations would result in some 
unspecified external force, such as plasma pressure directed inward toward the 
active region. 
 

Conclusion 
 
We have evaluated the MDR method for deriving a coronal non-force free 
magnetic field solution and examined the particular case of the solutions where 
the other two α’s are equal but of opposite signs. This special case is consistent 
with the observations of active region AR 10987 where local α values evaluated 
by (∇×B)z/Bz  over the region are consistent with a zero net twist. For the special 
case of  {αi} = [α i,0.,- α i] , the resulting magnetic field is a vertically inflated 
magnetic field resulting from the electric currents being parallel to the 
photosphere. If the electric currents (as seen in Figure 7) inflate active region 
fields in general then these currents could be responsible for producing a north-
south asymmetry in the observed helicity, however, this effect would be solar 
cycle dependent which it is not (Pevtsov 2008). Therefore, the only direct effect 
of an inflated field is the result of Gary and Alexander (1999). The Lorentz force 
is a factor of ten higher than the magnetic force component, d(B2/8π)/dz. Most of 
the force is countered by an opposite directed force on either side of the magnetic 
inversion line. This could lead to an increased pressure above the inversion line 
and further inflate the field. The calculated photospheric electric current densities 
are an order smaller than the maximum observed in active regions in general. 
Hence the electric currents and Lorentz forces generated seem not to be unrealistic 
with respect to possible solar dynamics. We concur with the comments made by 
DeRosa et al. (2008) in that without improved and additional plasma data, we 
advise that the implementation of this or any other extrapolation using the electric 
current density as a lower boundary condition must be done cautiously. The MDR 
method is more appropriate for theoretical investigations rather than analysis of 
the magnetic field configurations for active regions. However, this study of the 
special α-case infers that a general inflation of the magnetic field could be 
consistent with the observations.  
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Appendix A. Ohmic Heating in Parallel Resistor Circuit 
 
The following is a simple example using the minimum dissipation rate assumption 
to derive information about a physical system (see Figure A1). It assumes that the 
irreversible process of energy loss from electric resistivity is characterized by the 
minimum value of the entropy production, the total Ohmic heating loss rate. For 
an electric circuit with two parallel resistors R1 and R2 and the associated currents 
I1 and I2, the Ohmic heating is given by 

E = I1
2
 R1 + I2

2
 R2  or E = I1

2
 R1 + (I-I1)

2
 R2 ,     (A1) 

where I is the total current in the circuit. The minimum Ohmic heating rate is 
obtained at the extrema when the current in the two resistors is varied, i.e., at the 
point given by 
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Figure A1. The total Ohmic heating rate (E) is plotted 

as a function of the electric current I1 through resistor 

R1  for a set of two parallel resistor values (R1, R2).  

The minimum values are given by Equation A2 and 

since the total current is I=1, the heating rate is 

numerically equal to the effective resistance (Reff) of 

the parallel resistor circuit. 

 

dE/dI1 =2 I1 (R1+ R2 ) - 2 I R2 = 0    (A2) 

Hence the minimum dissipation rate gives the distribution of the currents: 

I1 =  I / (R1/R2 + 1),  (A3) 

I2 =  I/(R2/R1 + 1).    (A4) 

Note that the minimum heating rate given by Equation (A2) gives the voltage 
across the resistors as per Ohm’s Law, i.e., Equation (A2) gives, 

2 I1 (R1+ R2 ) = 2 (I1+I2) R2 

or 

I1 R1 = I2 R2. 

 
Hence the minimum dissipation rate in this electric circuit is consistent with the 
Ohm’s laws. 
 

Appendix B. 
Variational Solutions 
for Magnetic Fields 
Solutions 
 
From a variational of the total 
energy given a constant global 
magnetic helicity,  

δw = δ[  (1/2µ) ∫V B
2
 dV -  ε ∫V A⋅⋅⋅⋅B 

dV ] =0,   [MKS units]  (B1) 

Woltjer (1958) derived, for a 
closed system, the linear force-
field equation: 

  ∇×B = αB.           (B2) 

From a variational of the total magnetic energy given a constant global mean-
square current density,   

δw = δ[  (1/2µ) ∫V B
2
 dV -  ε ∫V η j

2
 dV ] =0,    (B3) 

Chandrasekar &Woltjer (1958) , for a closed system, derived the magnetic field 
equation, 

∇×∇×B = α2
B.     (B4) 

In a similar manner, but for an open system, using the variational of the constant 
Ohmic dissipation rate given constant relative magnetic helicity, 

   δw = δ[ ∫V η j
2
 dV -  ε’ ∫V (A+Ap)⋅(B-Bp) dV] =0,   (B5) 

we can derive the field equation 

∇×∇×∇×B = αB,             (B6)    

which is the same as Equation (1).  
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The proof of Equation (B5) is as follows. Starting with Equation (B5) and  
substituting µ j = ∇×B,  we have  

δw = δ[ ∫V (η/µ2
) (∇×B)

 2
 dV -  ε’ ∫V (A+Ap)⋅(B-Bp)  dV]] = 0        (B7) 

(µ2/η) δw =  ∫V [2 (∇×B)⋅⋅⋅⋅(∇× δB) -  ε δ(A+Ap)⋅(B-Bp)  -  ε (A+Ap)⋅δ(B-Bp)  ] dV =0   (B8) 

where  ε’ = εη/µ2. Now using the triple scalar product in the form a⋅ (∇× b) = b⋅ 
(∇× a) - ∇⋅(a×b) , we have the following, 

2 (∇×B)⋅⋅⋅⋅(∇× δB)= 2 δB⋅⋅⋅⋅(∇×∇×B)  - 2 ∇⋅[(∇× B)×××× δB]      (B9) 

and 

εδ(A+Ap)•(∇∇∇∇×A-∇∇∇∇×Ap)+ε(A+Ap)• δ (∇∇∇∇× A-∇∇∇∇×Ap) =    

ε(δA)•((∇∇∇∇×A)-(∇∇∇∇×Ap))  +ε δ A •(∇∇∇∇× (A+Ap) ) -ε ∇∇∇∇•((A+Ap) × δ A) .          (B10) 

Substitution yields the following for the bracket term [ ] of Equation (B8): 

 2(∇∇∇∇× B)•(∇∇∇∇× δB)+ ε δ( A+Ap)•(B-Bp) + ε(A+Ap)•δ(B-Bp) =   

2δA• (∇∇∇∇×∇∇∇∇×∇∇∇∇× B) -2∇∇∇∇ •((∇∇∇∇×∇∇∇∇×B) × δA -2 ∇∇∇∇•[(∇∇∇∇×B)×δB    

                                   +ε(δA)•((∇∇∇∇×A)-(∇∇∇∇×Ap)) +ε δ A •(∇∇∇∇×(A+Ap) ) -ε∇∇∇∇•((A+Ap) δ A  (B11) 

The equation (B7) becomes   

δw/η =   ∫ 2(∇∇∇∇× B)•(∇∇∇∇× δB)+ ε δ( A+Ap)•(B-Bp) + ε(A+Ap)•δ(B-Bp) dv= 

= ∫  δA• [2 (∇∇∇∇×∇∇∇∇× ∇∇∇∇× B) +ε((∇∇∇∇×A)-(∇∇∇∇×Ap))+ε (∇∇∇∇× (A+Ap) ) ] dv + 

+ ∫ ∇∇∇∇ •[-2(∇∇∇∇× ∇∇∇∇× B) × δA -2[(∇∇∇∇× B)× δ B  -ε ((A+Ap) × δ A) ]dv    = 0        (B12) 

The second integral, which can be written as a the following surface integral, 
∫ 2 (∇∇∇∇× ∇∇∇∇× B) • ( dns×δA ) + ∫ 2 δB • (  j×dns ) +∫ ε (A+Ap) • ( dns×δA )     

is zero since it can be converted to a surface integral via Green’s theorem and 
imposing the boundary conditions of  Dasgupta et al.(1998) i.e., δA×dns=0 and 

j×dns=0. The integrand in the first integral must be zero since in the volume  δA is 
arbitrary, hence  

   (∇×∇×∇×B) = ε B. (B13)   

 

Appendix C. Discussion of Units 
 
The force-free-field parameter α is expressed in the unit of inverse length (L-1) 
giving the value of αB = (∇×B) in units of G cm-1. The relation to current density 
(j=αB/µ) is given by the conversion relation 1 G cm-1 = 1.2x10-4 A cm-2. If the 
pixel units are ∆x= 1 arcsec then ∆x=0.725x108 cm and if α=0.01 in units of 
inverse pixels, then α=0.01/0.725×108 cm-1 = 0.0138×10-8 cm-1. Gary (1987) gives 
maximum of the force-free field parameter for fields of finite energy as 
αmax=2π/128=0.049 in pixel units for an array size of 128 pixels. Hence, for a 
value of α=0.01 pixel-1 value and for an electric current density  j = (0.0138×10-8  

cm-1)(100G)(1.2×10-4 A cm-2/G cm-1)=  1.66 ×10-12 A cm-2 = 1.66 ×10-8 A m-2 , 
the Lorentz force is  Lf= j αB = (0.0138×10-8 cm-1)(100G)2= 1.38x10-4 G2 cm-1= 
1.38×10-4 erg cm-3  given that  j is perpendicular to B. The ratio of Lf /EM =  
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1.38×10-4 / 3.99×10-4 =0.346, where the EM magnetic density is EM=B2/8π ergs 
cm-3 for B in Gauss.  

 

  


