
1

The Common Communication Interface (CCI)
Scott Atchley∗, David Dillow∗, Galen Shipman∗,

Patrick Geoffray†, Jeffrey M. Squyres‡, George Bosilca§ and Ronald Minnich¶ ∗Oak Ridge National Laboratory,
Oak Ridge, TN †Myricom, Inc., Arcadia, CA ‡Cisco Systems, Inc., San Jose, CA §University of Tennessee,

Knoxville, TN ¶Sandia National Laboratories, Livermore, CA

Abstract—There are many APIs for connecting and exchanging
data between network peers. Each interface varies wildly based
on metrics including performance, portability, and complexity.
Specifically, many interfaces make design or implementation
choices emphasizing some of the more desirable metrics (e.g.,
performance) while sacrificing others (e.g., portability). As a
direct result, software developers building large, network-based
applications are forced to choose a specific network API based
on a complex, multi-dimensional set of criteria. Such trade-offs
inevitably result in an interface that fails to deliver some desirable
features.

In this paper, we introduce a novel interface that both supports
many features that have become standard (or otherwise generally
expected) in other communication interfaces, and strives to
export a small, yet powerful, interface. This new interface draws
upon years of experience from network-oriented software devel-
opment best practices to systems-level implementations. The goal
is to create a relatively simple, high-level communication interface
with low barriers to adoption while still providing important
features such as scalability, resiliency, and performance. The
result is the Common Communications Interface (CCI): an
intuitive API that is portable, efficient, scalable, and robust to
meet the needs of network-intensive applications common in HPC
and cloud computing.

I. INTRODUCTION

In 1981, the Internet Protocol (IP) [1] began the era of
ubiquitous networking. The Transmission Control Protocol
(TCP) [2] was layered on top of IP, freeing application
developers from many network-specific issues such as reliable
delivery and message ordering. Even though TCP/IP was
implemented in a wide variety of compute and networking
hardware, developers still needed a common application pro-
gramming interface (API) to create portable software. The
BSD Sockets API filled that role, and became the de facto
networking API for most platforms.

But even though both the BSD Socket wire protocol and API
are still widely used today, the networking hardware that they
are used on has changed radically. For example, typical half
round trip (HRT) TCP ping-pong latencies were measured in
multiple milliseconds on early technologies such as 10BASE5
Ethernet, Token Ring, and Token Bus. Modern networking
technologies such as 10 Gigabit Ethernet (10GE), Quad Data
Rate (QDR) InfiniBand (IB), Cray’s Gemini, IBM’s Torrent,
and SGI’s NumaLink have HRT ping pong latencies as low
as 1µs.

Current generation networking technologies also provide
features such as remote direct memory access (RDMA), oper-
ating system (OS) bypass, “zero copy” hardware support, one-
sided operations, and asynchronous operations. While some
implementations of the BSD Sockets interface can utilize a

subset of these features, its API does not directly expose
any of them to applications. As a direct result, several next-
generation network APIs have evolved, such as the Virtual
Interface Architecture (VIA), OpenFabrics Verbs, Myrinet
Express (MX), and the Portals API – just to name a few. While
these interfaces adequately expose the underlying network’s
capabilities, none of them have garnered the support from
application developers that the Sockets interface has. Two key
barriers exist to widespread adoption: simplicity (from an ap-
plication developer perspective) and portability across a variety
of OS and networking technologies (including performance
portability).

Application developers are therefore forced to make sub-
stantial tradeoffs in the selection of a user-level network
interface for their network-based applications. While the use of
BSD Sockets guarantees portability across nearly every type
of existing network, the emulation of the Sockets API over
an underlying network-native software API can substantially
limit both performance and scalability. On the other hand, the
use of a native networking API may satisfy performance and
scalability requirements, but limit the application’s portability
to future platforms.

Additionally, metrics that used to be the sole purview of
High Performance Computing (HPC) – such as ultra-low
HRT latencies and maximum bandwidth at small message
sizes – are becoming important to other types of common
applications, including: internet search technologies, cloud
computing, financial trading, and rich media serving. Indeed,
as the raw bandwidth of network technologies continues to
increase, compute servers need to be able to utilize the entire
network capacity. A portable network interface API is needed
that removes the inefficiencies of TCP, provides convenient
abstractions for applications, and enables portability across a
wide variety of OS, compute server, and network platforms.

In this paper, we propose a new networking interface: the
Common Communication Infrastructure (CCI). CCI balances
the needs of portability and simplicity while preserving the
performance capabilities of advanced networking technologies.
In designing CCI, we have drawn upon prior research with
a variety of low-level networking interfaces as well as our
experience in working directly with application developers
in the use of these APIs. Whenever possible, we adhered to
our primary goal of simplicity in order to foster wide-spread
adoption, yet preserving both performance and portability.

The remainder of this paper is organized as follows: Sec-
tion II depicts the state-of-the-art of the common messaging
APIs, followed by a section describing our designs goals.
In Section IV, we detail the CCI abstraction entities (e.g.,

2

endpoints and connections) as well as the API. Finally, we
present our current implementation performance over UDP,
Portals, and MX interfaces, and then conclude the paper.

II. STATE OF THE ART

Over the years, many communication interfaces have come
and gone. The few that have remained and seen wide-spread
adoption are BSD Sockets [3], the Message Passing Interface
(MPI) [4], and some vendor-specific APIs.

A. Sockets

The Sockets interface is the most widely used by far. All
major operating systems provide support for Sockets; the
Internet and all the services it provides relies upon it. The
popularity of BSD Sockets can be attributed to:

• Simple API
• Robustness
• Implicit buffering
The API provides stream and datagram based modes,

connection-oriented and connection-less modes, and clien-
t/server semantics for connection-oriented modes. Based on
the transport, the API can supports multiple delivery modes
(unicast, multicast, and/or broadcast). The API does not pro-
vide for collective communication nor does it provide one-
sided operations.

Sockets implementations are mature and well understood.
It does not assume or require special hardware features (nor
can it exploit them if they exist).

Both sends and receives are buffered allowing operations to
complete immediately (if buffer space is available for sends or
data exists in the buffer for receives). Applications may also
choose to not block if send buffers are full or receive buffers
are empty if need be. The downside of buffering is more work
is required by the CPU which can result in lower throughput
over the network.

Sockets, when used with SOCK STREAM, inherits the
well-known TCP performance constraints [5] related to the
scaling window and the bandwidth-delay product.

B. MPI

In the High Performance Computing (HPC) arena, MPI
is the dominant interface for inter-process communication.
Designed for maximum scalability, MPI has a richer, but much
more complicated API than Sockets.

MPI provides point-to-point (i.e. send-recv or two-sided
semantics), collective, and one-sided operations. For point-
to-point communication, MPI provides a variety of modes
including blocking and non-blocking, synchronous and asyn-
chronous, as well as ready mode (only send if a matching
receive has been posted).

Multiple implementations exist [6]–[8] supporting mul-
tiple operating systems and/or interconnects. Rather than
connections, the API uses the notion of communication
groups (i.e. communicators) which include all processes
(MPI COMM WORLD) and may be split to include sub-
sets of processes. MPI does provide a notion of dynamic

process management which includes MPI COMM ACCEPT
and MPI COMM CONNECT, but this is less mature and
much less used.

The MPI standard does not define an underlying network
protocol and each MPI implementation has written its own net-
work abstraction layer (NAL). These NALs typically support
BSD Sockets as well as one or more vendor specific APIs.

MPI is a less mature technology – compared to Sockets –
likely due to its relative complexity (over 300 functions), niche
market penetration (HPC), and relative youth. While MPI se-
mantics are fairly well defined by the MPI standard, implemen-
tations vary in their compliance to the MPI specification and
may exhibit differing behavior when the standard is silent on
a specific semantic. Applications that rely upon the semantic
embodied in a particular implementation may not be portable
across other MPI implementations. MPI provides a rigid fault
model in which a process fault within a communication group
imposes failure to all processes within that communication
group (MPI ERRORS ABORT). Although work has been
done on fault-tolerant MPI [9], [10], that work has yet to be
adopted by the broader HPC community.

The MPI standard remains silent on a number of areas that
are often performance critical. For basic send/recv operations
MPI implementations often adopt two common strategies that
attempt to balance buffering and communication overhead.
“Eager” mode will send data immediately to the receiver
regardless of the receiver having posted a matching receive.
The data is buffered on the receiver if the matching receive
is not posted upon receipt of the data. “Rendezvous” mode
defers sending the data until a posted receive is matched on the
receiver. Performance of an MPI application can therefore be
largely implementation-dependent and may vary even within
a single implementation depending on the MPI configuration
settings used for a particular invocation. Perhaps more impor-
tantly, this ambiguity can result in receiver buffer overruns or
out-of-memory (OOM) faults on the receiver.

MPI has added support for one-sided operations as currently
defined in the MPI-2 standard [11]. The MPI-2 one-sided
interface has received limited adoption due to API complexity
and overly constrained semantics [12]. Current efforts in the
MPI-3 standardization process are aimed at addressing these
issues.

C. Specialized APIs
There are numerous vendor- and organization-specific APIs

available today including OpenFabrics Verbs, Cray/Sandia’s
Portals [13], QLogic’s PSM, Myricom’s MX, LBL’s GAS-
Net [14], DAPL, IBM’s LAPI [15], IBM’s DCMF [16] among
others. Overall, they provide a lot of choice but none has
appeared as a widely used communication interface. Since
most are targeted to specific network technologies, the APIs
tend to reflect the design of the underlying hardware. In the
rest of this section, we will present each of these interfaces.

Based on the earlier VIA specification [17], the InfiniBand
specification does not specify an API; it only specifies which
Verbs must be supported. After many vendors created sep-
arate Verbs APIs, they eventually coalesced into the Open-
Fabrics Association’s (OFA) Verbs. Verbs has support for

3

two-sided and one-sided operations, always asynchronous. In
addition, Verbs has support for reliable and unreliable modes,
connection-oriented and connection-less. Buffer management
is left to the application, all receives must be posted before
sending. Also, all data movement operations require regis-
tering the memory in advance. Verbs use the concept of
Queue Pair (QP) to represent a logical connection between
two processes.

The Portals API provides one-sided semantics (i.e. Put/Get)
but uses match tags to steer messages to the correct buffers.
The API is connection-less and leaves it up to the NAL to
maintain any necessary connection state internally. Portals
is mostly used on the large Cray systems such as ORNL’s
Jaguar [18]. The Lustre distributed file system NAL, LNET,
was originally based on Portals [19].

Both designed for efficiently implementing MPI, Myri-
com’s MyrinetExpress (MX) and QLogic’s PathScale Mes-
sages (PSM) have many similarities. Both provide a two-sided
matching interface which use buffering for smaller messages
and zero-copy for larger messages. Both are connection-less
in that the target does not have to accept connection requests.
Both provide reliable in-order matching with out-of-order
completion.

LAPI [15] and DCMF [16] are both proprietary software
stacks developed by IBM, using as targets the RS-series and
the BlueGene P/Q machines. While some support from the
scientific community outside IBM exists, it has failed to
broaden and remains limited. DCMF supports an interface for
one-sided and two-sided message semantics, with contiguous
or discontiguous memory layout, providing transparent sup-
port for link aggregation. The DCMF communication layer
supports multiple programming paradigms such as Aggregate
Remote Memory Copy Interface (ARMCI) and Global Arrays
(GA), in addition to MPI. It also provides a collective API,
allowing processes to execute asynchronous collective com-
munications in an optimized way.

Among all of these interfaces, the OpenFabrics Verbs API
has the broadest adoption in HPC, representing 43% of the
machines in the Top 500 [20]. Despite limited success in the
enterprise world, Verbs aspires to widen its audience beyond
HPC, especially over Ethernet through RoCEE [21]. As such,
we will refer to Verbs alongside Sockets and MPI in the rest
of this paper.

III. DESIGN GOALS

In setting out to design a new communication’s interface, we
had several goals in mind: portability, simplicity, performance,
scalability, and robustness.

A. Portability

Application and middleware developers do not have the
resources to continuously port their code on different commu-
nication interfaces. Selecting a vendor-specific API reduces
competition in the market place, thus increasing prices and
adding the risk of business failure or market disruptions. It also
slows down the adoption of new and improved technology.
Similarly, vendors do not have the resources to properly

support a large set of middleware. The whole ecosystem
would clearly benefit from a truly unified communication
layer. BSD Sockets and MPI both provide this high-level
of portability. For any new communication interface to gain
acceptance in the broader community, it needs to provide
a similar breadth of implementations on currently available
hardware, by supporting the semantics that are common to
most vendor APIs.

B. Simplicity

Simplicity is paramount to the success of a programming
interface. Critical mass cannot be reached by limiting the
targeted audience to a few networking experts. However, ease
of use involves many elements beyond just expertise. Code
size is a common, albeit subjective, metric used to compare
programming interfaces. The rationale is that larger codes are
harder to debug and maintain. For example, an analysis of
the Open MPI version 1.4.3 implementation shows substantial
differences between the seven supported communication APIs
(excluding self and shared memory). The total lines of code
of each Byte Transfer Layer (BTL) is listed in Table I. The
Verbs BTL is the largest, five times the size of the TCP sockets
BTL, third largest, and 8 to 13 times larger than the BTLs of
the vendor interfaces.

TABLE I
LINES OF CODE PER BTL

BTL Lines of code

Elan 1,656

MX 2,333

Portals 2,469

GM 2,779

Sockets (TCP) 4,192

UDAPL 6,208

OpenIB (Verbs) 21,574

Another indicator of complexity is the number of functions
available. Choice is good but too much choice is worse. Fortu-
nately, software programmers are efficient at reducing overly
complex interfaces to a minimum set of useful semantics.
For example, MPI specifies over 300 functions but the vast
majority of MPI applications only use a fraction of them.
Similarly, relative simplicity was the main drive behind the
wide adoption of the BSD Socket interface. A communication
interface should aspire to find the right balance between
richness of semantics and ease of use.

C. Performance

Performance is a major driver for innovation in networking,
from HPC to Cloud Computing. All modern network technolo-
gies leverage common techniques developed in the last two
decades: OS-bypass, zero-copy, one-sided and asynchronous
operations.

OS-bypass allows direct interaction between the application
and a virtualized instance of the network hardware, without
involving the operating system. This technique is essential for

4

low latency as it removes the need for interrupts in the critical
path. Furthermore, a process or a thread blocking in the kernel
is often scheduled on a different core when awakened. Avoid-
ing the operating system can greatly improve NUMA locality.
To support OS-bypass the network adapter must be able to
demultiplex incoming packets into corresponding queues in
each application. Most of this functionality is commonly used
in Ethernet adapters that support Receive Side Scaling (RSS).

Zero-copy reduces CPU overhead and increases bandwidth
by eliminating memory copies in the critical path. The network
adapter fetches or delivers data directly into the memory
space of the application via Direct Memory Access (DMA)
operations. To this end, the related memory pages must be
pinned so that the network adapter can safely access it. An
important drawback of zero-copy is its synchronous nature.
Since there is no intermediate copies, the memory on the send
side cannot be reused until the data has been delivered to the
receiver (or at least put on the wire for unreliable connections).

Zero-copy is often confused with one-sided operations,
which allow a communication to complete without the involve-
ment of the application thread on the remote side. All of the
required information, mainly the remote address of the data
to access, is provided on the origin side. One-sided operations
may or may not be associated with zero-copy, and may use
the help of a progression thread on the target side. Similarly,
zero-copy may be implemented with receive matching instead
or remote addressing, as it is the case with MX and Portals.

Asynchronous operations are used to decouple the initiation
of a communication from its progress and subsequent com-
pletion. This allows communication to be overlapped with
computation. More practically, asynchronous operations en-
able initiation of concurrent data movements without blocking
the application context.

To deliver the best performance, a communication interface
should present semantics that can efficiently leverage all these
techniques as provided by modern high-speed networks.

D. Scalability

Projections for leadership scale systems in HPC include
hundreds of thousands of nodes and millions of cores [22].
In the commercial space, Cloud Computing data centers are
fast approaching these levels. In this context, scalability is
an important requirement. The time and space overhead of
a scalable communication interface should not grow linearly
with the number of communicating partners. BSD Sockets are
inefficient in both dimensions, as buffers and file handles are
allocated for each new socket. Through adaptive socket buffer-
ing and use of epoll(), Sockets implementations have so far
managed to reasonably handle large number of connections.
MPI is inherently more scalable and it has successfully been
deployed on large HPC machines. However, it is not clear if
MPI in its present form can efficiently scale to millions of
cores. Scalability of the Verbs interface was originally quite
poor due to its Queue Pair model. MPI implementations used
various techniques such as connection on demand [23] and
dynamic buffer management to work around the QPs memory
footprint problem. Scalability was further improved with the

addition of Shared Receive Queues (SRQ) [24], but distinct
QPs are still required on the send side [25]. To address the
Cloud Computing and leadership class HPC requirements, a
communication interface should aim for constant buffer and
polling overhead, independently of the number of nodes in
the fabric.

E. Robustness

Hardware and software failures occur frequently, often
proportional with the size of the system. As system sizes
continue to increase, ignoring such failures will no longer
be an option. Most MPI implementations currently abort
on failures that an application might otherwise tolerate. To
address this, there have been several efforts aimed at designing
fault-tolerant MPI libraries and adding fault recovery to the
MPI specification. Thus far these efforts have had limited
success. The loose semantic about status completions was
actually a benefit in making MPI a simpler interface, devel-
opers would send messages and trust MPI to always deliver
them. Unfortunately, real-world applications eventually had to
implement checkpoint/restart functionality to tolerate system
faults and it is the only practical solution available today
on large HPC systems. Both Sockets and Verbs fare better
than MPI on this issue. They use connections to represent the
state of communication channels without reliance on a single
consistent distributed process space (MPI COMM WORLD).
Connections provide a simplified model for robustness; they
contain faults and allow for their recovery by resetting the
state of the affected communication channels. Unfortunately,
both Sockets and Verbs associate buffers to a connection,
which negatively affects scalability. A robust and scalable
communication interface should provide connection-oriented
semantics without per-connection resources.

Communication reliability is often seen as a way to improve
overall robustness. For some applications such as Media
Content Delivery (IPTV), Financial Trading (HFT) or system-
health monitoring, the provided reliability may be incompat-
ible with their timing requirements. Furthermore, the most
scalable multicast implementations are unreliable. For these
reasons, a large share of applications use unreliable connec-
tions. A communication interface should provide different
levels of connection reliability, as well as support for multicast.

IV. THE CCI API INTERFACE

The CCI API aims to encompass all of these design goals.
It leverages Endpoints to transparently manage buffering,
message demultiplexing and notifications. It uses connections
to represent the state of communication channels between
endpoints, with minimal footprint. Communications between
endpoints use either Active Messages (AM) or Remote Memory
Access (RMA) operations, depending on data size and the
desired buffering semantic.

In this section, we will present the core elements of the CCI
API and refer to the full documentation [26] for details.

5

A. Endpoints

An endpoint is a virtualized instance of a device, it is
the logical source or destination of all communications in
CCI. An endpoint contains both a send and receive queue
and their associated buffers, it is a complete container of
all resources used by an application process or thread to
perform CCI operations. As such, endpoints naturally fit the
NUMA architecture, they can be bound to particular cores to
maximize memory locality. From the application point of view,
an endpoint is an opaque object. The allocation and recycling
of buffers is entirely managed by the CCI library.

Endpoints interact with the application through events. CCI
provides the function cci get event() to immediately retrieve
the next event for a particular endpoint. Optionally, the ap-
plication can block until an event is available, allowing the
application thread to be scheduled out by the operating system.
To facilitate the integration of the blocking semantic with non-
CCI operations, each endpoint exposes an OS-specific handle
such as a file descriptor in Linux or a Windows object.

Event-driven designs are common in reactive environments
such as Graphical User Interfaces (GUIs). As such, they are
well suited for communication interfaces. In CCI, events may
represent receive notifications, send completions, connection
transitions, etc. In addition, events may contain resources
such as receive buffers. The ownership of these resources
is transfered to the application when an event is retrieved,
with the expectation that they would be returned to the CCI
library at some point through a call to cci return event(),
possibly out of order. Such a mechanism can be leveraged by
advanced users to delay processing of a particular event. A
simple example of a event processing loop is shown in code
listing 1.

The concept of the endpoint is key to scalability. By
multiplexing incoming messages into a shared receive queue
and similarly buffering outgoing messages in a shared send
queue, the overall memory footprint is independent of the
number of peers communicating with the endpoint. On the
time dimension, an endpoint offers a unified completion queue
for events, allowing for OS-bypass implementations to provide
low latency at scale.

B. Connections

CCI uses connections to represent the state of communi-
cation channels with remote peers. An endpoint can be con-
nected to another endpoint through one or more connections.
Connections have different attributes, such as reliability and
order. CCI supports five different connection types:

• Reliable with Ordered completion (RO)
• Reliable with Unordered completion (RU)
• Unreliable with Unordered completion (UU)
• Multicast Send (MC TX)
• Multicast Receive (MC RX)
As previously stated, unreliable connections are useful for

some applications. Order however is an unusual characteristic,
as most network technologies such as Ethernet and InfiniBand
assume order on the wire. Nevertheless, there are several situ-
ations when unordered semantics are desirable. For example,

rc = cci_get_event(endpoint, &event);
if (rc == CCI_SUCCESS) {

switch (event.type) {
case CCI_EVENT_SEND:

/* process send completion */
context = event.send.context;
break;

case CCI_EVENT_RECV:
/* can access message in place

or copy it to app buffer */
buffer = event.recv.data_ptr;
length = event.recv.data_len;
sender = event.recv.connection;
/* for example, send it back */
cci_send(sender, NULL, 0, buffer,

length, NULL, 0);
break;

case CCI_EVENT_CONNECT_REQUEST:
/* accept connection on server */
cci_accept(event.connect.request,

endpoint, &connection);
break;

case CCI_EVENT_CONNECT_SUCCESS:
/* new connection is established */
connection = event.connect.connection;
break;

default:
printf("Unknown CCI event !\n");

}
cci_return_event(event);

}

Listing 1. CCI event processing loop

using multiple network links to aggregate bandwidth, a tech-
nique also known as channel bonding, inhibits global packet
ordering. Similarly, switch contention avoidance techniques,
such as adaptive routing, break order when different routes
are selected between two endpoints. Switch contention is a
major scalability concern, relaxing order at the communication
interface level is believed to be essential to enable effective
technological solutions.

Connections are established through a client-server process
similar to BSD Sockets or RDMA-CM. However, applications
such as Apache commonly use a 2-step mechanism where
clients initially connect to a broker thread, which passes the
requests to a different thread for processing. This allows
the application to transparently handle requests with multiple
processing threads. Sockets applications traditionally hand off
connections by forking the broker process. However, using
fork() is particularly disruptive for interfaces supporting OS-
bypass and zero-copy, as it changes the underlying memory
mappings.

CCI provides a connection manager framework to the
application. Clients initiate a connection by specifying a server
Uniform Resource Identifier (URI), a string that contains
information used by the connection manager to identify the
requested service. In the context of HPC, it could be a batch
queue system job identifier and a rank. For web services, the
URI could be a standard URL. The flexibility of the URI
allows for extensibility of naming and support of additional
functionality, such as system-wide load-balancing and fail-
over. The pseudo-code listing 2 shows a connection estab-
lishment between a client and a server, in complement of the

6

event processing loop described previously.

port = 1234;
if (server) {

/* bind endpoint */
cci_bind(endpoint, port);

} else {
/* initiate connection */
server_uri = ‘‘foo.bar.com’’;
cci_connect(endpoint, server_uri,

port, ...);
}

[...]
cci_disconnect(conn);

Listing 2. CCI connection establishment example

On the server side, the application binds a specific endpoint
to a service to receive connection requests. The incoming
connection request carries a payload that can be used for
identification or authentication. Upon accepting the request, an
endpoint is selected to complete the connection, potentially a
different endpoint than the one used to receive the connection
request. This indirection allows the application to choose
a local endpoint at the last step of the server connection
process, effectively managing multiple endpoints on multi-core
systems.

C. Active Messages

Buffering is the most efficient way to provide asynchronous
semantics, which is essential for scalability. BSD Sockets
exclusively relies on buffering on both send and receive sides;
a send returns as soon as the data has been written to the send
buffer. Similarly, an incoming payload is first written to the
receive buffer and then retrieved by the application.

The Verbs interface provides asynchronous semantics
through its send/receive operations. However, it delegates the
buffer allocation to the application. Receive buffers have to
be posted on a QP prior to messages arrival, failure to do
so transitions the QP to an error state. Furthermore, receive
buffers are matched in order, so they all have to be large
enough for the biggest possible message when using a Shared
Receive Queue (SRQ). This puts a practical limit on the
maximum size of messages exchanged with this mechanism.

MPI offers explicitly a buffered send but it is rarely used.
Instead, the standard send may or may not buffer the message;
it returns when the application buffer can be reused. In most
implementations, it depends on the message size as explained
in Section II-B. Small messages are expected and sometimes
assumed to be buffered. Larger messages block the send as
long as the message is not delivered to the receive side. This
assumed threshold is not defined by the MPI specification and
may result in unsafe code that can deadlock, thereby breaking
portability. The matching interface in MPI is powerful yet
complex. Support for wild cards require a single, coherent
matching stack which cannot be offloaded to effectively han-
dle intra-node messages. In addition, matching interfaces are
stateful, greatly complicating fault recovery.

CCI uses a variation of Active Messages [27] (AM) to
address these issues. Most of AM’s complexity, shared by
GasNet [14], is related to the use of asynchronous handlers.

Beyond requiring a support thread, handlers severely restrict
the type of operations they can perform, such as allocating
memory or send new messages. CCI uses events instead to
greatly simplify the API. Events can be processed in the
application context, there is no blocking limitation. Similar
to the original AM implementation, buffers are managed
internally from a constant pool on both send and receive sides.
On the receive side the application is given access to a CCI
buffer through a receive event. It may process the data in place
or copy it out. When the application returns the receive event
to the CCI library the corresponding receive buffer is recycled.
Receive events can be returned out of order, so the application
can keep some receive buffers for some time if necessary. On
the send side, messages are immediately buffered.

A single function cci send() is used to send messages, its
prototype is presented in code listing 3. Two segments are
supported by default to simplify data encapsulation behind an
application header. The context is returned as part of a send
completion event, if requested.

int
cci_send(cci_connection_t *connection,

void *header_ptr, uint32_t header_len,
void *data_ptr, uint32_t data_len,
void *context, int flags);

Listing 3. CCI send prototype

As with Verbs, the receive buffers have to be large enough
for the largest message. As the buffer management is removed
from the application, CCI explicitly defines a Maximum Send
Size (MSS), specified by the underlying device. This well-
defined limit avoids the portability and unsafe assumption
of the MPI model. The MSS may be different for different
devices and therefore different endpoints. When two endpoints
connect the smallest MSS is used for that connection.

This model is particularly efficient when the MSS aligns
with the Maximum Transfer Unit (MTU) of the underlying
device, typically 2K to 8K. In this case, no inter-packet state is
needed, greatly simplifying networking hardware requirements
and allowing CCI to leverage less sophisticated devices such
as commodity Ethernet adapters. Some networks use a small
MTU but provide in-order hardware-based segmentation and
reassembly. This allows a larger MSS with minimal overhead.

If the application desires to send a message larger than the
limit, it has to perform segmentation and reassembly itself.
With a typical MSS in the order of a page size, the segmen-
tation can effectively pipeline the copy into the send buffers
with the packet injection itself. On the receive side, reassembly
will require an extra memory copy, unless the application
can manipulate the data in place over several non-contiguous
receive buffers. However, the segmentation/reassembly effort
is a clear incentive to restrict the messages semantic in CCI
to smaller traffic such as synchronization messages.

D. Remote Memory Access

For larger data movement, CCI provides a Remote Memory
Access (RMA) semantic that enables zero-copy for low CPU
overhead. As RMA operations are one-sided, they are only
allowed on reliable connections.

7

The application needs to explicitly register memory to be
used for RMA transfers. The memory registration process is
specific to each device implementation but it usually consists
of pinning the underlying physical pages and making them
suitable for DMA operations. In CCI, memory is registered
for a particular connection or for all connections. This allow
for simpler remote memory protection than the Protection
Domains of the Verbs API. A memory area can be registered
on multiple CCI connections if needed.

By requiring explicit memory registration, CCI avoids the
ambiguity of MPI where registration is not part of the API
but is often part of the implementation. In this case, implicit
memory registration is performed in the critical path, leading
to various unsafe caching mechanisms [28] (hijacking malloc
and other system calls). Virtualization is driving new and
improved IOMMU functionality that would make memory
registration obsolete on compliant hardware. Unfortunately, it
is not widely available at this time.

With portability as an important design goal, the CCI RMA
semantic is designed to be efficiently implemented on top of
the CCI messaging model for devices that do not provide zero-
copy support in hardware. Furthermore, Open-MX [29] has
demonstrated high bandwidth and low CPU overhead when
using the Intel IOA/T copy engine to move data between
receive buffers of an Ethernet driver in the kernel and an RMA
target in user space.

Contrary to some other APIs and for performance and
portability reasons, CCI does not guarantee delivery order
between RMA transfers, or even for data within a single RMA
operation. While OFA Verbs does not guarantee Last-Byte-
Written-Last semantic as well, some early hardware provided
this semantic and some applications grew to rely upon it. A
common use is for an application to poll on the last byte of a
RDMA write on the target side to determine when the RDMA
has completed. This behavior is unsafe if the DMA operations
are not guaranteed to be delivered in order as is the case on
some systems.

Since RMA order is not guaranteed, a Fence flag can
be used to selectively enforce order on the target side with
regard to all previous RMA operations on the connection.
This semantic allows for optimizations where RMA packets
can use multiple links or take different routes in the fabric
and the ordering cost is borne only when needed. An imple-
mentation of the SHMEM [30] API on top of CCI would
use the Fence flag on the first RMA operation following a
call to shmem fence(). With strong order between RDMA
operations on a given QP, OFA Verbs cannot easily leverage
bonding and adaptive routing to increase effective bandwidth.

Memory registration and RMA prototypes are presented
in code listing 4. Memory registration produces a memory
handle than can be sent to the target side of a subsequent
RMA operation. The RMA call itself requires both a local
and remote memory handle. In addition, it allows to optionally
piggyback a header segment as an active message. This mes-
sage is ordered relative to the delivery of the RMA data, the
corresponding receive event can be used to notify completion
of the RMA on the target. This mechanism is similar to the
small immediate data in Verbs.

int
cci_rma_register(cci_endpoint_t *endpoint,

cci_connection_t *connection,
void *start, uint64_t length,
uint64_t *rma_handle);

int
cci_rma(cci_connection_t *connection,

void *header_ptr,
uint32_t header_len,
uint64_t local_handle,
uint64_t local_offset,
uint64_t remote_handle,
uint64_t remote_offset,
uint64_t data_len,
void *context, int flags);

Listing 4. CCI RMA prototypes

V. STATUS AND EVALUATION

A. Portability

We have three proof-of-concept implementations: UDP
Sockets, Portals 3.3, and MX.

The Sockets prototype driver opens one SOCK DGRAM
(UDP) socket per CCI endpoint, with CCI providing optional
reliability and optional ordering (UU, RO, RU). The Sockets
driver multiplexes connections over a single socket. Enough
functions are complete including RMA to allow simple ping
pong tests to exercise the CCI API.

The Portals implementation provides UU, RO, and RU over
the portals interface. Since Portals assumes a reliable intercon-
nect, the only difference between a CCI UU connection and a
RO/RU connection is that we complete a UU send when we
receive the Portals’ SEND END event which indicates that
the sender’s buffer is no longer needed (i.e. the data is on the
wire). For a reliable connection, we report a completion when
we get the Portals’ ACK of receipt at the peer.

The MX driver currently only implements UU active mes-
sages. It takes advantage of MX’s unexpected handler to
handle all incoming active messages and connection requests.
MX limits the unexpected handler to 1 KB messages which we
adopt as the max send size for this driver. MX send semantics
closely mirror those of MPI, so the completion is returned once
the buffer is modifiable (typically once the contents are copied
out to an intermediate buffer). We will implement RU active
messages by using MX’s synchronous (rendezvous) send.

B. Performance

We wrote ping pong applications for Portals, MX, and CCI.
We tested CCI in lock-less and locking versions, CCI and CCI
Thread-Safe respectively, for active message ping pong tests.
All binaries were compiled with -O3 and -fno-builtin.
For each message size we conducted an average of 500,000
iterations. Typically, we saw ±10ns variation for messages up
to 1 KB.

We evaluated two different native Portals strategies for
sending. The first strategy binds a buffer, puts the buffer, and
then unlinks the buffer; we refer to it as Portals Bind. This is
the most intuitive strategy and probably the more commonly
used method by developers. The second strategy allocates a
intermediate buffer and binds it once. The application then

8

copies into the bound buffer before calling Put. We refer to
this as Portals Copy. Portals Copy performs better than Portals
bind for messages less than 8 KB.

We ran the Portals tests on a Cray XT6 and locked the
processes to the same cores for both tests. The CCI HRT
ping pong is about 200-300ns more than the Portals Copy
performance up to 1 KB. For an eight byte message, for
example, CCI’s latency is 5.80µs versus 5.56µs for native
Portals. Figures 1 and 2 show latency and bandwidth for active
messages up to 8 KB on the Cray XT6. Figure 3 shows latency
and overhead for RMA messages up to 4 MB.

For MX tests, we used a pair of nodes with dual Intel
Nehalems and Myri-10G NICs. Figure 4 shows CCI overhead
of around 60ns without locks and around 120ns with locks
while figure 5 shows bandwidth for MX, CCI, and MPI.

-200
-100

 0
 100
 200
 300
 400
 500

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

C
C

I O
ve

rh
ea

d
[n

s]

Message Size (bytes)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

T
im

e
[µ

s]

Active Message Latency (1/2 RTT) on Portals/SeaStar

Portals Copy
Portals Bind

CCI
CCI Thread-Safe

MPI

Fig. 1. Ping pong Latency when using Portals on SeaStar

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
B

/s

Message Size (bytes)

Pingpong Bandwidth over Portals/SeaStar

Portals Copy
Portals Bind

CCI
CCI Thread-Safe

MPI

Fig. 2. Ping pong Bandwidth when using Portals on SeaStar

C. Scalability

CCI uses connection-oriented semantics with minimal per-
connection resources. For the Portals driver, each connection
requires 104 bytes on 64-bit machines (20 bytes for the public
CCI connection struct, 20 bytes for the private CCI struct, and

-500

 0

 500

 1000

 1500

 2000

 1 2 4 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12

1K
B

2K
B

4K
B

8K
B

16
K

B

32
K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

C
C

I O
ve

rh
ea

d
[n

s]

Message Size (bytes)

 10

 100

 1000

T
im

e
[µ

s]

RMA Latency (RTT) on Portals/SeaStar

Portals Write
CCI Thread-Safe Write

Portals Read
CCI Thread-Safe Read

Fig. 3. RMA Latency when using Portals on SeaStar

 0
 20
 40
 60
 80

 100
 120
 140

 1 2 4 8 16 32 64 128 256 512 1024

C
C

I O
ve

rh
ea

d
[n

s]

Message Size (bytes)

 0

 1

 2

 3

 4

 5

 6

 7

T
im

e
[µ

s]

Active Message Latency (1/2 RTT) on MX

MX
CCI

CCI Thread-Safe
MPI

Fig. 4. Ping pong Latency when using MX

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024

M
B

/s

Message Size (bytes)

Pingpong Bandwidth over MX

MX
CCI

CCI Thread-Safe
OMPI/BTL/MX

Fig. 5. Ping pong Bandwidth when using MX

9

 0.001

 0.01

 0.1

 1

 10

 100

 0 200 400 600 800 1000

M
B

yt
es

Number of Nodes

Memory Footprint of Connections Per Process

XRC (12 PPN)
Socket (12 PPN)

CCI (12 PPN)

Fig. 6. Memory footprint for connections per process

64 bytes for the Portals driver connection struct). The sock
driver requires 140 bytes for each connection.

Figure 6 illustrates the connection state for Verbs, BSD
Sockets, and CCI. Verbs memory usage scales linearly [25]
with the number of connected peers when Reliable Connected
(RC) mode. This is the best case scenario for Verbs. The
Sockets usage is derived from the minimum 4 KB page send
and receive buffers and internal state tied to the connection.

The CCI usage conservatively assumes 256 bytes (assuming
alingment padding, etc.) as used in the UDP driver. Obviously,
if CCI is implemented over Verbs, for example, then this
amount is on top of the underlying implementation. In order to
provide support for Verbs hardware (InfiniBand, iWARP, etc.),
we intend to use Verb’s Unreliable Datagram (UD) mode to
avoid the QP memory usage by Verb’s Reliable Connected
(RC) or eXtended Reliable Connected (XRC) modes.

VI. CONCLUSION

The need for high-performance, low-latency communica-
tion, once reserved primarily for HPC oriented applications
now extends to a wide spectrum of markets such as cloud
computing and web services. While these applications share
similar performance requirements as their HPC counterparts,
they differ in their need for an adaptive, elastic, distributed
computing model. These applications have historically used
the ubiquitous Sockets interface for portability, sacrificing
performance and support for advanced networking features.
As networking technologies have continued to advance, the
gap between achievable performance (as demonstrated by HPC
communication models such as MPI) and realized performance
using the Sockets API has widened.

We have proposed CCI, a new networking interface to
address this gap. Our design goals of portability, simplicity,
performance, scalability, and robustness have been driven by
the needs of a broad community of distributed computing
application developers. CCI achieves portability through the
use of a component architecture with a clean separation of
API and underlying low-level network driver support. Similar
to Sockets, simplicity has been achieved through a narrow API
with well-defined semantics. High-performance is achieved

through a low-overhead active message style semantic for
small/control messages and RMA support for bulk data move-
ment and zero-copy semantics. Our prototype implementa-
tion over MX achieves performance that is within 60ns of
the native implementation. The use of shared resources and
minimized per-peer state affords CCI substantially improved
scalability characteristics over alternative API implementa-
tions. CCI maintains as little as 120 bytes per connection and
shared resources on the order of 8 Megabytes per endpoint.
Robustness is achieved through well-defined semantics for a
variety of failure scenarios, allowing the application to respond
appropriately to catastrophic network and remote end-point
failure scenarios.

ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership
Computing Facility, located in the National Center for Com-
putational Sciences at Oak Ridge National Laboratory, which
is supported by the Office of Science of the Department of
Energy under Contract DE-AC05-00OR22725.

Notice: This manuscript has been authored by UT-Battelle,
LLC, under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication, ac-
knowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.

REFERENCES

[1] RFC791, “Internet protocol,” September 1981, dARPA Internet
Program Protocol Specification. [Online]. Available: http://www.ietf.
org/rfc/rfc791.txt

[2] RFC793, “Transmission control protocol,” September 1981, dARPA
Internet Program Protocol Specification. [Online]. Available: http:
//www.ietf.org/rfc/rfc793.txt

[3] S. Sechrest, “Tutorial examples of interprocess communication in
Berkeley UNIX 4.2 BSD,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/CSD-84-191, Jun 1984. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/1984/5970.html

[4] Message Passing Interface Forum, “MPI: A Message Passing Interface,”
in Proc. of Supercomputing ’93. IEEE Computer Society Press,
November 1993, pp. 878–883.

[5] A. P. Foong, T. R. Huff, H. H. Hum, J. P. Patwardhan, and G. J. Regnier,
“Tcp performance re-visited,” in In IEEE International Symposium on
Performance of Systems and Software, 2003, pp. 70–79.

[6] E. Garbriel, G. Fagg, G. Bosilica, T. Angskun, J. J. Dongarra, J. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. Castain, D. Daniel,
R. Graham, and T. Woodall, “Open MPI: goals, concept, and design of
a next generation MPI implementation,” in Proceedings, 11th European
PVM/MPI Users’ Group Meeting, 2004.

[7] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface standard,”
Parallel Computing, vol. 22, no. 6, pp. 789–828, Sep. 1996.

[8] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda, “High
performance RDMA-based MPI implementation over InfiniBand,” in
ICS ’03: Proceedings of the 17th annual international conference on
Supercomputing. New York, NY, USA: ACM Press, 2003, pp. 295–
304.

[9] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, A. Bukovski,
and J. J. Dongarra, “Fault tolerant communication library and applica-
tions for high perofrmance,” in Los Alamos Computer Science Institute
Symposium, Santa Fee, NM, October 27-29 2003.

[10] R. Batchu and et al, “MPI/FT TM: Architecture and taxonomies
for fault-tolerant,message-passing middleware for performance-portable
parallel computing,” in 1st IEEE International Symposium of Cluster
Computing and the Grid, 2001, pp. 26-33, 2001.

10

[11] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
W. Saphir, T. Skjellum, and M. Snir, “MPI-2: Extending the Message-
Passing Interface,” in Euro-Par ’96 Parallel Processing. Springer
Verlag, 1996, pp. 128–135.

[12] D. Bonachea, “The inadequacy of the MPI 2.0 one-sided communication
API for implementing parallel global address-space languages.”

[13] R. Brightwell, R. Riesen, B. Lawry, and A. B. Maccabe, “Portals
3.0: Protocol building blocks for low overhead communication,” in
Proceedings of the 2002 Workshop on Communication Architecture for
Clusters (CAC), 2002.

[14] D. Bonachea, “GASNet specification, v1.1,” Berkeley, CA, USA, Tech.
Rep., 2002.

[15] G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R. Govindaraju,
K. Gildea, P. DiNicola, and C. Bender, “Performance and experience
with LAPI-a new high-performance communication library for the
IBM RS/6000 SP,” in Proceedings of the First Merged International
Symposium on Parallel and Distributed Processing, 1998, pp. 260–266.

[16] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E. Gi-
ampapa, B. Michael, A. Faraj, J. Parker, J. Ratterman, B. Smith, and C. J.
Archer, “The deep computing messaging framework: generalized scal-
able message passing on the blue gene/p supercomputer,” in Proceedings
of the 22nd annual international conference on Supercomputing, ser. ICS
’08. New York, NY, USA: ACM, 2008, pp. 94–103.

[17] T. von Eicken and W. Vogels, “Evolution of the virtual interface
architecture,” in IEEE Computer, Vol. 31, pp. 61-68, 1998.

[18] A. Bland, R. Kendall, D. Kothe, J. Rogers, and G. Shipman, “Jaguar:
The world’s most powerful computer,” in Proceedings of the Cray User
Group Conference, 2010.

[19] P. Braam, P. Schwan, and R. Brightwell, “Portals and networking for
the lustre file system,” in IEEE International Conference on Cluster
Computing, 2002.

[20] J. Dongarra, H. Meuer, and E. Strohmaier, “Top500 supercomputing
sites,” http://www.top500.org, 2009.

[21] D. Cohen, T. Talpey, A. Kanevsky, U. Cummings, M. Krause, R. Recio,
D. Crupnicoff, L. Dickman, and P. Grun, “Remote direct memory access
over the converged enhanced ethernet fabric: Evaluating the options,” in
Proceedings of the 2009 17th IEEE Symposium on High Performance
Interconnects. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 123–130.

[22] J. Dongarra, “Impact of architecture and technology for extreme scale on
software and algorithm design,” in The Department of Energy Workshop
on Cross-cutting Technologies for Computing at the Exascale, 2010.

[23] G. M. Shipman, T. S. Woodall, R. Graham, A. B. Maccabe, and
P. G. Bridges, “InfiniBand scalability in Open MPI,” in In Proceedings,
20th IEEE International Parallel & Distributed Processing Symposium,
Processing Letters, 2006.

[24] G. M. Shipman, R. Brightwell, B. Barrett, J. M. Squyres, and G. Bloch,
“Investigations on InfiniBand: Efficient network buffer utilization at
scale,” in Proceedings, Euro PVM/MPI, Paris, France, October 2007.

[25] G. M. Shipman, S. Poole, P. Shamis, and I. Rabinovitz, “X-SRQ
- improving scalability and performance of multi-core InfiniBand
clusters,” in Proceedings of the 15th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 33–
42. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-87475-1
11

[26] “CCI: The Common Communication Interface, v0.1,” Tech. Rep., 2011.
[27] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser,

“Active Messages: A mechanism for integrated communication and
computation,” in Proceedings of the 19th International Symposium
on Computer Architecture (ISCA), Gold Coast, Australia, May 1992,
pp. 430–440. [Online]. Available: http://www.cs.cmu.edu/∼seth/papers/
voneicken-isca92.pdf

[28] P. W. Ohio, P. Wyckoff, and J. Wu, “Memory registration caching
correctness,” in In Proceedings of CCGrid05. IEEE Computer Society,
2005.

[29] B. Goglin, “High-Performance Message Passing over generic Ethernet
Hardware with Open-MX,” Elsevier Journal of Parallel Computing
(PARCO), vol. 37, no. 2, pp. 85–100, Feb. 2011. [Online]. Available:
http://hal.inria.fr/inria-00533058

[30] S. W. Poole, A. Curtis, O. Hernandez, K. Feind, J. A. Kuehn, and G. M.
Shipman, “OpenSHMEM: Towards a unified RMA model,” Oak Ridge
National Laboratory, Tech. Rep., 2011.

