







# SNAME/MARAD International Student Design Competition

#### **Ultra Green Arctic Shipping System**

Stevens Insitutute of Technology

John Dolny Frank Sorrentino

Caryn Connolly Chris Ford



## Project Objective

- Design an Ultra Green Arctic LNG Transport System
- ➤ Transport LNG between Kara & Barents Seas to Northeast US Ports
- ➤ Be economically competitive and environmentally friendly

#### Presentation Outline

- >US ports
- ➤ Arctic region of concern
- >LNG transportation route
- ➤ Arctic LNG carrier design

#### Northeast US Port

- ➤ Cove Point, MD
  - > Storage Capacity: 221,000,000 m<sup>3</sup>
  - ➤ Daily Throughput Capacity: 28,316,000 m<sup>3</sup>
  - Offshore loading terminal
  - ➤ Gas is distributed along the eastern seaboard via pipeline



## LNG Transportation Route



## Natural Gas Supply









June 5, 2008

Washington, DC

#### Kara & Barents Seas – Aug through Sept



#### Kara & Barents Seas – Oct through June



## LNG Transportation Route

- ➤ Gas pumped via pipeline to Varandey
  - Storage and liquefaction plant

➤ LNG pumped to offshore pumping

station



## Ice Breaking Capabilities

- ➤ Offshore pumping station location
  - > First-year ice 0.7 to 1.3 meters
  - > Advances & recedes annually
- ➤ Double Acting Principle
  - >Astern in ice
    - > Improved ice-breaking performance
  - ➤ Ahead in open water
    - > Allows for bulbous bow



## Azipod Propulsors

- ➤ Optimal solution for double acting ships
  - >360° Podded rotation ability
  - > Run at full torque ahead or astern
- ➤ Other benefits
  - ➤ Maneuverability
  - > Reduced exhaust emissions
  - > Eliminates shaft lines, struts & rudders
  - ➤ Redundancy

#### Size Selection

- > Driven by capacity & economies of scale
- Parametric Analysis
  - > The World Fleet of LNG Carriers
  - ➤ The Orderbook of LNG Carriers
  - > ABS Record for Gas Carriers
- Principle Dimensions
  - Cargo Capacity: 200,000 m3
  - Length: 295 m
  - > Beam: 48 m
  - > Draft: 12.6 m
  - Depth: 27 m

#### Capacity vs. Year Delivered



## Prism Tank Design Concept

- Developed by ConocoPhillips
- > Raised upper hoppers increases tank capacity
- Decreased liquid free surface reduces sloshing impact loads



Traditional Membrane Tank

Prism Tank

#### Hull Form

- ➤ Series 60 parent hull form
- ➤ Modified ice breaking stern
- ➤ Bulbous bow
  - ➤ Designed using the 1978 Kracht Method for the Design of Bulbous Bows



## Resistance & Propulsion

- ➤ Resistance estimated using Holtrop & Mennen's 1978

  Statistical Powering Prediction
- ➤ Propeller selected and optimized using *Principles of Naval Architecture "Propeller Design"*
- > Particulars
  - > EHP: 13385 kW (18000 HP)
  - ➤ BHP: 18860 kW (25000 HP)
  - > MCR: 24100 kW (32300 HP)
  - Prop Diameter: 5.0 m
  - Design Speed: 19 knots



## **Propulsion System**

- ➤ LNG ships traditionally steam powered using the boil-off gas as fuel
  - > Typically the cleanest of all merchant ships
  - ➤ Low fuel efficiency
  - ➤ Lack of steam experienced crew
- Increased interest in alternate propulsion solutions
  - ➤ Low-speed diesel w/ reliquefaction (DRL)
  - Duel fuel diesel engines (DFDE)
  - > Combined gas and steam turbine system (COGAS)

## **COGAS** Propulsion System

- Combined Gas and Steam Turbine System
  - > Presented by Professor Edwin Wiggins (Webb Institute) at the NY Metro SNAME Chapter meeting on Sept. 11, 2007
  - ➤ Boil-off gas burned in gas turbine at ~7800 lb/hr
  - > Exhaust gas creates steam in a waste heat boiler and drives a steam turbine
  - ➤ Gas Turbine: 17000 kW (23000 HP)
  - > Steam Turbine: 7200 kW (9700 HP)
- > Each turbine is directly connected to a generator

## **COGAS System**



### Benefits of COGAS System

- ➤ No SO<sub>x</sub> Emissions
- ➤ Reduced CO<sub>2</sub> Emissions
- ➤ Improved cycle efficiencies over tradition steam systems
- ➤ Natural Gas is cheaper per MMBTU

|          | IFO 380  | MDO        | Natural Gas |
|----------|----------|------------|-------------|
| \$/tonne | \$600.00 | \$1,200.00 | _           |
| BTU/lb   | 18500    | 18500      | -           |
| \$/MMBTU | \$14.71  | \$29.42    | \$11.60     |

## General Arrangement





AΡ

3D Model



## Thank You







