Skip Navigation
National Cancer Institute
National Cancer Institute U.S. National Institutes of Health National Cancer Institute
 
OverviewUnderstanding NanotechnologyImpacts on CancerWhere It Stands Now
 

Understanding Nanotechnology

Nanotechnology is the development and engineering of devices so small that they are measured on a molecular scale. This emerging field involves scientists from many different disciplines, including physicists, chemists, engineers, information technologists, and material scientists, as well as biologists. Nanotechnology is being applied to almost every field imaginable, including electronics, magnetics, optics, information technology, materials development and biomedicine.

The Size of Things

Nanoscale devices are one hundred to ten thousand times smaller than human cells. They are similar in size to large biological molecules ("biomolecules") such as enzymes and receptors. As an example, hemoglobin, the molecule that carries oxygen in red blood cells, is approximately 5 nanometers in diameter. Nanoscale devices smaller than 50 nanometers can easily enter most cells, while those smaller than 20 nanometers can move out of blood vessels as they circulate through the body.

Size of Things

Because of their small size, nanoscale devices can readily interact with biomolecules on both the surface and inside cells. By gaining access to so many areas of the body, they have the potential to detect disease and deliver treatment in ways unimagined before now.

Learn more about the possibilities of nanotechnology in cancer and further explore this scientific field of discovery using the resources below:

NanowiresNanowires can detect the presence of altered genes associated with cancer. View nanowires animation »

CantileversCantilevers—microscopic, flexible beams—can provide rapid and sensitive detection of cancer-related molecules. View cantilevers animation »

NanoshellsNanoshells can selectively link to cancer cells, delivering therapeutic treatment directly to kill tumor cells and not harm neighboring healthy cells. View nanoshells animation »