Pseudo-Transient Continuation

C. T. Kelley NC State University tim kelley@ncsu.edu Joint with Liqun Qi, Li-Zhi Liao, Moody Chu, Corey Winton

ORNL, November 2008

 \rightarrow \pm \rightarrow

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

Outline

[Nonlinear Equations and Newton's Method](#page-2-0)

[Implementation](#page-3-0)

[Pseudo-Transient Continuation \(Ψtc \)](#page-6-0)

[What's wrong with Newton?](#page-6-0) [Integration to Steady State and Ψtc](#page-9-0)

[Constrained Ψtc](#page-15-0)

[Projected Ψtc Theory](#page-17-0)

[Convergence](#page-17-0) [Dynamics](#page-19-0)

[Examples](#page-21-0)

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

[Conclusions](#page-36-0)

4 0 5

+ n →

メミメ メミ

つくい

[Pseudo-Transient Continuation \(](#page-6-0)Ψtc) [Constrained](#page-15-0) Ψtc Projected Ψ[tc Theory](#page-17-0) **[Examples](#page-21-0)** [Conclusions](#page-36-0)

[Implementation](#page-3-0)

Newton's method

Problem: solve $F(u) = 0$ $F: R^N \rightarrow R^N$ is Lipschitz continuously differentiable. Newton's method

$$
u_+=u_c+s.
$$

The step is

$$
s=-F'(u_c)^{-1}F(u_c)
$$

 $F'(u_c)$ is the Jacobian matrix

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

[Pseudo-Transient Continuation \(](#page-6-0)Ψtc) [Constrained](#page-15-0) Ψtc Projected Ψ[tc Theory](#page-17-0) [Examples](#page-21-0) [Conclusions](#page-36-0)

[Implementation](#page-3-0)

Implementation

Inexact formulation:

$$
||F'(u_c)s + F(u_c)|| \leq \eta_c ||F(u_c)||.
$$

 $\eta = 0$ for direct solvers $+$ analytic Jacobians. If $F(u^*) = 0$, $F'(u^*)$ is nonsingular, and u_c is close to u^*

$$
||u_{+}-u^{*}||=O(\eta_{c}||u_{c}-u^{*}||+||u_{c}-u^{*}||^{2})
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

后

[Pseudo-Transient Continuation \(](#page-6-0)Ψtc) [Constrained](#page-15-0) Ψtc Projected Ψ[tc Theory](#page-17-0) [Examples](#page-21-0) [Conclusions](#page-36-0)

[Implementation](#page-3-0)

But what if u_0 is far from u^* ?

Armijo Rule: Find the least integer $m > 0$ such that

$$
||F(u_c + 2^{-m}s)|| \leq (1 - \alpha 2^{-m})||F(u_c)||
$$

- \blacktriangleright $m = 0$ is Newton's method.
- \blacktriangleright Make it fancy by replacing 2^{-m} .
- \triangleright $\alpha = 10^{-4}$ is standard.

イロメ イ母 トラ ミッショント

[Pseudo-Transient Continuation \(](#page-6-0)Ψtc) [Constrained](#page-15-0) Ψtc Projected Ψ[tc Theory](#page-17-0) [Examples](#page-21-0) [Conclusions](#page-36-0)

[Implementation](#page-3-0)

Theory

If F is smooth and you get s with a direct solve or GMRES then either

- **► BAD:** the iteration is unbounded, i. e. lim sup $||u_n|| = \infty$,
- \triangleright **BAD:** the derivatives tend to singularity, i. e. $\limsup\|F'(u_n)^{-1}\|=\infty$, or
- ► GOOD: the iteration converges to a solution u^* in the terminal phase, $m = 0$, and

$$
||u_{n+1}-u^*||=O(\eta_n||u_n-u^*||+||u_n-u^*||^2).
$$

Bottom line: you get an answer or an easy-to-detect failure.

イロメ イ御メ イヨメ イヨメ

[What's wrong with Newton?](#page-6-0) [Integration to Steady State and](#page-9-0) Ψtc

Why worry?

- Stagnation at singularity of F' really happens.
	- \triangleright steady flow \rightarrow shocks in CFD
- \blacktriangleright Non-physical results
	- \blacktriangleright fires go out
	- \blacktriangleright negative concentrations
- \blacktriangleright Nonsmooth nonlinearities
	- \triangleright are not uncommon: flux limiters, constitutive laws
	- \blacktriangleright globalization is harder
	- \blacktriangleright finite diff directional derivatives may be wrong

Ψtc is one way to fix some of these things.

イロト イ団ト イラト

つくい

[What's wrong with Newton?](#page-6-0) [Integration to Steady State and](#page-9-0) Ψtc

Steady-state Solutioins

Think about a PDE

$$
\frac{du}{dt}=-F(u), u(0)=u_0,
$$

and its solution $u(t)$. $F(u)$ contains

- \blacktriangleright the nonlinearity,
- \blacktriangleright boundary conditions, and
- \blacktriangleright spatial derivatives.

We want the steady-state solution: $u^* = \lim_{t \to \infty} u(t)$.

4 D F 4 H F 4 E

[What's wrong with Newton?](#page-6-0) [Integration to Steady State and](#page-9-0) Ψtc

What can go wrong?

If u_0 is separated from u^* by

- \triangleright complex features like shocks,
- \blacktriangleright stiff transient behavior, or
- \blacktriangleright unstable equlibria,

the Newton-Armijo iteration can

- \triangleright stagnate at a singular Jacobian, or
- ightharpoonup in find a solution of $F(u) = 0$ that is not the one you want.

 \leftarrow \cap \rightarrow \leftarrow \cap \rightarrow

 \rightarrow \equiv \rightarrow

つくい

[What's wrong with Newton?](#page-6-0) [Integration to Steady State and](#page-9-0) Ψtc

A Questionable Idea

One way to guarantee that you get u^* is

- \blacktriangleright Find a high-quality temporal integration code.
- \triangleright Set the error tolerances to very small values.
- Integrate the PDE to steady state.
	- **Continue in time until** $u(t)$ **isn't changing much.**
- \triangleright Then apply Newton to make sure you have it right.

Problem: you may not live to see the results.

 \leftarrow \cap \rightarrow \leftarrow \cap \rightarrow

 \rightarrow \equiv \rightarrow

へのへ

[What's wrong with Newton?](#page-6-0) [Integration to Steady State and](#page-9-0) Ψtc

Ψtc

Integrate

$$
\frac{du}{dt}=-F(u)
$$

to steady state in a stable way with increasing time steps. Equation for Ψtc Newton step:

$$
\left(\delta_c^{-1}I + F'(u_c)\right)s = -F(u_c),
$$

or

$$
\|\left(\delta_c^{-1}I + F'(u_c)\right)s + F(u_c)\| \leq \eta_c \|F(u_c)\|.
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

[What's wrong with Newton?](#page-6-0) [Integration to Steady State and](#page-9-0) Ψtc

Ψtc as an Integrator

Implicit Euler for
$$
y' = -F(y)
$$

$$
u_{n+1}=u_n+\delta F(u_{n+1})
$$

 u_{n+1} is the solution of

$$
G(u) = u - u_n + \delta F(u) = 0.
$$

Since $G'(u) = I + \delta F'(u)$, a single Newton iterate from $u_c = u_n$ is

$$
u_{+} = u_{c} - (I + \delta F'(u_{c}))^{-1}(u_{c} - u_{n} + \delta F(u_{c}))
$$

$$
= u_c - (\delta^{-1}I + F'(u_c))^{-1}F(u_c),
$$

since $u_c - u_n = 0$. イロメ イ部メ イヨメ イヨメー $2Q$ C. T. Kelley [Pseudo-Transient Continuation](#page-0-0)

[What's wrong with Newton?](#page-6-0) [Integration to Steady State and](#page-9-0) Ψtc

Ψtc as an Integrator

- \blacktriangleright Low accuracy PECE integration
	- \blacktriangleright Trivial predictor
	- \triangleright Backward Euler corrector $+$ one Newton iteration
	- \blacktriangleright 1st order Rosenbrock method High order possible, Luo, K, Liao, Tam 06
- **Example 1** Begin with small "time step" δ . Resolve transients.
- ► Grow the "time step" near u^* . Turn into Newton.

イロト イ団 トラ ミッション

[What's wrong with Newton?](#page-6-0) [Integration to Steady State and](#page-9-0) Ψtc

Time Step Control

Grow the time step with switched evolution relaxation (SER)

 $\delta_n = \min(\delta_0 || F(u_0) || / || F(u_n) ||, \delta_{max}).$

If $\delta_{\text{max}} = \infty$ then $\delta_n = \delta_{n-1} ||F(u_{n-1})||/||F(u_n)||$. Alternative with no theory (SER-B):

$$
\delta_n = \delta_{n-1}/\|u_n - u_{n-1}\|
$$

イロメ マ桐 メラミンマチャ

[What's wrong with Newton?](#page-6-0) [Integration to Steady State and](#page-9-0) Ψtc

Temporal Truncation Error (TTE)

Estimate local truncation error by

$$
\tau=\frac{\delta_n^2(u)''_i(t_n)}{2}
$$

and approximate $(u)''_i$ by

$$
\frac{2}{\delta_{n-1}+\delta_{n-2}}\left[\frac{((u)_i)_n-((u)_i)_{n-1}}{\delta_{n-1}}-\frac{((u)_i)_{n-1}-((u)_i)_{n-2}}{\delta_{n-2}}\right]
$$

Adjust step so that $\tau = .75$.

イロメ イ母 トラ ミッショント

Constraints

$$
\frac{du}{dt} = -F(u), u(0) = u_0 \in \Omega.
$$

$$
u \in \mathcal{T}(u)
$$
 (tangent to Ω)

 $u(t) \in \Omega$, $F(u) \in \mathcal{T}(u)$ (tangent to Ω). Examples:

 \triangleright Ω has interior: bound constrained optimization

 \triangleright Ω smooth manifold: inverse eigen/singular value problems Problem: Ψtc will drift away from $Ω$.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

Projected Ψtc

$$
u_{+} = \mathcal{P}(u_{c} - (\delta_{c}^{-1}I + H(u_{c}))^{-1} F(u_{c}))
$$

where

► P is map-to-nearest
$$
R^N \to \Omega
$$

 $||\mathcal{P}'(u)|| = 1$ for $u \in \Omega$.

 $H(u_c)$ makes Newton-like method fast.

イロト イ部 トイヨ トイヨト

重

[Convergence](#page-17-0) [Dynamics](#page-19-0)

General Method

Liao-Qi-K, 2006

F Lipschitz (no smoothness assumptions)

$$
u_{+} = \mathcal{P}(u_{c} - (\delta^{-1}I + H(u_{c}))^{-1}F(u_{c})),
$$

where H is an approximate Jacobian.

Theory: H bounded, other assumptions imply $u_n \to u^*$ and

$$
u_{n+1} = u_{n+1}^N + O(\delta_n^{-1} + \eta_n) \|u_n - u^*\|
$$

where

$$
u_{n+1}^N=u_n-H(u_n)^{-1}F(u_n)
$$

which is as fast as the underlying method.

 \leftarrow \cap \rightarrow \leftarrow \cap \rightarrow

a Basa Ba

 Ω

[Convergence](#page-17-0) [Dynamics](#page-19-0)

What are those other assumptions?

- \blacktriangleright $u(t) \rightarrow u^*$
- \triangleright δ_0 is sufficiently small.
- \blacktriangleright $\|\mathcal{P}'(u)\|=1$ or Lip const of $\mathcal{P}=1$
- \blacktriangleright u^* is dynamically stable
- ► $H(u)$ is uniformly well-conditioned near $\{u(t) | t \geq 0\}$
- ► $u_+ = u_c H(u_c)^{-1} F(u_c)$ is rapidly locally convergent near u^*

メロメ メ御 メメ きょ メモメ

へのへ

[Convergence](#page-17-0) [Dynamics](#page-19-0)

A word about dynamics

$$
\frac{du}{dt}=-F(u), u(0)=u_0
$$

implies $u(t) \rightarrow u^*$ if $F = \nabla f$ and

- \blacktriangleright f is real analytic,
- \blacktriangleright the Lojasiewicz inequality

$$
\|\nabla f(u)\|\geq c|f(u)-f(u^*)|
$$

holds, or

 \triangleright f has bounded level sets and finitely many critical points.

But none of this implies that u^* is dynamically stable.

←ロメ (御) (き) (き)

[Convergence](#page-17-0) [Dynamics](#page-19-0)

Fixing TTE and SER-B

If the underlying problem is minimization of f and ...

- \triangleright you reduce δ until f is reduced,
- \triangleright δ_0 is sufficiently small, and
- \blacktriangleright u^{*} is the unique root of F.

Then either $\delta_n \to 0$ or you converge to u^* .

イロト イ団 トラ ミッション

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

Example

$$
-u_{zz} + \lambda \max(0, u)^p = 0
$$

$$
z\in (0,1), u(0)=u(1)=0,
$$

where $p \in (0,1)$. Reformulate as a DAE to make the nonlinearity Lipschitz. Let

$$
v = \left\{ \begin{array}{ll} u^p & \text{if } u \ge 0 \\ u & \text{if } u < 0 \end{array} \right.
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

Reformulation

Set
$$
x = (u, v)^T
$$
 and solve
\n
$$
F(x) = \begin{pmatrix} f(u, v) \\ g(u, v) \end{pmatrix} = \begin{pmatrix} -u_{zz} + \lambda \max(0, v) \\ u - \omega(v) \end{pmatrix} = 0,
$$

The nonlinearity is

$$
\omega(v) = \begin{cases} v^{1/p} & \text{if } v \ge 0 \\ v & \text{if } v < 0 \end{cases}
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

活

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

DAE Dynamics

$$
D\left(\begin{array}{c} u \\ v \end{array}\right)' = \left(\begin{array}{cc} I & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{c} u \\ v \end{array}\right)' = \left(\begin{array}{c} u' \\ 0 \end{array}\right)
$$

$$
= -\left(\begin{array}{c} f(u,v) \\ g(u,v) \end{array}\right) = -F(x), \quad x(0) = x_0,
$$

メロメ メ都 メメ きょくきょう

È

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

Why not ODE dynamics?

Original time-dependent problem is

$$
u_t = u_{zz} - \lambda \max(0, u)^p.
$$

Applying Ψtc to

$$
v_t = u - \omega(v)
$$

rather than using $u - \omega(v) = 0$ as an algebraic constraint

- \blacktriangleright adds non-physical time dependence,
- \blacktriangleright changes the problem, and
- \blacktriangleright doesn't work.

メロメ メ御 メメ ミメ メミメ

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

Parameters

 \blacktriangleright $p = .1$ and $\lambda = 200$. Leads to "dead core".

$$
\blacktriangleright \delta_0 = 1.0, \, \delta_{\text{max}} = 10^6.
$$

- **In** Spatial mesh size $\delta_z = 1/2048$; discrete Laplacian L_{δ}
- \blacktriangleright Terminate nonlinear iteration when either

$$
||F(x_n)||/||F(x_0)|| < 10^{-13} \text{ or } ||s_n|| < 10^{-10}.
$$

Step is an accurate estimate of error (semismoothness).

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

Solution

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

È

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

Analytic ∂F

$$
F(x) = \begin{pmatrix} f(u, v) \\ g(u, v) \end{pmatrix}
$$

=
$$
\begin{pmatrix} -L_{\delta_z} u \\ u - v - max(0, v^{1/p}) \end{pmatrix} + \begin{pmatrix} \lambda \\ 1 \end{pmatrix} max(0, v).
$$

Since

$$
\partial \max(0, v) = \begin{cases} 0, & \text{if } v < 0 \\ [0, 1], & \text{if } v = 0 \\ 1, & \text{if } v > 0, \end{cases}
$$

we get . . .

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

活

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

∂F

$$
\partial F = \begin{pmatrix} -L_{\delta_z} & 0 \\ 1 & -1 - (1/p) \max(0, v^{(1-p)/p}) \end{pmatrix}
$$

$$
+ \begin{pmatrix} 0 & \lambda \\ 0 & 1 \end{pmatrix} \partial \max(0, v).
$$

メロメ メ団メ メモメ メモメー

目

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

Convergence

C. T. Kelley [Pseudo-Transient Continuation](#page-0-0)

K ロチ X 個 ト X 差

 $\leftarrow \Xi \rightarrow$

 \rightarrow

ă

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

Linear Algebra Problem

Chu, 92 . . . Find $c \in R^N$ so that the $M \times N$ matrix

$$
B(c)=B_0+\sum_{k=1}^N c_k B_k
$$

has prescribed singular values $\{\sigma_i\}_{i=1}^N$. Data: Frobenius orthogonal $\{B_i\}_{i=1}^N$, $\{\sigma_i\}_{i=1}^N$.

メロメ メ御 メメ ミメ メミメ

つくい

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

Formulation

Least squares problem

min $F(U, V) \equiv ||R(U, V)||_F^2$

where

$$
R(U, V) = U\Sigma V^{T} - B_0 - \sum_{k=1}^{N} < U\Sigma V^{T}, B_k >_{F} B_k
$$

Manifold constraints: U is orthogonal $M \times M$ and V is orthogonal $N \times N$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

后

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

Dynamic Formulation

$$
\Omega = \left\{ \left(\begin{array}{c} U \\ V \end{array} \right) \in R^{M \times M} \oplus R^{N \times N} \mid U \text{ and } V \text{ orthogonal} \right\}
$$

Projected gradinet:

$$
g(U,V) = \frac{1}{2} \left(\begin{array}{l} (R(U,V) V \Sigma^{T} U^{T} - U \Sigma V^{T} R(U,V)^{T}) U \\ (R(U,V)^{T} U \Sigma V^{T} - V \Sigma^{T} U^{T} R(U,V)) V \end{array} \right).
$$

ODE:

$$
\dot{u} = \begin{pmatrix} \dot{U} \\ \dot{V} \end{pmatrix} = -F(u) \equiv -g(U, V).
$$

イロト イ押 トイモト イモト

重

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

Projection onto Ω

Higham 86, 04 Projection of square matrix onto orthogonal matrices

 $A \rightarrow U_P$.

where $A = U_P H_P$ is the polar decomposition. Compute U_P via the SVD $A = U\Sigma V^T$

$$
U_P = UV^T.
$$

Projection of

$$
w = \left(\begin{array}{c} A \\ B \end{array}\right)
$$

onto Ω is

$$
\mathcal{P}(w) = \left(\begin{array}{c} U_P^A \\ U_P^B \end{array}\right).
$$

4 A ⊳

 $\epsilon = 1$ ia ⊞is

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

The local method

Given $u \in \Omega$ let $P_T(u) = \mathcal{P}'(u)$ be the projection onto the tangent space to Ω at u. Let

$$
H = (I - P_T(u)) + P_T(u)F'(u)P_T(u)
$$

Locally (very locally) superlinearly convergent if Ω is OK near u^* .

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

[Nonlinear Reaction-Diffusion](#page-21-0) [Inverse Singular Value Problem](#page-30-0)

Inverse Singular Value Problem

C. T. Kelley [Pseudo-Transient Continuation](#page-0-0)

→ 重

B

E

- \blacktriangleright Ψtc computes steady-state solutions.
- \triangleright Works on some manifolds.
	- \triangleright Can succeed when traditional methods fail.
	- \triangleright It is not a general nonlinear solver!
- \blacktriangleright Theory and practice for many problems
	- \triangleright ODEs, DAEs
	- \triangleright Nonsmooth F
	- Inverse eigen/singular value problems.

←ロ ▶ → 伊 ▶

 \leftarrow \equiv \rightarrow

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

つくい