
Analyses of How Code Organization
Impacts Development-Time Process

Damian Rouson
Sandia National Laboratories

Joel Koplik, Xiaofeng Xu, Karla Morris
City University of New York

Stavros Kassinos, Irene Moulitsas
University of Cyprus

Sponsors:
Office of Naval Research, National Science Foundation, European Commission

Robert Rosenberg
U.S. Naval Research Laboratory

Motivation

Code writing, efficiency & translation

Limits of HPC software tools
Personnel
Hardware

MPI issues
Performance

I/O issues
Other

Debugging

Objectives

1. To analyze how development time scales
with program size & how this depends on
the choice of abstractions.

2. To develop strategies for reducing
development time.

3. To demonstrate scalable development of
multiphysics models.

Outline

1. Analyses of the impact of
a. Coding efficiency on total solution time.
b. Programming paradigm on debugging.
c. Abstraction choice on interface content.

2. Multiphysics model demonstrations
3. Conclusions & Future Work

Outline

1. Analyses of the impact of
a. Coding efficiency on total solution time.
b. Programming paradigm on debugging.
c. Abstraction choice on interface content.

2. Multiphysics model demonstrations
3. Conclusions & Future Work

Conventional Development
Total solution time

Mathematical
Modeling

Code
writing

Production
Run

Debugging

Barrier

Amdahl’s Law

5.1lim
1

3

1

3

2

1
=!

+

=
"#

tot
S

run

tot
S

S

S
run

Code Writing Time Debugging Time Run Time

original run time
!

run
S

Total speedup:

Run-time speedup:

3/1 3/1 3/1

Representative case study for a published run1,2:

optimized run time

1Rouson et al. (2008) Physics of Fluids.
2Rouson et al. (2008) ACM Transactions on Mathematical Software.

initial
t finalt

The speedup achievable by focusing solely on decreasing
run time is very limited.

Case Study: Isotropic Turbulence

• 5% procedures occupy nearly 80% of run time.

• Structure 95% of procedures to reduce development time.

23.6transform_to_physical

38.7transform_to_fourier

43.8Statistics_

44.0Nonlinear_Fluid()

47.8RK3_Integrate()

79.5operator(.x.)

100.0main

Inclusive Run-Time Share
(%)

Procedure

Calls

Total Solution Time Speedup

1 2 3 4 5 6 7 8
1

1.25

1.5

1.75

Nummber of Processors

T
o

ta
l

S
o

lu
ti

o
n

 T
im

e
S

p
ee

d
u

p

SGI Math Library

Number of Threads

Intel Math Kernel Library (MKL)

Theoretical Limit

Pareto Principle
When participants (lines) share resources (run time), there
always exists a number such that (1-k)% of
the participants occupy k% of the resources:

Limiting cases:

• k=50%, equal distribution

• k100%, monopoly

Rule of thumb: 20% of the lines occupy 80% of the run time

Scalability requirements determine the percentage of the
code that can be focused strictly on programmability:

)100,50[!k

5
/8.02.0

1
lim

%

max
%

=
+

=
!"

k
S S

S
k

Outline

1. Analyses of the impact of
a. Coding efficiency on total solution time.
b. Programming paradigm on debugging.
c. Abstraction choice on interface content.

2. Multiphysics model demonstrations
3. Conclusions & Future Work

“Separate the physics from the
data.”

Jaideep Ray
Sandia National Laboratories, ca. 2005

“Software abstractions should
resemble blackboard abstractions.”

Kevin Long
Texas Tech. Univ., ca. 2007

Abstract Data Type Calculus

Blackboard abstraction

!

"T

"t
=
1

#
$
2
T

Software abstraction (Fortran 2003):

type(field) :: T,dT_dt,laplacian_T

call T%boundary(x,0,T0)

T%t()

T = T + dt*T%t()

dT_dt = (1./alpha)*laplacian(T)

laplacian_T = T%xx()+T%yy()+T%zz()

!

T
n+1
= T

n
+"tT

t

n

!

T = T x,y,z,t()

!

T x = 0,y,z,t()= T0

!

T
t
"
#T

#t

!

"
2
T # Txx +Tyy +Tzz

Abstract Data Type (ADT)
module field_class !C++ namespace
 implicit none
 private
 type, public :: field !C++ class
 private !C++ data members
 real, dimension(:,:,:), allocatable :: nodalValues
 contains
 procedure :: boundary !C++ member functions
 procedure :: plus !C++ overloaded operator
 generic, public :: operator(+)=>plus
 end type
contains
 subroutine boundary(this,direction,location,value)
 class(field) :: this !C++ dynamic dispatching
 ...
 end subroutine
 function plus(lhs,rhs) result(total)
 class(field), intent(in) :: lhs,rhs
 class(field), allocatable :: total
 ...

“Procedural programming is like
an N-body problem.”

Lester Dye, Stanford University, ca. 1994

“What are the metrics?”
Oyekunle Olukotun, ca. 1996

Stanford University

“Not much time is spent fixing bugs.
Most of the time is spent finding

bugs.”
Shalloway & Trott (2002) Design Patterns Explained
Oliveira & Stewart (2006) Writing Scientific Software

Debugging Structured Programs

T(1), T(2),..., T(100)
 Data Set

program main
real :: T(100),alpha=1.,dt=0.1,dx=0.01
T = T + dt*(1./alpha)*laplacian(T)

Legend

Write
Read

function laplacian(T)
real :: T(:),diff(size(T),3),laplacian(size(T))
laplacian(:)=diff(:,1)*T(:)+diff(:,2)*T(:)+diff(:,3)*T(:)

?

Fault Localization
“Computational” complexity theory: Derive a polynomial
time estimate for fault localization in a chronological list
of the unique program lines executed:

!

"
!

" /2 #1

!

" /2 #1() 2

!

T(2) < 0 (symptom)

!

" < 0 (bug)

Fault Rate

500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

Release n

Release n+1

Module Size

F

a

u

l

t

s

R

a

t

e

Source: Fenton & Ohlssen (2000) “Quantitative analysis
of faults and failures in a complex software system,”
IEEE Trans. Soft. Eng.

>3500

1000/6!" r

Faults/line

(x1000)

Module size (lines)

Scientific Code Faults

Observed faults in commercially released code*:
• 8 statically detectable faults/1000 lines of C code
•12 statically detectable faults/1000 lines of Fortran 77 code
• more recent data finds 2-3 times as many faults in C++

036.0006.0 !"# r

lines searched per bug
line review

!

tsearch = (#bugs) " ()(t)

= (r#) (# /2 $1) /2[](t)line review

*Source: Hatton, L. (1997) “The `T’ Experiments – Errors
in Scientific Software,” Comp. Sci. Eng.

Bisection Search Time

!

"
n

=
"

2
n

Localization error:

Convergence criterion:

!

"

2q
=1

q = log2 "

Search time metric:

!

"searched = r" log2 "

Object-Oriented Program

!

"
m

!

"
m

<< "

!

"
searched

= r"
m
log2 "m

Private Data

Private Data

Private Data

ADT Calculus

Private Data

Private Data

Private Data

p

!

" #
$m
p

=
lines per module

!

"searched = (r#p)log2 #p
procedures per module

!

"

Procedural line density:

!

" # const

p # const

$
%
&
' (searched # const

For ADT calculus,

Outline

1. Analyses of the impact of
a. Coding efficiency on total solution time.
b. Programming paradigm on debugging.
c. Abstraction choice on interface content.

2. Multiphysics model demonstrations
3. Conclusions & Future Work

Interface Content
Abstract class interface (Unified Modeling Language):

+ operator(+)(integrable_model,integrable_model) :
integrable_model

+ operator(*)(real,integrable_model) : integrable_model

+ t(integrable_model) : integrable_model

integrable_model

A single interface describes all of the public information for
all classes that extend this class.

Information Entropy
Shannon (1948) “A mathematical theory of communication,”
Bell System Tech. J.
The class interfaces embody inter-developer communications.
Consider the set of all (N) possible messages that can be transmitted
between two developers:

“If the number of messages in the set is finite, then this number or
any monotonic function of this number can be regarded as a
measure of the information produced when one message is
chosen from the set, all choices being equally likely.”

Shannon chose the logarithm because it satisfies several constraints
that match our intuitive understanding of information:

!

H = " pi log2 pi
i=1

N

= "
1

N
log2

1

N
= log2 N

i=1

N

#

Minimum Information Growth

subroutine integrate(integrand)
 class(integrable_model) :: integrand

 integrand = integrand + dt*integrand%t()
end subroutine

!

"H = log2(N +1) # log2 N

If only one class extends integrable_model, the
executable line only has one possible interpretation, so
H=0. Each subsquent subclass increases the information
content by

which is the minimum information growth.

Outline

1. Analyses
2. Multiphysics model demonstrations

a. Particle transport in magnetohydrodynamics.
b. Quantum turbulence in superfluid 4He.
c. Atmospheric boundary layer.
d. Lattice-Boltzmann bio-fluid dynamics.

3. Conclusions & Future Work

Morfeus

Time Integrator

Grid

Fluid

Cloud

Field

Liquid Metal

Magnetofluid

Time Integrator

Grid

Classical
Fluid

Quantum
Fluid

Field

Superfluid

Quantum turbulenceMagnetohydrodynamics

Time Integrator

Grid

FluidScalar

Field

Atmosphere

Cloud

Atmospheric Boundary
Layer

Lattice Boltzmann bio-fluid dynamics:
Xu & Lee (2008) “Application of the lattice Boltzmann method to flow in aneurysm
with ring-shaped stent obstacles,” Int. J. Numerical Methods in Fluids.

Particle-Laden MHD

!

"

"t

r
u (

r
x ,t) = ...+

1

#
$%2

r
B

A

ext & $()
2 r
u (

r
x ,t) + ...

Strong magnetic fields damp velocity variations in
the field direction, leading to 2D/3C state:

Cross-stream dispersion segregates inertial particles:

[] Sttrudtd

dtdr

iii

ii

/v),(/v

v/

!=

=
r

fpSt !!"

Particle-Laden MHD

Rouson et al. (2008), “Dispersed-phase structural anisotropy in magnetohydrodynamic
turbulence at low magnetic Reynolds numbers,” Physics of Fluids.

Below 2.17 K, liquid 4He flows as a two-fluid mixture
with mutual friction between the two components:
1. Normal viscous fluid

2. Inviscid superfluid with quantized vortex circulation

Quantum Turbulence

0

1 2

=!"

+"+"#="!+
$

$

u

fupuuu
t

r

rrrrr
%

&

 ξξ

!

" # h /m
He

!

v
i
=
"

4#
(S

0
$ r)% dS

0
/ S$ r

3

&

dS

dt
= v

i
+'S/ % (v

n
$ v

i
) $' /

S
/ % [S/ % (v

n
$ v

i
)]

!

S(",t)

!

S
/
(",t) #

$S(",t)

$"

Quantum Turbulence
Quantum vortices driven by forced, isotropic normal-fluid turbulence at 2.1 K:

Vortex Locking

Morris, Koplik & Rouson (2008) “Vortex locking in direct numerical simulations
of quantum turbulence,” Phys. Rev. Lett.

Quantum vortex alignment with classical vortices in frozen normal-fluid
turbulence:

Conclusions

• Applying Amdahl’s law to the total solution time
suggests that optimizing runtime only severely
limits speedup.

• The Pareto Principle determines the percentage of
the code that can be focused strictly on
programmability rather than runtime efficiency.

• ADT calculus renders bug search times very
nearly scale-invariant and reduces interface
information content.

Future Directions

 *Kirk & Jenkins (2004) “Information theory-based software
metrics and obfuscation.” J. Systems & Software.

• Demonstrate runtime scalability.
• Add empirical support for reductions in

1.Fault localization time.
2. Information entropy*.

“First they ignore you. Then they
ridicule you. Then they fight you.

Then you win.”
Mahatma Ghandi

Traditional Design Metrics
Structured programming:
• Source Lines of Code (SLOC)
• Cyclomatic complexity

Object-Oriented Programming:
• Afferent couplings (Ca): # packages that depend on
a given one.
• Efferent couplings (Ce): # packages a given
package depends on.
• Instability:

!

I "
Ce

Ce + Ca

