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Important information 
regarding this talk:

1) Please do not use or distribute any portion of this talk without written 
permission from either Megan Young (mbyoung@usgs.gov) or Carol 
Kendall, Project Chief (ckendall@usgs.gov)

2) Some of the data presented in this talk are from ongoing projects.  Final 
interpretation of these results is still subject to change upon project 
completion and publication.
3) Full citations for all published and reported data included in this talk are 
listed on the final slides.

Contact information for Megan Young:
Megan B. Young, Ph.D.
Isotope Tracers Project
U.S. Geological Survey
345 Middlefield Rd, MS 434
Menlo Park, CA 94025
Office: 650-329-4544
mbyoung@usgs.gov

4) Funding sources and primary collaborators are listed after the title slide.
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Where did those nutrients come from?
How stable isotopes can answer your nutrient questions

I. The Menlo Park Isotope Tracers Project

II. Overview of stable isotopes

III. Established isotope methods: case studies in surface and 
groundwater

IV. New isotope method: oxygen isotopes of dissolved 
phosphate
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Isotope Tracers Project
USGS Water Resources Discipline

Menlo Park, CA

Carol Kendall, Project Chief Steve Silva, Assistant Project Chief

Utilize multiple stable isotopes to identify nutrient sources and trace physical 
and biological processes which alter nutrient distributions throughout aquatic 
systems and food webs 

Rivers

Lakes

Estuaries

Groundwater

Sediments

Food webs

Past and Present Conditions
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Capabilities

Standard Analyses:

Ammonium: δ15N

Water: δ2H and δ18O

Organic matter & sediments: δ15N, δ13C, C:N ratios

Dissolved Organic & Inorganic Carbon: δ13C

Additional Analyses:

Nitrate: δ15N and δ18O

Phosphate: δ18O

Sulfate: δ34S and δ18O

Organic matter: δ34S

Dissolved Oxygen: δ18O
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Isotope Notation

Chosen 
standard (air, 
seawater, etc)

0 ‰

+100 ‰

-100 ‰

more of 
the heavy 
isotope

more of 
the light 
isotope

Isotope notation-
Reported as a ratio

14N: 7 neutrons

7e-

7p+

7n

15N: 8 neutrons

7e-

7p+

8n

Biological and non-biological processes 
can change the distribution of these 
isotopes

N (nitrogen): 7 protons, 7 electrons

Isotopes are forms of the same element 
that have different numbers of neutrons 
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Sources and Processes
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modified from Kendall 1998; Kendall et al 2007

btwn 1:1 
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Assimilation, 
Denitrification

(Car exhaust, power plants, etc)

Consumption processes such as denitrification and assimilation may cause a 
range of fractionations, but will always result in a linear increase in both δ15N 
and δ18O in the remaining nitrate pool in a closed system.

Biological & 
physical 
processes can 
change the 
isotopic 
composition 
of the 
remaining 
nitrate
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Biological processes can alter isotope 
composition
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Water Sources for San Francisco Bay & Delta

Sacramento River

Low chl-a concentrations

Supplies most of the fresh 
water to the north Bay

San Joaquin River

High nutrients, very high 
algae growth

Water is diverted south out of 
the Delta
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Algae (as particulate organic matter) & nitrate

Nitrate is the primary source of N for algae in the San Joaquin
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San Joaquin River & low dissolved oxygen

Organic matter 
(algae) travels 
down the SJR

Low dissolved 
oxygen

Enters the Turning 
Basin of the Deep 
Water Ship 
Channel

Decays and 
consumes oxygen-
potentially 
interferes with fish 
migration
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San Joaquin Isotope Study Questions

Do stable isotopes provide distinct signatures for 
tributaries with different dominant land uses?

What is controlling the temporal changes in δ15N-
NO3 values?

Three year study to look at nutrient & organic 
matter cycling, and provide a baseline for 

establishing a DO TMDL



Nitrate, Nitrate Isotopes, and Flow
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Large variations in nitrate concentrations and isotopic composition- what is 
driving these changes?

source, uptake, 
gw inputs?
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San Joaquin Tributaries

Agricultural drainage

Urban wastewater

Wetland drainage

Sierran drainage

MIXED USE

Eastside vs Westside

Many small diversions and drains along the length of the river
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Looking at nitrate by distance and time
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Nitrate Isotope Distributions

Histograms of nitrate concentrations
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Wider range of nitrate isotopes in the tributaries in comparison to the mainstem

Participated in 3 year study to support the development of a DO TMDL
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San Luis Drain- Most Simple System

y = 0.7174x + 0.3614
R2 = 0.4564
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drainage

•Concrete lined 
channel

•Well controlled 
system in 
comparison to 
other tributaries

Clear relationship between δ15N and δ18O
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San Luis Drain- Most Simple System
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1) Westside Agricultural tributaries
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2) Small Eastside Tributaries
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always high δ15N-
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Consistently high δ15N-NO3 values throughout the year, different from the 
other eastside tributaries.
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3) Eastside Tributaries
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Summary

San Luis Drain

1) Westside agricultural 
drains primarily contain 
fertilizer- derived nitrate, and 
possibly soil nitrate

2) Harding Drain and TID Lat 
6&7 have consistently high 
δ15N year-round: waste 
source or heavily denitrified, 
stable source.

3) Other tributaries show 
complex mixing of different 
sources, most likely variable 
inputs of denitrified water, 
and assimilation during the 
summer, possible waste 
inputs.
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California Dairy Study

Nitrate concentrations above the drinking 
water limit of 10 mg/L as N are common in 
domestic wells throughout the Central Valley.

There are around 1500 dairies 
(managed as confined animal 
feeding operations) in the 
Central Valley.

How do we distinguish between dairy-derived 
nitrate, nitrate from current other agricultural 
uses, and nitrate from past agricultural uses?

Shallow gw, high 
risk

Deep gw, lower 
risk?

In collaboration with Thomas Harter, UC Davis
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Samples Collected at Seven Dairies
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Nitrate in wells within a single dairy

Stanislaus County Dairy- very shallow groundwater

Each line represents nitrate concentrations in a single well over four 
quarterly sampling trips.

Corral

Field

Upgradient
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Domestic and 
upgradient wells 
fall within the 
range of nitrate 
concentrations 
seen in the dairy 
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δ15N-NO3 composition within a single dairy
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Nitrate Isotope Comparison By Locations
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Low δ18O-NO3, evidence of nitrification?
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Nitrification- δ15N-NH4 becomes distinct

Martinez Rio Vista I-80 BridgeDCC WWTP
FLOW

Upstream 
values

Slide from Carol Kendall
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Next Steps

Trace WWTP NH4 through north San Francisco Bay

Combine stable isotope measurements and hydrologic modeling to 
estimate nitrification rates

Examine seasonal changes in NH4 sources, cycling and relationship 
to NO3 dynamics.



32

Stable Isotopes & Phosphate

PO

O

O

O

Primary collaborators: Adina Paytan (UC Santa Cruz), Carol 
Kendall (USGS), Karen McLaughlin (SCCWRP), Katy Elsbury 
(Stanford University/ UC Santa Cruz)
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Phosphorus

Essential macronutrient nutrient for 
life

Can be limiting or co-limiting in many 
aquatic ecosystems

Excess P has lead to eutrophication 
in many locations

Altering N:P ratios may change 
community composition. Photo from: McGrath & Quinn, www.qub.ac.uk
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Phosphate Sources

Amount of P that can impact aquatic ecosystems is tiny 
compared to what is needed in terrestrial ecosystems

Tracing and quantifying non-point sources is particularly 
difficult
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Stable Isotopes & Phosphate

Phosphorus only has one 
stable isotope

Phosphate has four 
oxygen atoms, and 
oxygen has three stable 
isotopes

P

PO

O

O

O

Ratio of 18O to 16O relative to a 
standard
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Phosphate Cycling
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History of Phosphate Isotopic Analysis

Methods for solid phosphate material (rock, bones, teeth) available 
since 1960.

Longinelli (1965) and Longinelli and Nuti (1968, 1973) developed a 
paleo temperature equation for phosphate precipitation.

Early attempts at oxygen isotope analysis in dissolved phosphate 
required extremely large amounts of water and used BrF5 for 
fluorination .

Late 1990s- early 2000: Research groups at Stanford/USGS and Yale 
developed new techniques for the safe chemical precipitation of small 
amounts of dissolved phosphate .
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Two primary questions

1) Do different sources have different δ18O-PO4 values?

2) Does biological cycling erase the source value too 
quickly to be traced in aquatic systems?

PO

O

O

O PO

O

O

OEnzymes

Young et al., 2009, ES&T
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San Francisco Bay

WWTP locations from Hetzel 2001

McLaughlin et al., 2006c

Light-limited, not phosphate limited

Many different potential phosphate 
inputs, including agricultural 
drainage and WWTPs
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Source Signatures in the North Bay & Delta
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Does biological cycling overprint the 
source value?

Laboratory studies (microcosm & mesocosm) suggest that biological 
cycling rapidly overprints the source value (Blake et al., 2001, 2005, Paytan et 
al., 2002)
Does not appear to be true for freshwater systems

Elkhorn Slough, 
CA

San Joaquin 
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San Joaquin & Tributaries
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Source Values
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Future Directions

Expand the range of δ18O-PO4 measurements for various 
phosphate sources

Better understand factors controlling WWTP effluent δ18O-PO4

Examine phosphate cycling in soil porewater and shallow 
groundwater using δ18O-PO4  (Zohar et al, 2010)

Apply technique in other geographical areas
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Closing thoughts on using stable isotopes: 
Challenges

Sources and processes can have overlapping 
isotope signatures

Isotope analyses may yield fantastic results in one location, 
and totally inconclusive results in another.

 Cost and time: everyone has tight budgets and 
busy schedules

Pilot studies are a good idea!
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Various Approaches

Start with small pilot studies, then build to larger 
studies based on promising results (match cost and 
effort to usefulness of results)

Ask very specific questions (is denitrification taking place in 
this stretch of streambed?)

Test several hypotheses (identify potential nutrient and 
organic matter sources to large rivers, then see which ones are 
validated by isotopes)

Piggyback on existing projects to allow for more 
analyses (have existing monitoring programs collect samples)
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Questions?
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