Alexander Tselev

Research Assistant Professor Department of Physics and Astronomy University of Tennessee, Knoxville (865) 574-4684 tseleva@ornl.gov

Education

Nizhny Novgorod State University, Russia B.Sc./M.Sc. 1991 Radiophysics and Electronics (*Summa Cum Laude*)

Dresden University of Technology, Germany, Ph.D. 2000, Materials Science (Magna Cum Laude)

Professional Experience

2009-present	Research Assistant Professor, Department of Physics and Astronomy, University of
	Tennessee, Knoxville, TN
2006-2009	Research Associate, Duke University, Durham, NC
2003-2006	Post Doctoral Fellow, Georgetown University, Washington, DC
2001-2003	Post Doctoral Research Associate, University of Maryland College Park, MD
1997-2001	Scientific Employee, Dresden University of Technology, Germany
1991-1997	Junior Research Scientist, Institute of Applied Physics/Institute for Physics of
	Microstructures, Russian Academy of Sciences, Russia

Professional and Synergistic Activities

Referee for *Nature Nanotechnology*, *Physical Review Letters*, *Physical Review B*, *ACS Nano*, *Applied Physics Letters*, and other journals.

Honors and Awards

European Materials Research Society (E-MRS) Graduate Student Award (1998).

Publications

56 peer reviewed publications (7 Nano Letters, 4 ACS Nano, 1 Advanced Materials, 1 Advanced Functional Materials).

Research Synopsis

In-situ Scanning Probe Microscopy of Complex Oxides.

In-situ UHV scanning probe microscopy techniques are used to study surfaces of complex oxide thin films grown by Pulsed Laser Deposition/ Laser MBE.

Near-field scanning microwave microscopy.

We apply and develop near-field scanning microwave microscopy to study local electrical properties of a broad class of material: dielectrics, semiconductors, two-dimensional conductors (such as graphene), and structures based on these materials.