
Intergovernmental Oceanographic Commission 
technical series 
 

 

89 
  
 
 
 

 
 
 
Ship-based Repeat 
Hydrography: A Strategy  
for a Sustained Global 
Programme 
 

 
 

 
 
 
 
 

 
 
IOCCP Report No. 17 
ICPO Publication No. 142  

UNESCO 





 
Intergovernmental Oceanographic Commission 
technical series 

89 
 
 

Ship-based Repeat 
Hydrography: A Strategy  
for a Sustained Global 
Programme 
 
A Community White Paper developed by 
the Global Ocean Ship-based Repeat 
Hydrographic Investigations Panel for the 
OceanObs ’09 Conference, Venice, Italy, 
21–25 September 2009 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNESCO 2009





 
The designations employed and the presentation 
of the material in this publication do not imply the 
expression of any opinion whatsoever on the part 
of the Secretariats of UNESCO and IOC 
concerning the legal status of any country or 
territory, or its authorities, or concerning the 
delimitation of the frontiers of any country or 
territory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For bibliographic purposes, this document should be cited as follows: 
 
Intergovernmental Oceanographic Commission of UNESCO and the International CLIVAR Project 
Office. Hood, M. (ed.), Ship-based Repeat Hydrography: A Strategy for a Sustained Global 
Programme. (IOC Technical Series, 89. IOCCP Reports, 17. ICPO Publication 142.)  
UNESCO, 2009. (English) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© UNESCO 2009 
Electronic only 

 
(IOC/2009/TS/89) 





Ship-based Repeat Hydrography IOC Technical Series No.89 
Page (i) 

 

 
Table of Contents 

 page 
 
Executive Summary ................................................................................................................................. (iii) 
 
Acknowledgements ................................................................................................................................. (iv) 
 
1. Introduction ..................................................................................................................................... 1 
 
2.   Scientific Objectives and Rationale ................................................................................................. 3 

2.1 Understanding the controls and distribution of natural  
and anthropogenic carbon and biogeochemistry in the ocean interior ................................ 4 

2.2 Understanding ocean changes below 2 km and their contributions  
to global heat and sea-level budgets ................................................................................. 10 

2.3 Understanding the variability in water masses, ventilation, and pathways ........................ 11 

2.4 Quantifying transports ....................................................................................................... 13 

2.5 Evaluating ocean models .................................................................................................. 15 

2.6 Providing a platform for testing new shipboard sensors and providing  
an opportunity to deploy and evaluate other platforms...................................................... 17 

2.7 Underway measurements ................................................................................................. 17 
 
3.   Strategy ......................................................................................................................................... 19 

3.1 Temporal and spatial sampling ....................................................................................... 19 

3.2 Core variables ................................................................................................................. 20 

3.3 Sustained repeat lines .................................................................................................... 22 

3.4 Quality assurance practices ............................................................................................ 23 
 
4. Data Management, Sharing, and Product Development .............................................................. 24 

4.1 Data sharing and release policy ........................................................................................ 24 

4.2 Data assembly and archive centers .................................................................................. 24 

4.3 Data products and joint synthesis activities ....................................................................... 27 

4.4 Development of an international communication and coordination forum ......................... 28 
 

References ............................................................................................................................................... 30 
 





Ship-based Repeat Hydrography IOC Technical Series No. 89 
Page (iii) 

 

Executive Summary 
 
 
Ship-based hydrography is the only method for obtaining high-quality measurements with high spatial 
and vertical resolution of a suite of physical, chemical, and biological parameters over the full ocean 
water column, and in areas of the ocean inaccessible to other platforms. Global hydrographic surveys 
have been carried out approximately every decade since the 1970s through research programs such as 
GEOSECS, TTO/SAVE, WOCE / JGOFS, and CLIVAR.  It is time to consider how future surveys can 
build on these foundations to create a coordinated network of sustained ship-based hydrographic 
sections that will become an integral component of the ocean observing system.   
 
This white paper provides scientific justification and guidelines for the development of a regular and 
coordinated global survey. Two types of surveys are required to meet scientific objectives: (1) a global 
decadal survey conducted such that each full ocean basin is observed over an approximately synoptic 
time-period (< 3 years), and (2) a sub-set of the decadal survey lines sampled at high-frequency (repeats 
every 2-3 years).  Given the end date of the present sampling programs, a coordinated global survey 
should begin before 2012 to maintain continuity. 
 
While it is essential to maintain a repeat hydrography program firmly linked to national, regional and 
international research programs, some elements of coordination and implementation could benefit from a 
more pro-active oversight structure. These include the development of a sustained international 
coordination body for an interdisciplinary repeat hydrography program that is independent of any single 
time-limited research program (for example, following the model of Argo or OceanSITES); and a single, 
international information and communications forum to facilitate field program planning, to set 
experimental standards and methods, and to underpin data sharing / synthesis activities, including 
international data management activities. 
 
Thirteen countries currently participate in the global repeat hydrographic program.  The cost of repeat 
hydrographic sections currently implemented is estimated to be approximately US $10 Million dollars per 
year.  New resources will be required for maintenance of lines, upgrading of the data assembly center 
network, joint synthesis activities, and international coordination activities.      
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1.  Introduction 
 

 
Despite numerous technological advances over the last several decades, ship-based hydrography 
remains the only method for obtaining high-quality, high spatial and vertical resolution measurements of 
a suite of physical, chemical, and biological parameters over the full water column.   
 
Ship-based hydrography is essential for documenting ocean changes throughout the water column, 
especially for the deep ocean below 2 km (52% of global ocean volume not sampled by profiling floats).  
Hydrographic measurements are needed to 
 

• reduce uncertainties in global freshwater, heat, and sea-level budgets, 
• determine the distributions and controls of natural and anthropogenic carbon (both organic and 

inorganic), 
• determine ocean ventilation and circulation pathways and rates using chemical tracers, 
• determine the variability and controls in water mass properties and ventilation, 
• determine the significance of a wide range of biogeochemically and ecologically important 

properties in the ocean interior, and 
• augment the historical database of full water column observations necessary for the study of long 

timescale changes. 
 
These results will be critical for evaluating ocean models and providing data constraints for state 
estimation, assimilation and inverse models. In addition, ship-based hydrographic measurements 
provide a standard for validating new autonomous sensors and a reference/calibration dataset for other 
observing system elements (in particular Argo profiling floats, expendable bathythermographs and 
gliders).  Hydrography cruises also provide cost-effective access to remote ocean areas for the 
deployment of these instruments. 

 
The first attempt at a global hydrographic survey took place during the International Geophysical Year 
(1957-1958), but only in the Atlantic was a systematic high-quality survey conducted (King et al., 2001).  
The Geochemical Ocean Sections Study (GEOSECS) did provide hydrographic surveys in all three 
major ocean basins (Atlantic 1972-73, Pacific 1973-74, and Indian 1977-78), but focused on the 
chemistry and did not provide high-resolution land-to-land transects. It was not until the decade of the 
1990s that the World Ocean Circulation Experiment (WOCE) conducted an extensive survey of 
hydrographic properties and circulation in the global ocean in an effort to develop a global picture of 
ocean transport that was as synoptic as possible.  In collaboration with the WOCE global survey, the 
Joint Global Ocean Flux Study (JGOFS) ensured that carbon measurements were made on a majority of 
the cruises. The WOCE/JGOFS effort led to numerous scientific advances in understanding the physical 
and biogeochemical state of the global ocean, including 
 
• computation of a globally consistent picture of meridional heat, freshwater, oxygen and nutrient 

transport (Ganachaud 2003a; Ganachaud and Wunsch, 2002, 2003) with associated  estimates of 
divergence and air-sea exchange, and a comprehensive analysis of the errors involved (Ganachaud, 
2003b), 

• quantification of the temporal variations of oxygen from biology, ventilation, and circulation (Deutsch 
et al., 2005; Deutsch et al., 2006), 

• characterization from the spatial patterns of alkalinity of the production and dissolution of calcium 
carbonate (Sarmiento et al., 2002) and the impact of anthropogenic CO2 on ocean acidification 
(Feely et al., 2004; Orr et al., 2005) 

• determination of the global-scale inventory of anthropogenic CO2 in the ocean (Sabine et al., 2004), 
which is providing unprecedented constraints on the global re-distribution of anthropogenic CO2 (see 
e.g.IPCC, 2007), 
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• development of constraints on ocean centennial and decadal time-scale ventilation from natural and 
bomb-radiocarbon (Matsumoto et al., 2004), and documentation of ventilation pathways returning 
deep-water to the upper ocean using 3He (Dutay et al., 2004), 

• estimation of oceanic denitrification and nitrogen fixation rates (Gruber and Sarmiento, 1997; Howell 
et al., 1997; Deutsch et al., 2001), 

• construction of the first large-scale data set of full-depth diapycnal diffusivities covering all major 
ocean basins (Kunze et al., 2006), 

• development and application of inverse methods that estimate the exchange fluxes of natural and 
anthropogenic carbon between the atmosphere and the ocean (Mikaloff-Fletcher et al., 2006, 2007),  

• development of assimilating basin and global-scale models bringing insight to our understanding of 
3-dimensional time-varying ocean circulation and its impact on property budgets and their variability 
(Mazloff 2008; Douglass et al., 2008; Baehr et al., 2008; Wunsch and Heimbach, 2006; Stammer et 
al., 2002), 

• determination of regional (e. g. Orsi et al. 1999) and global-scale oceanic inventories (e. g. Willey et 
al., 2004) and distribution of CFCs, which has provided a means to determine water-mass formation 
rates and the oceanic uptake of anthropogenic CO2 (e.g. McNeil et al., 2003; Waugh et al., 2006), 
and 

• the first accurate estimates of dissolved organic carbon (DOC) in the ocean and its transport (Hansell 
and Carlson, 2001; Hansell et al., 2004). 

 
While WOCE and JGOFS were successful in answering many first-order questions about large-scale 
ocean circulation and carbon inventories, their results also raised many new questions concerning ocean 
variability, controls on carbon and tracer inventories and distributions and long-term secular trends 
associated with climate change, oceanic CO2 uptake and ocean acidification. These programs confirmed 
that the ocean exhibits significant interannual variability on top of the expected smooth decadal trend as 
part of patterns of global change, complicating efforts to detect and attribute human influences on the 
ocean. WOCE and JGOFS, along with many other studies conducted over the last two decades, 
suggests that the effect of climate forcing on the ocean may be substantial, but is poorly understood, and 
that the next generation of hydrographic surveys would need to be designed to examine the drivers and 
impacts of this variability, in concert with modelling and assimilation activities. 
 
An international conference entitled “The Ocean Observing System for Climate” (or OceanObs’99) set 
the initial scientific and implementation framework for post-WOCE hydrography (see, e.g., Fine et al., 
1999).  Recognizing the need to focus research on climate variability as well as on the documentation of 
trends from anthropogenic forcing, it was decided to incorporate a program of repeat hydrography in the 
15-year international Climate Variability and Predictability Study (CLIVAR).  This first global repeat 
survey of a select subset of WOCE hydrographic sections is scheduled to be completed in 2012 and the 
field program is presently 75% completed.   
 
Preliminary results show significant changes in water mass distributions and biogeochemical properties 
over the last decade, influenced by both secular changes (e.g., anthropogenic CO2 invasion) and natural 
climate mode variability such as the North Atlantic Oscillation, the Pacific Decadal Oscillation and the 
Southern Annular Mode. Some recent research highlights on interannual variability include 
 

• documentation of substantial changes in the oceanic inorganic carbon content, driven by both the 
uptake of anthropogenic CO2 and natural variability   

• evidence of large-scale changes in oceanic oxygen concentrations 
• near global-scale warming of abyssal waters of Antarctic origin, and freshening of these waters in 

deep basins adjacent to Antarctica 
• freshening of the Atlantic waters  
• equatorward penetration of CFCs from high-latitude sources filling the deep and abyssal basins 

on time scales of decades, allowing estimates of water mass formation rates, and 
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• evidence of reduction in downstream primary productivity brought on by strong convection and 
mode water formation. 

 
These results illustrate the importance of repeated global surveys for interpreting and attributing changes 
to physical and dynamical mechanisms operating on a variety of time scales. As this CLIVAR 
hydrography program comes to an end, it is clear that the global repeat survey approach is very effective 
at quantifying variability and trends of a large suite of physical and biogeochemical parameters. 
Integration of ship-based repeat hydrography with other observing system elements, such as the Argo 
profiling float program, Ship of Opportunity Program, Volunteer Observing Ship Program, time-series 
stations and satellite remote sensing that provide complementary scales of information, is required for 
the accurate monitoring of ocean change and variability. A comprehensive ocean observing system, in 
conjunction with synthesis and numerical models, is vital to understand the drivers of global climate 
change and variability 
 
It is time to consider how future global ship-based hydrography can build on the foundations established 
by the global surveys of GEOSECS, WOCE, JGOFS, and CLIVAR.  The IOCCP and CLIVAR, in 
collaboration with the Integrated Marine Biogeochemistry and Ecosystem Research Project (IMBER) and 
the Surface Ocean-Lower Atmosphere Study (SOLAS), developed the Global Ocean Ship-based 
Hydrographic Investigations Panel (GO-SHIP) to bring together interests from physical hydrography, 
carbon, biogeochemistry, Argo, OceanSITES, and other users and collectors of survey data.  The Panel 
is tasked to develop guidelines and a general strategy for the development of a globally coordinated 
network of sustained ship-based hydrographic sections that will become an integral component of the 
ocean observing system.   
 
While it is essential to maintain a repeat hydrography program firmly linked to national, regional and 
global research programs, some elements of coordination and implementation could benefit from a more 
proactive oversight structure, including the development of 
 

• a sustained international coordination body and scientific steering committee for 
integrated/interdisciplinary repeat hydrography that is independent of any specific time-limited 
research program (for example, following the model of Argo or OceanSITES) 

• a single, international information and communications forum to facilitate field program planning, 
agreements on standards and methods, and data sharing/synthesis activities, and 

• coordinated international data management and data synthesis activities.  
 
The following sections outline the scientific objectives and rationale for a repeat ship-based hydrographic 
program (Section 2), the temporal and spatial sampling strategy to achieve those objectives (Section 3), 
and the recommended data management, data sharing and product development (Section 4). 

 
 

2.  Scientific Objectives and Rationale 
 
 
The principal scientific objectives for a sustained repeat ship-based hydrography program have two 
closely linked components: (1) understanding and documenting the large-scale ocean water property 
distributions, their changes, and drivers of those changes, and (2) addressing questions of a future 
ocean that will increase in dissolved inorganic carbon (DIC), become more acidic and more stratified, 
and experience changes in circulation and ventilation processes due to global warming, altered water 
cycle and sea-ice. An observation program must be designed in light of these expected changes (and 
potential surprises) and the way in which they will interact with natural ocean variability. 
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2.1 Understanding the controls and distribution of natural  
and anthropogenic carbon and biogeochemistry in the ocean interior  

 
Inorganic carbon and anthropogenic carbon  
Recent results from the repeat hydrography cruises show that anthropogenic CO2 is continuing to 
accumulate in the Atlantic, Pacific, and Indian oceans (e.g. Tanhua et al., 2006, 2007; Sabine et al., 
2008; Murata et al., 2007, 2008). Thus far the anthropogenic CO2 accumulations generally agree with 
the estimated long-term storage patterns of Sabine et al. (2004) with the largest inventories associated 
with regions where water masses are being formed and moving into the ocean interior. However, the 
repeat hydrography sections completed so far have shown that there are important regional differences 
in total carbon storage and the global repeat survey is not yet finished. Results in both the Pacific and 
Atlantic oceans have shown that circulation changes can have a significant impact on the net total 
change in carbon inventory on decadal time scales. In some cases these changes may enhance the 
regional storage of carbon and in other cases they may decrease the uptake resulting from rising 
atmospheric CO2.  In the Northwestern Atlantic, the reduction of deep water formation led to a decrease 
of the inventory of anthropogenic carbon by 9% over the period from 1997 to 2003 (Steinfeldt et al., 
2009).  Using measured changes in the 13C/12C of DIC in the North Atlantic between 1993 and 2003, 
Quay et al. (2007) estimated that about half of the anthropogenic CO2 accumulation in the North Atlantic 
was the result of northward advection of surface waters. The effect of varying circulation on the total DIC 
change is estimated to be greater than 10 µmol kg–1 in the North Pacific, accounting for as much as 80% 
of the total DIC change in that region (Sabine et al., 2008).   
 
It is not clear from repeat hydrography measurements alone whether these dynamic variations reflect 
processes acting on seasonal, interannual, or decadal time scales (Doney et al., 2009a). The potential 
importance of relatively high-frequency dynamic variations is in full evidence in the tropical Indian Ocean, 
where seasonal variations in the thermocline circulation can drive changes in the natural carbon 
inventories of 10 moles C m-2 over 6 months (Rodgers et al., 2009).  As additional cruises are completed 
the full picture of the decadal storage will be developed.   
 
Emerging issues and implications for sampling:  Improved understanding of the decadal scale variations 
in CO2 accumulation requires continuation of global decadal repeat- hydrography, and additionally, 
frequent repeats in active areas, such as the North Atlantic, Southern and North Pacific oceans, with 
sub-annual sampling in some regions to better distinguish between anthropogenic and natural CO2 
variability (Levine et al., 2008; Perez et al., 2008).  Because circulation and biological changes can vary 
in response to local or regional climate forcing on time scales that are not yet fully understood, it is 
critical to continue to monitor the changes in carbon inventories and how they interact with the long-term 
increases in anthropogenic CO2 and climate. Monitoring this variability and attributing changes to drivers 
requires a simultaneous suite of observations of physical parameters, nutrients, O2, carbon, multiple 
tracers, and isotopes.  If we are to understand the migration of anthropogenic CO2 from the atmosphere 
into the ocean, radiocarbon and other tracers such as 13C, tritium - 3He, and CFCs are critical 
measurements and should be core variables of the next decade of hydrography (see also Section 2.3 for 
a discussion of tracers).  
 
Of all the transient tracers commonly used for oceanographic investigation, radiocarbon has the longest 
measurement history, dating back to the late 1940s. Data from the 1940s and 1950s are not as accurate 
as modern measurements; however, they are adequate for many applications. Since GEOSECS in the 
1970s radiocarbon has routinely been measured to 4o/oo or better. During the 1960s the natural or 
background ocean (and atmosphere) radiocarbon concentrations were strongly influenced by 
atmospheric testing of nuclear weapons. Due mostly to ocean uptake, the atmospheric radiocarbon 
concentration history resembles an extremely strong spike with an exponentially decaying tail which has 
leveled off in recent years as it nears background levels. In the years since the 1970s, by re-measuring 
the thermocline radiocarbon distribution, we have been able to document the spike movement through 
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those waters. Since the bomb spike was so large, following the changes in the thermocline are easy and 
unambiguous with modern analysis methods.  
 
Figure 1 below shows three approximately decadal "change sections" for P16 in the eastern Pacific. In 
addition to thermocline ventilation issues, the natural radiocarbon distribution in the deep and 
intermediate waters has been and continues to be one of the more valuable measurements for the 
determination of ventilation rates in deep and abyssal waters. Integration of the oceanic bomb 
component (Key et al., 2004, Peacock, 2004), using the relatively complete WOCE data provided the 
most accurate estimates of global air-sea gas exchange rates for CO2 (Sweeney et al., 2007).  
 
 

 
 

Figure 1.  ∆14C change in o/oo over three hydrographic programs spanning approximately 3 decades on line P16 in the eastern 
Pacific.  Change is calculated as a simple difference, with red indicating an increase and blue a decrease.  Pre-bomb values 

were estimated using the potential alkalinity method of Rubin and Key (2002).  Anything larger than 6 o/oo is significant.  (Robert 
Key, Princeton University, unpublished data.) 

 
The 13C/12C of DIC is also a well-used tracer of the ocean’s carbon cycle in both the modern and paleo-
ocean. One important application with climatic importance is the use of 13C/12C to track the accumulation 
of anthropogenic CO2 in the ocean (e.g., Quay et al., 2003).  This application is based on the observation 
that the 13C/12C of CO2 produced by fossil fuel combustion is substantially lower (by ~20 o/oo) than the 
13C/12C of atmospheric CO2.  As a result, when anthropogenic CO2 is absorbed by the ocean, the 13C/12C 
of the ocean DIC decreases. Therefore, by measuring the rate of the 13C/12C decrease, one can estimate 
the rate of anthropogenic CO2 build-up in the ocean. One advantage of using 13C/12C to track the build-
up of anthropogenic CO2 in the ocean is its higher signal-to- noise ratio than for the DIC change itself. 
Continued measurements of the decadal change in the 13C/12C of DIC in the ocean will provide estimates 
of oceanic CO2 uptake rates that complement rates estimated from measuring the ocean DIC change. 
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Dissolved organic carbon and export flux 
The ocean pool of dissolved organic matter contains 662 Pg carbon (Hansell et al., submitted), an 
inventory similar in magnitude to that of CO2 in the atmosphere.  Small perturbations in the source/sink 
mechanisms of dissolved organic carbon (DOC) could impact the exchange of carbon between the 
ocean and atmosphere.  Prior to the DOC surveys conducted as part of the CLIVAR Repeat 
Hydrography program, our knowledge of DOC biogeochemistry on the global scale was limited to a few 
high-precision measurements scattered widely across ocean basins (Hansell and Carlson, 1998; 
Hansell, 2002). The recent surveys have resulted in unprecedented resolution and insights on the 
distribution and dynamics of DOC.  Highly resolved DOC concentration gradients in the deep ocean 
trace the flow of the thermohaline circulation, allowing characterization of the deep water masses by their 
DOC signatures.  DOC removal rates in the deep ocean are very slow (Carlson et al., in press), as 
evidenced by removal in the Pacific at a few nmol kg-1 y-1 (Hansell et al., submitted).  This low rate of 
removal is thought to be due to the low bioavailability of the residual dissolved organic matter, but it now 
appears that the low deep ocean temperatures serve to restrict biological mineralization of DOC as well 
(Carlson et al., in press).  An eventual warming of the deep sea may result in accelerated removal of the 
most biologically recalcitrant DOC. 
   
Emerging Issues and implications for sampling: DOC export represents a significant component of the 
biological pump in regions that undergo deep convective mixing (Copin-Montégut and Avril, 1993, 
Carlson et al., 1994) or ventilation of intermediate waters (Hansell et al. 2002). DOC undergoes net 
export to depths greater than 100 m at approx. 1.8 Pg C yr-1, or 20% of global export production from 
sinking particles (Hansell, 2002). Of particular interest is how a change in ocean stratification will affect 
the role of DOC in the biological pump.  Will DOC export become more or less important relative to 
particulate organic carbon (POC) export as ocean stratification changes?  Will changes in ocean 
stratification affect the inventory of carbon sequestered in the dissolved organic phase and what will be 
the direction and magnitude of such a change? With the first-ever global ocean survey of DOC in 
progress, the community is poised to examine decadal variability of the dissolved organic as well as the 
inorganic carbon pools within the oceanic water column. The key questions described above can only 
truly be addressed with continued repeat hydrographic sections. 
 
Ocean acidification 
Ocean acidification is another impact of increasing CO2 in the atmosphere, and is also a topic for which 
global surveys are urgently needed. CO2 is a weak acid, and reacts with seawater to form carbonic acid 
(H2CO3) when it dissolves in the ocean. H2CO3 dissociates to form a hydrogen ion (H+) and a bi-
carbonate ion (HCO3

-). Some H+ ions react with carbonate ions (CO3
2-) to produce more HCO3

- ions. 
From this series of reactions, CO2 uptake by the ocean causes increases in H+ (decreases in pH) and 
decreases in CO3

2-. These changes impact a large range of biogeochemical and ecological processes in 
the ocean (Doney et al., 2009b). One of the impacts is a decrease of saturation state of calcium 
carbonate (CaCO3), which is unfavorable for CaCO3-secreting species. Decreases of the saturation state 
are already reported in open ocean (Feely et al., 2002; Sabine et al., 2002; Sarma et al., 2002).  
 
Emerging issues and implications for sampling:  Spatial and temporal variability of the calcium carbonate 
saturation state is related not only to CO2 storage in the ocean interior, but also to ocean circulation, 
temperature and biology (Feely et al., 2004). Thus basin-scale coverage by repeat hydrography and the 
ocean carbon observing network for ocean acidification will provide the required information to determine 
the chemical changes that are occurring in the oceans and to model their ecological impacts (e.g., see 
OceanObs09 Community White Paper by Feely et al.). 
 
Nutrients 
Nutrient observations, important in their own right because of their relation to biogeochemical cycles, can 
be used as a vital component of circulation estimation (Robbins and Toole, 1997), and are also used in 
some anthropogenic carbon derivations as well as multi-parameter regressions of less well sampled 
properties (e.g. Holfort et al., 1998; Gruber et al., 1996). 
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In the North Pacific Ocean along 24˚N, slight increases in silicate concentration were observed around 
the density of the central mode water where apparent oxygen utilization increased by up to 6 µmol kg-1 
from 1985 to 2005 (Kouketsu et al., 2009). In the entire Pacific Ocean, the rate of change in silicate 
concentration has varied by ± 0.4 µmol kg-1 y-1  from the 1990s to 2000s based on a analysis of 7 
WOCE/CLIVAR cruises within the areas of LCDW pathway (Aoyama et al., 2009) which is consistent 
with recently reported warming of a few mK in the deep waters in the North Pacific Ocean (Fukasawa et 
al., 2004; Kawano et al., 2006). It is clear from intercomparison exercises between laboratories (e.g. 
Aoyama et al., 2009) that there are large biases in reported nutrient values. This is also confirmed in 
comparisons of deep water samples between oceanographic cruises, where large biases in the reported 
values are found (e.g. Johnson et al., 2001; Gouretski and Jancke, 2001). The size of the biases in 
nutrient concentration are of the same magnitude as, or often significantly larger than, temporal changes 
in concentrations or ratios between nutrients, making the detection of trends extremely difficult. For 
instance, Pahlow and Riebesell (2000) found increasing N:P ratios in the North Atlantic possibly 
indicating shifts in the Redfield ratios, a result that might be compromised by systematic biases in the 
nutrient data (Zhang et al., 2000). 
 
Emerging issues and implications for sampling: The comparability and traceability of nutrient data in the 
global oceans are fundamental issues in marine science, and particularly for studies of global change. 
However, as pointed out in the IPCC 4th Assessment Report, large regional changes in nutrient ratios 
have been observed with no consistent patterns, which may be the result of systematic analytical offsets 
over time or between laboratories for deep ocean nutrient observations. Nutrient values tend to be high 
in old waters, where the anthropogenic carbon signal is small. Therefore, even a relatively small bias in 
nutrient data can bias the estimated anthropogenic carbon significantly in a region where the 
anthropogenic carbon concentration is normally low. Even if the absolute difference in anthropogenic 
carbon is small, there is a large volume of low anthropogenic carbon/high nutrient waters in the world 
oceans. Thus, biased nutrient data will make a noticeable difference to the carbon inventory calculations 
obtained from methods that rely on nutrient data. The international community is working to develop 
certified reference materials and protocols for high-quality nutrient measurements. This effort is essential 
for resolving discrepancies in open ocean nutrient changes as well as reducing the uncertainty in 
estimates of anthropogenic CO2 uptake.  For any future hydrographic survey, the use of nutrient 
reference materials should be mandatory, even if the standards are not yet perfect.  Both the Global 
Ocean Data Analysis Project (GLODAP) and the Carbon in the Atlantic Program (CARINA) have made 
this point clear. 
 
Oxygen 
As a consequence of increased stratification due to global warming and changes in ocean biology due to 
warming, increased CO2 concentration and decreased pH, climate and biogeochemical models predict a 
decline in oceanic oxygen concentrations (e.g. Bopp et al., 2002; Oeschlies et al., 2008). These changes 
have important direct implications for biology, and trigger feedback mechanisms on nutrient (nitrate) and 
carbon cycling, such as increased extent of oxygen minimum zones, increased de-nitrification, and 
possibly reduced export production in the photic zone. However, a series of complex feedback loops are 
at work, including changes in circulation and nitrogen fixation. Oxygen changes observed from repeat 
hydrography have shown the extent of variability in upper ocean biogeochemistry, including decreases in 
ocean oxygen content associated with mode and intermediate waters in the mid and high latitudes of the 
Pacific (Emerson et al. 2004, Sabine et al 2008); North Atlantic (Johnson and Gruber, 2007, Garcia et 
al., 1998), and South Indian oceans (Bindoff and McDougal, 2000); and even lower concentrations of 
oxygen in, and larger extent of, oxygen minimum zones (Stramma et al., 2008).  However, decadal 
sampling does not provide sufficient information about the full temporal and spatial scope of oxygen 
changes and their drivers.  Addition of O2 sensors on Argo floats is being tested to address this problem. 
Changes in the ocean oxygen inventory will also affect estimates of the land-ocean anthropogenic CO2 
partitioning that are based on observations of relative changes of the O2 and CO2 concentrations in the 
atmosphere (Keeling and Garcia, 2002). 
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Emerging issues and implications for sampling: Even though the upper ocean oxygen content can, in 
principle, be monitored by Argo floats equipped with oxygen sensors, potential drift and bias of these 
sensors should be monitored by comparison with ship based observations. Further, the only currently 
available method for monitoring changes in oxygen over large areas of the deep ocean is via ship-based 
repeat hydrography with high-quality oxygen measurements. Careful monitoring of changes in oxygen 
concentrations will allow for evaluation of oxygen sensitive tipping points, with possible wide-spread 
consequences for fisheries and ecosystems. 
 
Pigments and bio-optical measurements 
Bio-optical data obtained through repeat hydrography can provide information on the distribution of 
various phytoplankton types on a global scale.  Such information is essential to evaluate how different 
phytoplankton types respond to a change in climate, or to changes in the environment, such as ocean 
acidification.  The information would also be useful in models designed to study associated impacts on 
elemental cycles. Satellite ocean-colour data provide a wealth of information on phytoplankton 
concentrations and distributions, but globally distributed data for ground-truth are essential to 
complement this information. The data from repeat hydrography can be used to test and calibrate 
satellite ocean-colour measurements from different sensors, and the development and improvement of 
regional algorithms for satellite-derived estimates of phytoplankton biomass and primary production.   
Ocean-colour data is also used to estimate particulate organic carbon, particulate inorganic carbon, and 
chlorophyll-a concentration, which are linked to carbon cycling, both in the ocean interior and between 
the surface ocean and atmosphere. 
 
To quantify the underwater light environment and to obtain better estimates of phytoplankton standing 
stocks and production (and thus carbon flux), it is desirable to measure a comprehensive suite of bio-
optical parameters, including pigment concentrations, on future hydrographic cruises.  The 2003 
JAMSTEC Blue EArth Global Expedition (BEAGLE) circumpolar cruise in the Southern Hemisphere 
revealed unexpected features in the distribution of Prochlorococcus ecotypes.  Repeat hydrography is an 
essential platform for these observations because global repeat coverage is required to understand the 
global distribution patterns of phytoplankton species and their variations with time.  Many areas of the 
global ocean are completely unsampled; where measurements do exist, there are not many seasonal 
comparisons. 
 
Emerging issues and implications for sampling: Ideally, POC, phytoplankton pigments and absorption, 
and number and size of phytoplankton and other microbial cells by flow cytometry should be measured 
at all sampling stations as a vertical profile down to the 1% light level. Photosynthetic available radiation 
(PAR) measurements should be included on rosette systems with Niskin-type sampler bottles coupled 
with a conductivity-temperature-depth sensor package (i.e, CTD/rosette) where practicable, and 
irradiance should be measured at specific wavelengths. Fluorometers are currently pressure-rated down 
to 6,000 m; however, technological advances are required to develop other sensors (e.g. PAR sensors) 
that are pressure-rated for deep casts. Repeating the hydrographic cruises in different seasons would 
also be highly desirable. 
 
Trace elements and isotopes 
The limited availability of the micronutrient iron (Fe) in the upper waters of the ocean is a key control on 
biological production in several remote high nutrient - low chlorophyll (HNLC) ocean regions, due to the 
limited supply of Fe-containing atmospheric dust to the surface waters in these regions.  Thus, 
successful models of the biological pump need to accurately reproduce the distribution of dissolved Fe in 
surface waters and its supply to the open ocean from the partial dissolution of continental mineral dust.  
The importance of the transport and partial dissolution of continental mineral dust as a major source of 
dissolved iron to surface waters is now well established (see review by Jickells et al., 2005). The 
importance of understanding and quantifying this process is underscored by the coincidence of HNLC 
regions of the ocean with regions that are believed to receive extremely low amounts of aerosol 
deposition. The importance of understanding atmospheric dust fluxes is further strengthened by the large 
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increases in the transport of aeolian material recorded in sediments and ice cores during glacial maxima 
(De Angelis et al., 1987; Kumar et al., 1995; Laj et al., 1997). The presumed enhanced flux of Fe to 
surface waters during these periods and the consequent effect on surface productivity provide a potential 
link between orbitally induced climatic variations and the lower atmospheric CO2 levels observed during 
these periods. Recent work has suggested that human-produced aerosols exhibit higher fractional Fe 
solubility than mineral dust, and that this component of the atmospheric aerosol load is sure to increase 
with global population growth (Sedwick et al., 2007). 
 
Until recently, the time-intensive sampling methodology required to obtain water samples for trace 
element determinations free of contamination artifacts had precluded the inclusion of this kind of 
sampling as part of large-scale hydrography programs.  Development of a trace element-clean sampling 
rosette system for the CLIVAR repeat hydrography program (Measures et al., 2008a) has allowed a 
parallel sampling program to be conducted over the last 6 years in the upper 1,000m as part of the 
CLIVAR program. High-resolution sampling along the CLIVAR hydrography cruise tracks is providing a 
first-order data set of the availability of the micronutrient Fe and the aerosol deposition tracer, Aluminum, 
which will be used as ground-truth for these models.  Initial results indicate that high-resolution sampling 
is identifying previously unrecognized regions of preferential atmospheric deposition as well as a close 
connection between the deposition patterns and Fe availability (Measures et al., 2008b). 
 
Methods for shipboard collection of aerosol and rainfall samples are now well established (Baker et al., 
2006a,b; Buck et al., 2006). These samples can be analyzed for soluble and residual Fe and a large 
suite of biogeochemically important trace elements and isotopes. These data can then be used to 
constrain and calibrate dust transport and deposition models, in particular for trace elements and 
isotopes such as dissolved Al and Manganese (Mn), which both serve as tracers of atmospheric 
deposition, and for dissolved Fe, which has significant implications for biological productivity and carbon 
fluxes from the photic zone. The aerosol and rainfall sampling systems are deployed forward of the 
bridge on all ships, and do not interfere with the normal hydrographic operations. They typically require 
one person to operate the equipment and collect and process the samples that are collected on a daily 
(24-hour) basis. 

 
Emerging issues and implications for sampling: The demonstration of the feasibility of these sampling 
approaches and results they have obtained have been instrumental in developing a new geochemically 
driven sampling program GEOTRACES.  This multi-PI, international program aims to build a framework 
of understanding about the distribution of a large number of important trace elements and isotopes (TEI) 
that can be used to identify sources and quantify fluxes of these materials throughout the ocean.  The 
GEOTRACES program seeks this information throughout the water column and utilizes the interpretative 
power of multiple TEIs to constrain our understanding of contemporary processes to build a framework 
that will enable a detailed interpretation of the paleoceanographic record.  The sampling volumes 
required to characterize multiple TEI and the number of personnel required to make specialized 
shipboard determinations requires a stand-alone program, with cruise tracks attuned to biogeochemical 
rather than zonal and meridional gradients. However, the adoption by GEOTRACES of the same high-
quality hydrographic protocols used by repeat hydrography will ensure a synergy between the programs 
and ensure that the data sets produced can provide information in regions not visited by repeat 
hydrography programs.  While characterizing the core TEI of the GEOTRACES program does not 
require the spatial or temporal resolution of the hydrography programs, certain subset parameters would 
benefit from inclusion in future high-frequency repeat sections.  In particular, this is likely for parameters 
that can be used to deduce atmospheric mineral dust deposition to the surface ocean.  Not only are 
these deposition processes highly variable temporally and spatially in the contemporary ocean, they are 
also likely to vary with climatically induced changes in rainfall patterns, leading to variations in the 
delivery of micronutrients to important regions of the open ocean.  
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2.2 Understanding ocean changes below 2 kilometers  
and their contributions to global heat budget and sea-level budgets 

 
The global network of Argo profiling floats samples the physical characteristics of the upper 2 km of the 
global ocean, half the global ocean volume.  Ship-based repeat hydrographic sections are an essential, 
and in most regions the only, observing element for the study of changes in deep and bottom water 
formation rates and properties, their signatures as they spread out from formation regions, and for 
providing detailed basin-scale points of comparison for global circulation models.  Sections occupied 
during CLIVAR, when compared to those taken during WOCE, reveal substantial variability in many 
regions, and subtle but measurable variability in others. For instance, a section repeated yearly across 
the Labrador Sea provides a rich data set for analyses of variations in the components of North Atlantic 
Deep Water, such as the Labrador Sea Water, the Iceland-Scotland Overflow Water, and the Denmark 
Straits Overflow Water (e.g. Yashayaev, 2007).  Repeat sections show how these signals spread 
throughout the North Atlantic. Decadal variations in Labrador Sea Water properties can be traced to 
20°W in an analysis of data from the CLIVAR/CO2 reoccupation of WHP Section A16N in 2003 along 
with three previous occupations (Johnson et al., 2005).  North Atlantic Deep Water property variations 
have been traced to 24°N in an analysis of repeat section data along this section (Cunningham and 
Alderson, 2007) and have also been traced southward to 16°N (Steinfeldt et al., 2007).  
 
However, deep variability evident in repeat hydrographic sections is not by any means limited to the 
North Atlantic Deep Water.  Warming abyssal ocean temperatures linked to Antarctic Bottom Water 
sources appear to be widespread in the Atlantic, Indian, and Pacific oceans. Deep and bottom warming 
has been detected over the past several decades in the Weddell Sea (Robertson et al., 2002; Fahrbach 
et al., 2004).  Downstream of this region, statistically significant warming has been detected in the 
bottom waters of the all western basins of the South Atlantic Ocean (Figure 2, Johnson and Doney, 
2006) and warming signals appear to extend into the abyssal western North Atlantic (Johnson et al., 
2008b).  This warming is apparent throughout the Pacific Ocean (Kawano et al., 2006; Johnson et al. 
2007), even to the rather surprising location of 47°N in the Pacific Ocean (Fukasawa et al. 2004). 
 
Freshening of these bottom waters is apparent closer to their source, such as the Australian-Antarctic 
Basin (Rintoul, 2007; Johnson et al., 2008a).  This freshening may be linked to freshening in the source 
regions such as the Adelie Land and the Ross Sea (Jacobs et al., 2002). The freshening observed in this 
basin, combined with the warming approaching 0.1°C over 12 years, accounts for about 5 cm of steric 
sea level rise below 2 km (Johnson et al. 2008a).  Finally, in addition to suggesting global changes in the 
thermohaline circulation, the warming (and freshening) observed in the abyss could play a non-trivial role 
in global heat budgets and sea level rise (Johnson et al., 2007; 2008a).  
 
Emerging issues and implications for sampling: The abyssal freshening near Antarctica and near global 
abyssal warming observed in recent decades, as well as water property variability in the North Atlantic 
limb of the meridional overturning circulation, demonstrate a requirement for future global sampling 
of the ocean below the current 2 km depth limit of Argo.  What is the ongoing contribution of the abyssal 
ocean to the global heat and freshwater budgets?  Will the heat and freshwater apparently being 
sequestered in the abyssal regions ventilated from Antarctica continue to build, or will the recent 
changes reverse?  How will changes in the properties of North Atlantic Deep Water propagate 
throughout the rest of the ocean?  The continued repeat hydrographic sections proposed here will 
provide a very accurate, high-quality observational backbone for answering these and other 
questions, likely augmented by complementary arrays of moored instruments, and perhaps deeper 
profiling floats. 
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Figure 2.  Potential temperature differences (red warm, blue cold) of the 2005 – 1989 occupations of A16S meridional section 
sampling the western basins of the South Atlantic.  Mean isotherms from the two cruises are contoured (black lines) at 0.5°C 

intervals below 5°C, and 5°C intervals above.  Note the warming of cold waters throughout the Scotia Sea (south of 53°S), and 
the warming of bottom waters deeper than about 3500 dbar throughout the Argentine and Brazil Basins to the north.  Figure 

follows Johnson and Doney (2006). 
 
 
2.3 Understanding the variability in water masses, ventilation, and pathways 

 
Substantial variability in temperature, salinity, oxygen concentration and apparent oxygen utilization 
(AOU) has been detected in many regions of the ocean by comparing CLIVAR repeat sections with 
those of WOCE and older sections (Rintoul and England, 2002, Bryden et al. 2003, Emerson et al., 
2004; Feely et. al., 2005; Garcia et al., 2005; McDonagh, et al., 2005; Boyer et al., 2007; Johnson and 
Gruber, 2007; Talley, 2008). These changes are amplified in the upper ocean (0-1500m) and in regions 
of local water mass formation.  
 
In the North Atlantic, the water mass property variability is observed in several tracers and found 
throughout the water column. The water mass property changes appear to be related to variations in air-
sea forcing, the North Atlantic Oscillation (NAO), the advective time scales for the subpolar and 
subtropical gyres and the deep western boundary currents.  Reoccupation of WOCE sections as part of 
the CLIVAR/CO2 surveys has demonstrated the relatively rapid equatorward progression of CFCs from 
high- latitude sources into the deep and abyssal waters of the world’s oceans. Figure 2, below, shows a 
cross-section of the Deep Western Boundary Current at the northern and southern extremes. There are 
relatively high concentrations of CFC-11 in two cores coincident with Upper NADW and Lower NADW. 
UNADW consists of Upper and classical Labrador Sea Water. The largest concentration increases are 
associated with UNADW and observed in the offshore Gulf Stream recirculation (35-40oN).  
 
The CFC concentrations have been used to estimate rates of formation for many water masses.  Orsi et 
al. (1999) inferred a formation rate for AABW of 8 Sv.  Smethie and Fine (2001) estimated NADW 
components, and LeBel et al. (2008) estimated the North Atlantic Meridional Overturning Circulation of 
19.6 ± 4 Sv for the period 1970-97.  In addition, using data from the subpolar region, Kieke et al. (2006) 
estimate formation rates for ULSW and LSW for the period 1997-2003. They find temporal switching 
between ULSW and CLSW in terms of strength of formation rates (for review of LSW formation rates see 
Haine et al., 2008).  Using a variety of nutrients and tracers including SF6, Tanhua et al. (2008) conclude 
that there is also temporal switching in percentage of LNADW component at the Denmark Strait sill 
between 1997 and 2002.   
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Figure 3. Black contours of CFC-11 in pmol/kg along A20 (53W) in 2003, with neutral density contours added in green. 

Superimposed are color contours showing differences in CFC-11 concentrations between the 2003 and 1997 occupation of the 
section (figure courtesy of Fine and Smethie). 

 
In the North Pacific, property variability has also been linked to changes in gyre circulation and water 
mass ventilation rates in the formation regions. Repeat measurements of transient tracers in the North 
Pacific have been used to improve estimates of mixing in models (Sonnerup et al., 2008), and indicate a 
reduction of ventilation in the North Pacific subpolar gyre (Mecking et al., 2006). 
 
The recent completions of the southern hemisphere CLIVAR sections are now also revealing interesting 
trends in upper-ocean properties in the south Pacific, Indian and Southern oceans (Talley et. al., 2008).  
In the Southern Hemisphere, subtropical basin property changes in the upper 1000m of the water 
column appear to be related to the Southern Annular Mode (SAM) variability and the southward trend of 
the westerly winds maximum (Roemmich et al., 2007). The large-scale atmospheric variability impacts 
the circulation of all the southern hemisphere subtropical gyres and the water mass formation regions 
north of the Antarctic Circumpolar Current and subtropical gyres. CFC concentration along a section in 
the Indian Ocean from the equator to Antarctica shows increasing CFC concentrations towards the 
bottom and southward in the abyssal basins south of the South Indian Ridge (45oS). The distribution of 
the CFC-12 concentration maxima broadly mirrors the observed abyssal warming and freshening found 
in the Southern Ocean abyssal basins.  
 
Emerging issues and implications for sampling:  The contemporaneous sampling of a full suite of ocean 
tracers by the repeat hydrography program has shown us the importance of repeated decadal 
measurements for the comprehensive detection and monitoring of ocean water mass changes.  CFCs, 
SF6, carbon isotopes, and tritium-helium should be core measurements of the repeat hydrography 
program, with the understanding that it may not be necessary to measure these tracers on all stations.  
 
SF6 will be an increasingly important tracer because atmospheric CFC abundances are no longer 
increasing with time, making it difficult to use them to investigate the ventilation of recently formed water 
masses. Tritium can give additional age information for deep waters (e.g., Huhn et al., 2008a). Because 
the surface concentration of tritium varies regionally, mixing of water masses of different origin 
complicates the interpretation, but this regional contrast may be useful in combination with other 
ventilation tracers. The tritium-helium age has also been used for dating shallow and intermediate water 
masses (e.g., Jenkins, 1998). As the tritium transient decays, the resolution of this technique is reduced, 
but it still has value in the Northern Hemisphere. Separation of the tritiogenic component from the 
volcanic helium-3 in the Southern Hemisphere and in deeper waters can also limit this method in certain 
areas. In general, the interpretation of tracer ages (whether tritium-helium,14C,CFCs, or SF6 derived) 
must be done within the context of transit time distributions and appropriately constructed models. Each 
tracer convolves with ocean ventilation and transport processes in unique ways and therefore 
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contributes complementary information. Thus there is value in coordinating tracer measurements on 
sections. 
 
Helium-3 on its own can be used for investigating upwelling (Klein and Rhein, 2004) or the ventilation of 
water masses that are high in natural helium-3. Helium-4 and neon are high in ice shelf waters and may 
be used for investigating AABW formation mechanisms (Huhn et al., 2008b). In addition, noble gases 
offer some potential for characterizing ice-water interactions (Hood et al., 1998; Postlethwaite et al., 
2005).  Because it is produced in situ, the accumulation of helium-3 produced by the decay of bomb-
tritium within the oceanic thermocline, particularly in the northern hemisphere, provides information 
complementary to the "ventilation tracers" such as tritium, CFCs and radiocarbon. For example, it has 
been used to diagnose decade time scale changes in water mass ventilation in marginal seas (e.g., 
Jenkins, 2008). The coupling between this helium-3 and its parent (tritium) makes it a useful diagnostic 
of the effective Peclet number of ocean ventilation (Jenkins, 1998), or within the context of transit time 
distributions, the ratio of the second to first moments. The efflux of tritiugenic helium-3 from the 
thermocline (or of volcanic helium-3 from the abyssal waters) provides another important diagnostic, as it 
traces the return pathway of remineralized nutrients to the euphotic zone, providing a "flux gauge" to 
estimate regional-scale new production rates (e.g., Jenkins and Doney, 2003) and their possible 
variations (Jenkins, 2008). 
 
It has also become clear that many changes are driven by sub-decadal scale variability. Variations 
associated with climate modes can be expected to drive natural variability in ocean biogeochemistry 
(e.g., Jenkins, 2008), and Rodgers et al. (2009) have recently shown that it is also important to consider 
the potential impact of Rossby Waves on ocean biogeochemistry.  An understanding of the underlying 
processes controlling the higher frequency variations will be critical to reducing the uncertainties, and it 
will be critical to link both decadal and high-frequency hydrographic data with observations from other 
platforms, including time-series stations and the Argo program.  In addition, the close correspondence 
between satellite-derived sea-surface height variations and DIC inventories in the Indian Ocean offers a 
way by which remote sensing measurements may help reduce uncertainty in the detection of 
anthropogenic changes by identifying the component of the measured changes that are due to natural 
variability in ocean circulation. 
 
2.4 Quantifying transports   
 
Full-depth, trans-oceanic hydrographic sections provide the necessary data for estimates of ocean 
transports of heat, freshwater, and other properties on basin to global scales (Fu, 1981; Wunsch et al., 
1983). Obtaining these estimates globally and improving them (albeit from a mostly steady-state 
circulation perspective) was a major goal driving the WOCE global hydrographic survey. Related goals 
included obtaining water mass formation rate and flow path estimates.  More recently, work has focused 
on assessing temporal variability of transports and inventories of seawater properties, including carbon 
system and other biogeochemical parameters (see section 2.3 for additional information). 
 
While the vertical shear of the component of horizontal velocity perpendicular to each station pair of a 
hydrographic section is straightforward to calculate from geostrophy, determining the absolute velocity 
field to sufficient accuracy for transport estimates is more problematic. Shipboard and lowered Acoustic 
Doppler Current Profiler (SADCP and LADCP) data are complementary to hydrographic measurements. 
The combination of all three provides the best constraints on measured transports.  Both LADCP and 
SADCP data can be used to reference geostrophic current estimates and to quantify ageostrophic flow, 
but they have different strengths and weaknesses.  SADCP sampling (continuous between stations) 
matches the geostrophic calculation (which is an average between stations), but covers only the upper 
part of the water column.  LADCP sampling (full-depth profiles on station) does not match the 
geostrophic calculation in the horizontal, but it provides an accurate measurement of the barotropic 
velocity at each station.  LADCP data can resolve complex velocity structure near bottom topography, 
and near the equator where synoptic geostrophic calculations are useless.  Both methods provide 
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context for the hydrography by showing the along-track as well as the cross-track components of the 
synoptic velocity field. 
 
ADCP measurements have contributed to our understanding of ocean transports and processes on a 
wide variety of scales.  Analysis of SADCP has revealed the deep penetration of wind-driven 
ageostrophic flow at low latitudes (with implications for meridional heat and other property fluxes) in all 
three major oceans (Chereskin and Roemmich, 1991; Wijffels et al., 1995; Chereskin et al., 1997), with 
the largest influence in the Indian Ocean, due to the seasonal monsoons (Chereskin et al., 2002). 
Decadal variability in large-scale atmospheric forcing, such as indicated by variations in the SAM, implies 
variability in the Ekman transport on similar time scales. Direct estimates are essential in resolving the 
Ekman contribution to property transports, constraining relative transport estimates, and providing direct 
estimates of boundary current transports (e.g. Beal et al., 2003). In addition, the absence of a level of no 
motion (the tendency of the near-bottom flow to resemble a weaker version of the shallow currents) has 
been demonstrated in many high-latitude regions such as the Subantarctic Front in the Pacific (Donohue 
et al., 2001) and the Bering Sea (Chen and Firing, 2006).  ADCP measurements have also revealed 
previously unsuspected currents, leading to substantial revision of basin-wide meridional transport 
estimates (Beal and Bryden, 1999; Donohue et al., 2000).  Aided by bottom tracking, LADCP 
measurements have revealed in detail the bottom-intensified outflows from the Weddell Sea (Gordon et 
al., 2001).  Diffusivities inferred from lowered ADCP shear and CTD strain profiles (Sloyan 2005; Kunze 
et al., 2006) can provide additional constraints for models. 
 
LADCP and SADCP data help to constrain transport estimates, but adjustments are still necessary to 
overcome noise and temporal aliasing and to balance mass or other constraints.  The ocean box inverse 
method (Wunsch, 1978) allows adjustments to the velocity field subject to dynamical, mass balance, 
property transport, and other constraints.  Application to single sections has led to insights into basin-
wide transports including nutrients and carbon (e.g. Bryden et al., 1991; Robbins and Bryden, 1994; 
Macdonald et al., 2003), with coast-to-coast sections enabling various constraints such as mass or salt 
conservation (Tsimplis et al., 1998; Lherminier et al., 2007) to be applied to adjust measured velocities, 
such as from vessel-mounted ADCPs (Saunders and King, 1995) or lowered ADCPs (Joyce et al., 
2001). Schott et al. (2006), and Dengler et al. (2006) provide examples how ADCP data from repeat 
hydrography sections can be combined with mooring data to infer the transport of the Deep Western 
Boundary Current and its variability. 
 
Analysis of multiple zonal, and sometimes combined zonal and meridional sections has yielded basin 
and regional estimates of property transport, divergence, mixing and air-sea flux with estimates of 
uncertainty (e.g. Holfort et al., 1998; Sloyan and Rintoul, 2000; Ganachaud and Wunsch, 2002, 2003; 
Alvarez et al., 2002). The careful analysis of global hydrography and circulation (including the WOCE 
transects) by Reid (1994, 1997, 2003) has also provided basin-scale meridional-vertical overturn (Talley, 
2003; Talley et al., 2003) and freshwater transport (Talley, 2008) estimates. 
 
However, temporal aliasing of hydrographic sections introduces error into any steady-state analysis 
(e.g., Thurnherr and Speer, 2004).  Ocean data assimilation, in which an ocean general circulation 
model and oceanographic data are brought to consistency with error estimates, addresses this problem 
(e.g. Yu and Malanotte-Rizzoli, 1998; Stammer et al., 2002).  The Global Ocean Data Assimilation 
Experiment (GODAE) has fostered substantial progress in this regard.  ECCO (Kohl et al., 2007) and K7 
(Masuda et. al., 2006) are two examples of recent efforts.  Both assimilate Argo and hydrographic data 
from WOCE and CLIVAR, as well as reanalysis surface flux products. 
 
Shifts in the meridional overturning circulation (MOC) have been hypothesized to be key processes in 
triggering past abrupt climate changes (e.g., Broecker, 1998), and are predicted for the future (see the 
4th Assessment Report of the Intergovernmental Panel on Climate Change). A regional array at 26.5°N in 
the North Atlantic (Cunningham et al., 2007; Kanzow et al., 2007) has been monitoring the strength and 
vertical structure of the Atlantic MOC since 2004, where the mid-ocean flow is monitored by an array of 
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moored instruments along the section. The basic principle of the array is to estimate the zonally 
integrated geostrophic profile of northward velocity on a daily basis from time-series measurements of 
temperature, salinity and meridional velocity throughout the water column at the eastern and western 
boundaries and on either side of the mid-Atlantic Ridge. Hydrographic sections at 5-year intervals are a 
key component of the monitoring strategy providing independent estimates of the array and the basin-
wide property distributions necessary for flux studies (Jayne and Marotzke, 2001). It is envisioned to 
extend this type of monitoring to other key latitudes in the Atlantic and hydrographic sections will be 
central to monitoring strategies there.  
 
Hydrographic sections are at present the only direct measurements monitoring global changes in deep 
ocean transports and properties like a possible decadal slow-down in the southern ocean limb of the 
MOC suggested in the North Pacific (Kouketsu et al., 2009) and North Atlantic (Johnson et al., 2008b).  
Combination of the data with improved assimilative ocean models should help to detect any future shifts. 
We require a set of benchmark observations of the MOC that can provide the necessary full depth, 
continent-to-continent dynamical constraints for verifying assimilations, coupled climate model hindcasts 
and for ocean initialization for climate forecasts. 
 
Emerging issues and implications for future sampling:  From the WOCE and CLIVAR surveys, we have 
learned that observed changes in ocean circulation and transport are not driven simply by anthropogenic 
forcing but also by natural interannual variations or long-period oscillations.  It may require many surveys 
over many decades to detect these trends with confidence.  Where we have 50-year data sets, we 
observe oscillations rather than trends; for example, the 25-year freshening/salting of Indian Mode 
Waters.  Annual and sub-annual time series in key regions will provide critical links to the repeat 
hydrography program.   
 
To accurately calculate the horizontal density gradients, the spatial variation of the composition of 
seawater needs to be taken into account. This is now possible using the new Thermodynamic Equation 
of Seawater – 2010 (TEOS-10). In June 2009 the Intergovernmental Oceanographic Commission (IOC) 
of UNESCO endorsed TEOS-10, which provides accurate algorithms for calculating density, potential 
enthalpy (i.e., “heat content”) and many other thermodynamic properties of seawater.  As of June 2009, 
TEOS-10 has superseded the 1980 UNESCO / ICES / SCOR / IAPSO / Equation of State.  The new 
algorithms are served from the Web site www.TEOS-10.org.  Part of the new thermodynamic treatment 
of seawater involves adopting a new salinity variable, Absolute Salinity.  It is important to note that while 
Absolute Salinity is now the approved salinity variable for publishing in marine science, it is Practical 
Salinity (PSS-78) that must be reported to national databases. This is because Practical Salinity is the 
measured salinity variable (rather than being a calculated variable), and it is very important to maintain 
continuity in what is stored in databases.  This way of handling salinity is analogous to the present 
handling for temperature; in situ temperature is measured and reported to national data centers, but 
research and publishing use a different temperature variable, namely potential temperature or (with 
TEOS-10) conservative temperature.   
 
The algorithm that calculates Absolute Salinity from knowledge of the Practical Salinity and the spatial 
location should be refined on the basis of more ocean measurements.  The collection of between 20 and 
100 seawater samples from each long repeat hydrography section would, over several years, build up a 
valuable database for this purpose.   
 
2.5 Evaluating ocean models  
 
Ocean general circulation models (OGCMs) and coupled climate models are being used to assess the 
past, present and future state of the ocean. These models are increasing steadily in their complexity and 
resolution, as well as the number of processes that they represent. In recent decades, it has become 
common practice to couple biogeochemical and ecological models to the physical components of the 
OGCMs and climate models in order to investigate the coupling between systems. Although based on 
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fundamental equations of physics and chemistry, these models need to make several assumptions and 
simplifications in order to be able to solve these equations numerically. Key issues involving 
uncertainties in surface forcing (momentum, heat, and freshwater) and sub-gridscale dynamics such as 
diapycnal and mesoscale mixing. The problems are even more significant for biogeochemistry and 
ecology, which are not well constrained from basic principles. As a result, all models require careful 
evaluation with observations before they can be used with confidence to assess past or future states of 
the ocean system.  
 
Interior ocean observations of temperature, salinity, and density, together with satellite measurements of 
sea-surface height, have been indispensable as metrics for assessing the quality of ocean general 
circulation models (see e.g., Pilot Ocean Model Intercomparison Project; Sloyan and Kamenkovich, 
2007; Doney et al., 2007). But these constraints alone are not necessarily sufficient to clearly distinguish 
among different model solutions. Gnanadesikan (1999) showed, for example, that even models with very 
similar density structures can have vastly different rates of ocean circulation. Only tracers that contain 
age information, such as CFCs, radiocarbon, or tritium-helium, can be used to assess which of these 
solutions are more realistic. The impact of such constraints on the model-based estimation of the 
oceanic uptake of anthropogenic CO2 was demonstrated by Matsumoto et al. (2004), who showed that 
only a handful of the OGCMs that participated in the Ocean Carbon Cycle Model Intercomparison 
Project (OCMIP) were able to simultaneously model (within the uncertainties of the data) the ocean 
interior distribution of CFCs and radiocarbon. The models that were consistent with that constraint had a 
much narrower range of simulated uptake of anthropogenic CO2 than the whole range of models, 
suggesting that multiple tracer constraints are essential for model validation. 
 
Ocean interior observations of nutrients, inorganic carbon, oxygen, and other biogeochemically relevant 
chemicals have also proven to be invaluable constraints to evaluate coupled physical, biogeochemical, 
and ecological models (e.g. Najjar et al., 2007). It is decidedly difficult for such models to simultaneously 
fit all observations, and Najjar et al. (2007) demonstrated, for example, that the models that fit the interior 
ocean distribution of radiocarbon relatively well, were generally also more consistent with the distribution 
of other tracers.  
 
Ocean interior observations are an important source of information for the evaluation of ocean models, 
especially when these models include biogeochemical and ecological components. While the focus in 
the past has been on the evaluation of the mean state of the ocean, one can expect that ocean interior 
observations will be used increasingly to also evaluate changes in the model simulated state through 
time; for example, are models able to simulate the response of the ocean interior distribution to important 
changes in surface forcing, such as forcing associated with long-term trends in the Southern Annular 
Modes (e.g. Lovenduski et al., 2008).  
 
Emerging issues and implications for sampling:  Ocean interior observations, particularly tracers that 
contain age information, are critical for evaluating OGCMs.  As these models grow in complexity and 
include ecosystem components, the full suite of carbon and biogeochemical measurements will be 
needed.  Bottom and deep-water production are not yet sufficiently realistic in ocean data assimilation to 
unchain the models from restoration to climatology in the deep ocean (Macdonald et al., 2009).  As 
progress is made on improving models, repeat hydrographic measurements will become increasingly 
useful to assimilation analyses. Since repeat hydrography at present provides the only global sampling 
of the bottom half of the ocean, and the only global subsurface biogeochemical measurements, it will be 
required to constrain the assimilated deep transports of heat and freshwater, as well as those of 
biogeochemical properties throughout the water column. 
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2.6 Providing a platform for testing new shipboard sensors  
and providing an opportunity to deploy and evaluate other platforms  

 
The repeat hydrographic program offers a unique platform for testing new instrument design and 
provides the highest quality data streams available for intercomparison and calibration.   
 
The Argo float program routinely uses the high-quality salinity data from repeat hydrographic sections, 
carefully calibrated with collected water samples and standard seawater, to provide a reference for the 
CTD data from Argo floats, and are heavily relied upon in the delayed-mode quality control of Argo floats 
(e.g. Wong et al., 2003).  This calibration using the repeat hydrographic salinity data stream is essential 
because these floats only undergo calibrations prior to deployment and are often operating in the field for 
years. 
 
Temperature data from repeat hydrography are used systematically to test instruments such as the 
expendable bathythermograph (XBT) deployed on merchant vessels as part of the Ship of Opportunity 
Program (SOOP) (Goni et al., 2010).  Through comparison with high-quality data, Wijffels et al. (2008) 
and Gouretski and Koltermann (2007) note a systematic bias in XBT observations, suggestive of a fall 
rate error in the XBTs.   Testing for the possible mechanisms behind fall-rate errors has already begun 
on recent repeat hydrography cruises (e.g., along P18 and P15S).  The global coverage and availability 
of high-quality intercomparison data are invaluable to determine if manufacturing changes in instrument 
systems are introducing erroneous trends or signals.  
 
The continuing development of new sensors and instruments provides opportunities to extend the suite 
of parameters measured by the repeat-hydrography program. For example, full-depth un-tethered 
microstructure profilers that have recently become commercially available can be deployed with 
CTD/LADCP packages to obtain simultaneous profiles of hydrography, velocity and rate of kinetic-
energy dissipation and diapycnal diffusivity, while requiring only modestly increased on-station times 
(e.g., St. Laurent and Thurnherr, 2007). The coverage of the repeat hydrography program could thus 
allow quick and efficient collection of a near-global data set of mixing in the ocean. 
 
In addition to providing a high-quality platform to calibrate and test new instrumentation, the repeat 
hydrographic sections, designed for global coverage, often cross portions of the ocean that are 
infrequently visited by other vessels. This fact alone has resulted in this program becoming a major 
source for deployments of autonomous instrumentation aiming for global coverage, most notably Argo 
floats and surface drifters.  Without these cruises, Argo floats and drifters would either have to charter 
dedicated ships (aircraft) - a more costly proposition - or tolerate gaps in their global array.  
 
2.7 Underway measurements 
 
Repeat hydrographic cruises are unique in their spatial extent, spanning basins, and in their coverage of 
data-sparse regions.  The ships offer the opportunity to use platforms with power, laboratory space, and 
marine technicians and scientists who can attend measuring systems.  Further, these cruises will have 
associated cruise documentation and data archiving, so that the quality and permanence of surface 
observations will garner attention and increase their use in cross-disciplinary applications. Although the 
current system of Data Assembly Centers (DACs) (see section 4) does collect some underway data in a 
systematic manner, the DACs are not appropriately resourced to handle the full suite of underway 
variables currently measured on research cruises.  This will be a major goal for the next decade of 
hydrography.    
 
Typical atmospheric underway measurements include winds, humidity, air temperature, pressure, and 
precipitation, radiation measurements including direct solar (shortwave) and downwelling longwave (from 
clouds and sky). Occasionally vessels deploy net, ultraviolet, and photosynthetically active radiation 
(PAR) and skin temperature sensors. Ocean measurements from continuous water sampling systems 
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include sea surface temperature, salinity, and in some cases fluorescence and dissolved oxygen. 
Additional underway measurements may include atmospheric and oceanic pCO2 (Schuster et al., 2010), 
total inorganic carbon and noble gases, direct fluxes (Fairall et al., 2010), radiative SST, currents (from 
SADCPs), and bathymetry.  See Smith et al. (2010) for a complete overview. 
 
Underway measurements from the hydrographic survey can complement the underway network on 
commercial ships (see Goni et al., 2010) in several areas outlined below. 
 
Climate quality surface meteorology and air-sea fluxes of heat, freshwater, momentum  
High quality in-situ observations of surface meteorology and the air-sea fluxes of heat, freshwater, and 
momentum have high value, and commercial vessels are beginning to measure gas and particle fluxes 
in a more routine way, which could also benefit from validation by research cruises.  Such observations 
are needed for algorithm development and, if delivered in real-time, could be used to validate fields used 
to specify the surface forcing of the ocean, including the surface fields from Numerical Weather 
Prediction (NWP) models, from Atmospheric General Circulation Models (AGCMs), from remote sensing, 
and from blended products.  They may also be used as independent, high-quality in situ observations to 
anchor and/or gauge the accuracy of these fields. 
 
A number of observing programs have evolved over the past decade that focus on automated systems 
for oceanic and atmospheric measurements (Smith et al., 2010). To date, these programs have focused 
on data collection and standardization of quality control, instrument exposure, and metadata.  Many 
underway measurements focus on air-sea fluxes and these activities are described in Fairall et al. 
(2010).  It is worth noting that efforts are being made to consider the flow distortion by the hulls and 
superstructure of the research vessels and that these have been accompanied by efforts to use 
additional portable meteorological and flux systems to guide improvements to the placement of sensors 
and research vessels and thus in the quality of the data.  With such ongoing attention to the performance 
of underway systems on the research vessels conducting the repeat hydrographic lines, there is the 
promise of high observational quality. 
 
This quality can be further ensured by making use of the fact that the research vessels have long-lived 
installations where there is merit in dedicating time to the proper cabling, both to deliver power to 
sensors as well as to collect data. With the availability of power, active ventilation of air/humidity sensors 
should be implemented.  Active ventilation and heating, as needed to cope with icing and/or dew, should 
be implemented on incoming shortwave and longwave sensors.  If possible, radiation sensors should be 
roll-stabilized.  Automated surface wave observations (e.g., from ship-borne wave records or wave 
radars) would enhance the utility of the surface meteorological and air-sea flux sensors. 
 
Where repeat hydrographic cruises go to regions with either very low winds speeds (less than 3 m/s) or 
high wind speeds (greater than 15 m/s), consideration should be given in planning these cruises to 
include a research group able to make turbulent flux measurements. These high-value data from 
undersampled wind regimes will allow refinement of flux methods. 
 
Underway oceanographic and meteorological sampling  
Thermosalinographs should be operated and attended to maintain quality, including annual factory 
calibrations following established international protocols (Smith et al., 2010; Fairall et al., 2010). 
Underway fluorescence should also be measured.  Underway ADCP sampling yields velocity profiles in 
the upper ocean (100-1000m, depending on the instrument type used).  Where possible, consideration 
should be given to use tethered XCTDs, XBTs, and/or similar techniques to obtain the thermohaline 
structure of the upper ocean to accompany the underway ADCP data.  This will not only quantify the 
depth and spatial variability of the mixed layer but can also be used to yield information on vertical 
mixing near the sea surface.  As sampling methods advance, underway sampling should consider 
sampling of DMS (dimethyl sulfide), total inorganic carbon, total alkalinity, pH (Wang et al. 2007), and 
O2/Ar by mass spectrometry (Cassar et al., 2009).  
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It would be valuable to use repeat hydrography surveys to sample the lower atmosphere in data-sparse 
regions.  Smith et al. (2010) address the interest to develop and/or improve underway sensors for cloud 
identification, waves (Swail et al., 2010), shipboard radar (for wave parameters and precipitation), and 
surface radiation.  
 
Carbon dioxide 
Surface pCO2 measurements from hydrographic cruises can serve as reference data since 
measurements are made in a controlled environment with comparison to other carbon parameters.  
High-quality surface pCO2 measurements, when combined with other surface and sub-surface 
parameters, can improve mechanistic understanding of processes controlling surface CO2.  As with 
surface meteorological fluxes, hydrographic cruises cover regions of the ocean never sampled by 
commercial vessels or moorings, and can add invaluable insights and constraints on surface CO2 
variability. Hydrographic cruises also offer a unique platform for the development of robust and 
automated sensors for other carbon system parameters.  The lack of such sensors is currently a major 
limitation in developing an adequate observing capacity for surface CO2, air-sea CO2 flux, and ocean 
acidification (Schuster et al., 2010). 
 
 

3.  Strategy  
 

3.1 Temporal and spatial sampling 
 
In developing an integrated and interdisciplinary framework for ship-based repeat hydrography, it is 
important to consider the time scales of variability of the phenomena under investigation. For example, 
repeat occupations at decadal intervals are mostly appropriate for the characterization of the uptake of 
transient tracers, such as bomb radiocarbon, as these inventories are expected to change smoothly with 
time. For the detection of changes in the anthropogenic carbon inventories, one is challenged by two 
opposing constraints. One the one hand, the limits for the detection of changes in anthropogenic CO2 are 
8-10 years for most regions (see Levine et al., 2008), so that a decadal repeat frequency seems 
adequate. On the other hand, changes in the natural carbon cycle occur on shorter temporal intervals, 
requiring higher frequency sampling. Since both (natural and anthropogenic) signals are present in the 
measured dissolved inorganic carbon fields, one would therefore infer a need for higher frequency 
sampling. However, the availability of ancillary observations, such as sea-surface height, may 
substantially relax this requirement, so that an approximate decadal repeat frequency could be sufficient 
for determining the changes in the oceanic inventory of anthropogenic CO2.  A more detailed 
assessment requires a dedicated sampling study.  For other goals, a decadal survey is clearly less 
appropriate. For example, the quantification of transport changes requires higher frequency sampling 
since it is known to have substantial interannual variability. While the Argo program will resolve some of 
these issues for physical variables in the upper 2 km, it does not currently sample deeper than 2 km or in 
areas with ice cover. Another factor is the need for approximate synopticity on basin scales and the 
constraint that cruises are carried out on a rolling basis, based either on funding cycles, ship schedules, 
or a deliberate strategy of trying to carry out several cruises each year in order to capture special events 
that might occur.  A high-frequency survey in addition to the decadal survey would be effective to reduce 
the biases in some regions, such as the western boundaries, where the basin-scale dynamic response 
signals are strong, and high-latitude areas where property concentrations/inventories are affected by 
short-term climate variations through water mass formation. 
 
Taking into account these considerations, two types of surveys are presently required to meet scientific 
objectives: (1) decadal surveys and (2) a sub-set of the decadal survey lines sampled at high frequency 
(repeats every 2-3 years), ideally, repeats of lines sampled in the past decade. To capture the change 
within a quarter or shorter period of the decadal time scale, the decadal repeat survey requires full basin 
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synopticity over a < 3 year period (beginning in 2012). Both surveys should be initiated no later than 
2012 to ensure continuity following the termination of the current CLIVAR survey. 
 
This level of synopticity may become less necessary as assimilation techniques develop, but is currently 
necessary to distinguish between spatial and temporal variability. The Argo program provides a crucial 
complement to hydrographic section data, a synergy that has not yet been fully exploited. With the 
logistical difficulties of obtaining large-scale synoptic snapshots of basin dynamics and properties, it is 
imperative to develop methods of normalizing section data to a common year, and in some cases, over 
10-year scales, without introducing significant biases. These techniques do not yet exist, and use of 
high-frequency Argo data and data assimilation methods will be increasingly important to develop the 
required methods. 
 
The survey to begin in 2012 will take into consideration the sampling schedule carried out during the 
CLIVAR program in order to ensure decadal repeat frequency for each basin as much as possible.  For 
example, the Atlantic was sampled most densely between 2003-2005, the Pacific between 2005-2007, 
and the Indian in 2007-2009, implying that the first post-CLIVAR survey should start with the Atlantic 
from 2012-2014, the Pacific from 2015-2017, and the Indian from 2017-2019. 
 
Spatial sampling should follow past surveys, with major efforts carried out in the Atlantic, Pacific, and 
Indian oceans, with the Southern Ocean integrated as part of the other basins. The Arctic is of increasing 
importance and should be emphasized, either as a separate effort or a coordinated effort from Atlantic 
and Pacific basin efforts. 

 
Ideally, sections should extend from coast to coast, or coast to ice, follow standard WOCE lines with 
small modifications as necessary for territorial waters, ice coverage, etc., and maintain the standard 
WOCE sampling strategy.  
 
Horizontal resolution:   

• Physical measurements: nominal 30 nautical mile spacing with higher resolution in regions of 
steep topography and boundary currents. 

• Carbon measurements:  carbon and tracers at 60 nautical miles or better. 
 
Vertical resolution: full water column.   
 
It is also recognized that several open-ocean hydrographic programs exist that do not meet the sampling 
resolution criteria outlined by the GO-SHIP Panel or are one-time hydrographic surveys with no 
commitment for repeats.  As with the WOCE programme, which was composed of both repeat sections 
and one-time surveys, the GO-SHIP Panel recommends that all hydrographic sections meeting minimum 
criteria (see below) be included as part of the global hydrographic program.  Broad participation in the 
hydrography program will facilitate standardization of methods, data management and sharing, and 
integration of all appropriate ocean interior data in data synthesis activities.    
 
3.2 Core variables 
 
For the decadal survey, the core program lines should measure  
 temperature, salinity, and pressure  
 oxygen, phosphate, silicate, and separate measurements of NO2 and NO3 if possible; otherwise, NO2 

+ NO3 (with clear reporting of what was measured)  
 at least 2 carbon parameters (e.g., DIC, Alkalinity, pCO2, pH), where DIC and Alkalinity are the 

preferred pair, but spectrophotometric pH is a useful 3rd parameter because of high measurement 
precision and growing interest in ocean acidification.   
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 carbon isotopes (13C, 14C), chlorofluorocarbon tracers (CFC-11 and/or 12) and SF6; tritium and 
helium-3 should also be measured on key sections, including meridional sections P10, P16, P18, 
I06S, I08, I10, A16, A22, A20, and zonal sections I05, P06, P04, and A24). 

 shipboard and lowered ADCP  
 

Salinity and oxygen should also be measured on every bottle.  Also recommended are organic carbon 
parameters (POC, DOC) and underway surface measurements (including pCO2, pigments, and related 
biological parameters at the surface). By 2012, microstructure measurements from profilers may also be 
considered for routine application during the next decade of hydrography.  A certain subset of trace 
elements and isotopes should be included in future high-frequency repeat sections, particularly for 
parameters to deduce atmospheric mineral dust deposition to the surface ocean in key areas. 
 
For bio-opical measurements, GO-SHIP endorses the recommendations of the International Ocean-
Colour Coordination Group, including the following parameters: 
 

Instruments to be added to a profiling CTD: 
• Fluorometer to measure chlorophyll fluorescence 
• Transmissometers and/or light-scattering sensors and nephelometers to measure particle 

beam attenuation coefficient  
• PAR sensor (where possible) 

 
Water samples collected for the following measurements: 

• Chlorophyll-a (Turner Fluorometer)  
• HPLC pigments  
• Phytoplankton absorption  
• CDOM (desirable measurement)  
• Flow cytometry  

 
Many of the above samples can be stored in liquid nitrogen for later analysis back in the laboratory. 
 
On deck measurements: 

• Continuous recording of incoming photosynthetically-active radiation (PAR), using a PAR 
sensor with a data logger (automatic).  

• Measurements of spectral reflectance using a hyperspectral hand-held radiometer.  

Several ancillary observations should be made whenever possible. The repeat hydrographic ships 
should make surface meteorological observations, following the guiding principles of the WOCE 
hydrographic program described in the handbook by Bradley and Fairall (2006).  The observations 
should include wind speed and direction (relative to the ship and corrected to absolute), air temperature 
and humidity, sea surface temperature, rainfall, barometric pressure, incoming shortwave radiation, and 
incoming longwave radiation. Several bio-optical measurements are also highly desirable, including 
profiling underwater spectral-radiometer measurements and photosynthesis-irradiance experiments.  
 
It is also suggested that each cruise should collect between 20 and 100 seawater samples (150ml plastic 
bottles) for the direct measurement of density in the laboratory, in order that the effect of the spatial 
variation in the composition of seawater can be estimated.  The 150ml bottles would be sent to a 
laboratory where their density (at the laboratory temperature and pressure) would be measured with a 
vibrating tube densimeter along with the sample’s Practical Salinity. The same laboratory procedure 
would be applied to some ampoules of standard seawater as a check on the laboratory procedure and 
as a check of the stability of the standard seawater ampoules.   
 
For the high-frequency/other sustained repeat lines, T, S, O2, and nutrients should be measured as the 
minimum core variables, as well as any other variables useful for understanding subdecadal-scale 
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variability.  The target vertical spacing for these lines can be selected according to the water masses 
under investigation.  However, during the decadal survey period in each ocean basin, the high-frequency 
lines should be carried out using the same specifications as the decadal survey in order to construct a 
uniform data set over the whole basin. 
 
For one-time or non-core survey lines, sections should be open-ocean, adhere to the data sharing policy 
(below), and follow the criteria for high frequency lines.   
 
3.3 Sustained repeat lines 
 
The table and map below outlines the repeat sections felt to be most critical for the decadal survey (solid 
lines, black text) and the high-frequency repeat lines (dashed lines, red text).  Many of the lines, both 
decadal and high-frequency, represent sections that already have on-going national commitments for 
implementation.  Several of the lines represent sections that are important for science goals, although 
may not be possible owing to problems with territorial waters or ship resources.  The lines shown here 
are the minimum thought required for a global periodic survey.  Additional lines would help to meet many 
other program goals. 
 
The program design calls for zonal sections at mid-latitudes in all the major ocean basins, locations 
where the ocean transports of heat and carbon are near their maximum.  Zonal lines in the sub-polar 
regions and the tropics are designed to capture maximum freshwater transport by the ocean.  The 
meridional lines, at least one through each set of ocean basins, are ideal for inventory studies of ocean 
properties such as heat and CO2.  Sections also cross the Antarctic Circumpolar Current at various 
chokepoints around the globe to facilitate studies of inter-ocean transports, including both limbs of the 
meridional overturning circulation.  In addition, sections around Antarctica and in the northern North 
Atlantic Ocean allow monitoring of outflows of bottom and deep water just downstream of their formation 
regions, as well as upwelling of warm deep waters that may be critical to understanding changes in the 
cryosphere.  Finally, some Arctic sampling is essential, as recent changes there are dramatic. 
 

Atlantic Pacific Indian Arctic 
A22 and A20 P01 I09 N and I08 S Barrow to Svalbard 

line (done on the 
Healy and Oden in 
2005) 

A16 N and S P02  I09 S 75 N 
A13.5 P04 I07N RUSALCA 
A21 P13 (maybe 14) I05 Davis Straits 
A01W P09 / P10  I06S Barrow Straits and 

Nares Straits 
AR07E (A01E) P06 I03  
A24N / A05 SO4P (modified / 

Ross Sea) 
I10 (if possible)  

A02 P15 S (Equator to 67 
S when possible) 

S04I to I09S (needs to 
connect to S4P) 

 

A10 P18 I01 W and E  
A12 / SRO4 (Weddell 
Sea line) 

P16 N and S   

A25  (OVIDE) SR03   
 P14N (Aleutians and 

up) 
  

 
Table 1.  Recommended hydrographic sections for the sustained decadal survey (black text) and high-frequency repeat lines 

(red text). 
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Figure 4.  Recommended hydrographic sections for the sustained decadal survey (solid lines) and high-frequency repeat lines 

(dashed lines). 
 
3.4  Quality assurance practices 
 
To detect statistically significant decadal changes in any property field requires high- quality data. Not 
only are high precision and accuracy necessary, but also knowledge of the uncertainty in the reported 
numbers. As part of the GO-SHIP effort to reach the highest possible data quality, the 1994 WOCE 
hydrographic program manual is being revised and should be published in early-2010.  These references 
will provide details of best practice for each of the variables to ensure comparability of measurement 
programs. Similarly, the use of certified reference materials (CRMs) is very helpful in improving data 
quality and should be used as frequently as necessary to reach the highest possible data quality. For 
alkalinity and DIC the use of CRMs is now a common practice that has increased the quality of 
measurements significantly. Much effort is being put into the development of CRMs for nutrients 
(Aoyama et al., 2009).  Efforts to provide CRMs for other parameters, such as oxygen and pH are 
underway. Using these materials on all repeat hydrography cruises will solve a key problem by enabling 
the relative accuracy of the measurements to be maintained between cruises. 
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4.  Data Management, Sharing, and Product Development 
 

The general strategy proposed for data management is to better support and coordinate the existing 
data assembly and archive centers, to develop new tools and centers to manage the increasing variety 
of properties observed on hydrographic lines, to coordinate data management activities with those of the 
operational programs such as Argo and OceanSITES, and to improve technology and data policies to 
release data in a more timely manner.  
 
It is also proposed to develop a single international information center for repeat ship-based hydrography 
that will serve as a central communication and coordination forum and include a portal or directory to the 
data assembly centers. 
 
4.1 Data sharing and release policy 
 
While it is important to protect individual scientific interests and investment of effort by investigators, 
evolving towards a more operational system will be essential for justifying a sustained program with 
national funding support, and closer coordination with the operational programs may require some 
changes to data-release practices. For example, in the next-generation hydrographic program, it may be 
possible to implement real-time or near real-time CTD data release using Argo technology.  Near real-
time data release of underway carbon and other semi-automated biogeochemistry measurements may 
also be possible through closer coordination with the Global Ocean Surface Underway Data Project 
(GOSUD) and the Shipboard Automated Meteorological and Oceanographic System (SAMOS) 
programs, which have developed a data management system for real-time surface temperature and 
salinity data from research ships.   
 
At present, the GO-SHIP panel recommends the following data-release guidelines: 
 

• Preliminary dataset released within 6 weeks (e.g., all data measured on the ship) 
• 6 months for final physical data 
• 1 year for final data of all other variables (except for isotopes or tracers with shoreside analysis 

where 1 year is difficult). 
 
The relatively rapid release of data is motivated by their usefulness for climate studies, which are of 
increasing societal importance.  Some countries are already following these guidelines.  However, to 
facilitate rapid release of data by all participants, a system should be developed to appropriately 
recognize the efforts of data contributors.  While having data contributors participate in synthesis 
activities for co-authorship could resolve some issues of ownership, ultimately the international research 
community needs to evolve to the point that data are released as soon as possible without waiting for a 
2-3 year synthesis activity. Establishing community-wide practices to standardize how to appropriately 
acknowledge data contributors may help some participants to accelerate their current data-release 
practices.  One solution that should be adopted immediately is to publish the Final Cruise Reports in the 
journal Earth System Science Data (ESSD) with all participating PIs as authors. 
 
4.2   Data assembly and archive centers 
 
Several data centers currently provide data management services for particular types of hydrography 
data.  However, to meet the needs of a sustained global program, data assembly centers will need 
dedicated staff time and new funding, and will need to be increasingly integrated with the data 
management systems for other sustained programs such as Argo and OceanSITES.  The challenges of 
such integration, both operationally and financially, should not be underestimated, but without this level 
of support for the data centers, a globally coordinated hydrography program with regular deliverables will 
not be possible. 
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The list below provides information about the mandate of each DAC during the CLIVAR program. 
 
1.  CTD and bottle data 
 

CLIVAR and Carbon Hydrographic Data Office 
Principal Contact:  Jim Swift, Director 
Email: jswift@ucsd.edu 
Web site: http://cchdo.ucsd.edu/index.html    
Responsibilities :  The fundamental role of the CCHDO at the University of California San Diego 
Scripps Institution of Oceanography is to ensure that WOCE Hydrographic Program data, 
CLIVAR repeat hydrography data, global ocean carbon hydrographic data, and other similar 
CTD/hydrographic data and their associated documentation are prepared and made available for 
both immediate use and a long service life.  The CTD, hydrographic, and tracer data used in 
large-scale ocean circulation studies are brought together, verified, corrected for content and 
format errors, assembled with relevant documentation, and carefully prepared for dissemination 
and archive.  CDIAC carries out all data management functions for CO2-related data and the 
CCHDO handles these functions for the CTD, hydrographic, and tracer data. The CCHDO 
merges into its data files the latest versions of the CO2-related data as received from CDIAC.  

 
2.  Discrete Carbon Data 
 

Carbon Dioxide Information Analysis Center - Ocean CO2 (World Data Center for Atmospheric 
Trace Gases) 
Principle Contact: Alex Kozyr 
Email: kozyra@ornl.gov  
Web site: http://cdiac.esd.ornl.gov/oceans/home.html 
Data:  http://cdiac.esd.ornl.gov/oceans/RepeatSections/clivar_introd.html 
Responsibilities:  Since 1993, CDIAC has been serving the ocean scientific community as the 
central repository for the carbon dioxide data measured on the WOCE/JGOFS cruises. CDIAC 
receives WOCE hydrographic and tracer data from the WHPO. Thus all US and most foreign 
WOCE hydrographic, chemical and carbon data are available now through the CDIAC Ocean 
data web page. Most of the data at CDIAC are available as published and electronic Numeric 
Data Packages (NDPs). The CDIAC_WOCE Ocean Data View (ODV) Collection that includes all 
WOCE sections with CO2 measurements as well as hydrographic and nutrient measurements is 
now available through the CDIAC Web site. CDIAC communicates frequently with the scientific 
measurement groups and individual PIs. This has helped CDIAC build the largest atmospheric 
and oceanic carbon data sets in the world, with the highest quality data. As the new carbon data 
measurements will be measured by groups on the repeat hydrographic sections, CDIAC is ready 
to continue its support to the CCHDO in CO2 data processing and archival.  CDIAC and the 
CCHDO cooperate closely: CDIAC receives many CO2-related data files directly, and also some 
from the CCHDO. CDIAC carries out all data management functions for CO2-related data and the 
WHPO handles these functions for the CTD, hydrographic, and tracer data. The WHPO merges 
into its data files the latest versions of the CO2-related data as received from CDIAC. CDIAC 
uses the latest versions of the hydrographic data in its files. The CCHDO is the primary provider 
of hydrographic data to NODC/WDC-A. Both facilities distribute data in formats agreed to be their 
user communities. 

 
3.  Shipboard ADCP  

 
ADCP Data Archive at the Japan Oceanographic Data Centre (JODC), Japan 
Principal Contact: Yoshiharu Nagaya 
Email: ynagaya@jodc.go.jp 
Web site: http://www.jodc.go.jp/goin/clivar.htm     

http://www.jodc.go.jp/goin/clivar.htm
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Data: http://jdoss1.jodc.go.jp/cgi-bin/2001/feti_vector 
Responsibilities: Shipboard ADCP data. The ADCP Data Archive at the JODC, together with the 
Hawaii Joint Archive for Shipboard ADCP, is co-responsible in seeking out CLIVAR principle 
investigators and data contacts for calibrated and quality-controlled shipboard ADCP datasets. 

 
and 

 
Hawaii Joint Archive for Shipboard ADCP, USA 
Principal Contact: Patrick Caldwell 
Email: Patrick.Caldwell@noaa.gov 
Web site: http://ilikai.soest.hawaii.edu/sadcp/clivar.html  
Data: http://ilikai.soest.hawaii.edu/sadcp/main_inv.html 
Responsibilities: Shipboard ADCP data. The Hawaii Joint Archive for Shipboard ADCP, together 
with the ADCP Data Archive at the JODC, is co-responsible in seeking out CLIVAR principle 
investigators and data contacts for calibrated and quality-controlled shipboard ADCP datasets. 

 
4.  Lowered ADCP   
 

LADCP Data Assembly Centre, LDEO, USA 
Principal Contact: Eric Firing, University of Hawaii 
Email: efiring@hawaii.edu 
Web site: http://currents.soest.hawaii.edu/clivar/ladcp 
Data:  
http://kage.ldeo.columbia.edu/SOURCES/.LDEO/.ClimateGroup/.PO/.LADCP/ 
Responsibilities: Lowered ADCP data from CLIVAR cruises (currently only US cruises using 
LDEO processing software). Discussions are on-going to determine if the US NODC could 
manage national and international LADCP data.  

 
5.  Surface Meteorology 
 

Surface Marine Meteorological Data Assembly Center, COAPS, FSU 
Principal Contact: Shawn R. Smith 
Email: smith@coaps.fsu.edu 
Web site: http://www.coaps.fsu.edu/RVSMDC/CLIVAR/  
Data: http://www.coaps.fsu.edu/RVSMDC/html/data.shtml 
Responsibilities: The CLIVAR Surface Marine Meteorology Data Assembly Center (DAC) is 
established at the Center for Ocean-Atmospheric Prediction Studies on the campus of Florida 
State University. The mission of the DAC is to collect, quality control, distribute, and assure 
archival of underway surface meteorological observations from CLIVAR hydrographic cruises. 
Additional surface meteorology data will be accepted from CLIVAR-sponsored experiments in the 
marine environment. Data will be accepted from any hydrographic program willing to provide their 
data to the DAC. This data center will accept data submissions from research vessels and 
moored buoys from continuously sampling automated weather systems. Resource limitations 
only allow the DAC to redistribute data from CLIVAR hydrographic cruises in the native format 
received from the chief scientist or vessel operator. No reformatting or quality assessment is 
currently supported. The exception is data received from vessels that contribute to the Shipboard 
Automated Meteorological and Oceanographic System (SAMOS) initiative (Smith et al., 2010) 
that happen to be conducting a repeat hydrographic cruise. 
 

6.  Underway Data 
 
The Global Ocean Surface Underway Data Pilot Project (GOSUD) 
Principal Contact: Robert Keeley and Loic Petit de la Villeon 

http://jdoss1.jodc.go.jp/cgi-bin/2001/feti_vector
http://ilikai.soest.hawaii.edu/sadcp/clivar.html
http://ilikai.soest.hawaii.edu/sadcp/main_inv.html
http://ladcp.ldeo.columbia.edu/ladcp/clivar/
http://kage.ldeo.columbia.edu/SOURCES/.LDEO/.ClimateGroup/.PO/.LADCP/
http://www.coaps.fsu.edu/RVSMDC/CLIVAR/
mailto:smith@coaps.fsu.edu
http://www.coaps.fsu.edu/RVSMDC/html/data.shtml
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Email: Robert.keeley@dfo-mpo.gc.ca and Loic.Petit.De.La.villeon@ifremer.fr  
Web site: http://www.ifremer.fr/gosud/ 
Responsibilities:  GOSUD works to collect, process, archive and disseminate, in real time and 
delayed mode, sea surface salinity and other variables collected underway by research and ships 
of opportunity. The GOSUD project works closely with SAMOS (see also Surface Meteorological 
data, above).  The SAMOS initiative is working to improve access to calibrated, quality-controlled, 
surface marine meteorological data collected in-situ by automated instrumentation on research 
vessels (primarily) and merchant ships. GOSUD focuses on the collection, quality evaluation, and 
distribution of near-surface ocean parameters (salinity and sea temperature) from vessels.  At 
present, the system is operational for temperature and salinity on 17 research vessels, and the 
GOSUD/SAMOS group is working with the International Ocean Carbon Coordination Project to 
determine how to include ocean and surface carbon measurements in the system. 
 
Carbon Dioxide Information Analysis Center - Ocean CO2 (World Data Center for Atmospheric 
Trace Gases) 
Principle Contact: Alex Kozyr 
Email: kozyra@ornl.gov  
Web site: http://cdiac.esd.ornl.gov/oceans/global_pco2.html 
Responsibilities:  CDIAC Ocean CO2 is managing all underway carbon data from hydrographic 
research ships.  The data are simply archived and disseminated as received.  The Surface 
Ocean CO2 Atlas (SOCAT) project (data compilation carried out by the Bjerknes Centre for 
Climate Research, Norway) has compiled all publicly available surface CO2 data from 1968 to 
2007 into a common format dataset composed of more than 2100 cruises from 14 countries, with 
7 million measurements of various carbon parameters.  The SOCAT dataset is currently 
undergoing 2nd level quality control and will be published in 2009.  It is intended that this 
compilation will be regularly updated to include all new surface pCO2 data.  In the future, real-
time or near real-time data may be linked with the GOSUD/SAMOS project. 
 

4.3   Data products and joint synthesis activities 
 
Development of international synthesis activities must address new realities of working within the 
framework of a sustained observation program that has no “sunset clause”, but which will have a 
requirement to produce scientific products on a time scale that is much shorter than the traditional 10-
year approach carried out by global research programs in the past.  The repeat hydrography program 
will need to continually justify its value through publications and data products, and while analyses of 
individual and small groups of investigators will play a valuable role in this regard, development of a 
mechanism for data syntheses should also help to address these needs. 
 
Data syntheses activities should be driven by the science.  Data syntheses are only successful when 
there is a clear science issue to be resolved through standardizing and merging of basin- and global-
scale datasets.  Ship-based repeat hydrography data will increasingly be synthesized with data from 
other platforms and models to address specific scientific issues, which requires a bottom-up science 
approach rather than a top-down data management approach.  It should be noted that synthesis 
activities will require additional funding to support data quality control, compilation, and PI meetings. It 
will also require the development of standing synthesis groups that meet regularly, both in basin groups 
and across basins.  To ensure that these groups are implemented on a regular and rolling basis, it will be 
important for them to be managed through a sustained global coordination effort or program rather than 
a time-limited research program.   
 
Data syntheses have typically been carried out starting with a basin approach since this is a convenient 
scale to define many scientific issues.  Basin groups developed in WOCE/JGOFS and CLIVAR already 
exists for most areas.  Building on this approach, GO-SHIP recommends 4 groups: 
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• Atlantic (including the Arctic) 
• Pacific 
• Indian 
• Southern Ocean 

 
Based on recent synthesis activities that were conducive to both science and contributing to the 
development of a continuously growing global synthesis (e.g., the Carbon in the Atlantic Project, the 
Global Ocean Data Analysis Project, the North Pacific Synthesis Project), GO-SHIP proposes a 3-step 
approach for basin syntheses that brings together interdisciplinary science, the data synthesis activity, 
interpretation, and product development: 
 

1. For each basin, develop a science workshop to bring together observations, models, and ideas 
around a particular science issue that sets the framework for the data synthesis activity.  These 
issues will evolve over time with the science and with the state of the observing system, and may 
include topics such as the value of adding new biogeochemical sensors to profiling floats, looking 
at what we know about decadal variability, comparisons between observations and models, or 
using models to evaluate interpolation methods and to bridge the considerable spatial and 
temporal gaps between repeat lines. This would involve (and may be led by) existing global or 
regional research programs, where appropriate.  

 
2. From these basin-scale workshops, develop a list of the collaborative projects to be carried out to 

address the science issues, and establish a working group that will carry out the necessary data 
synthesis activities.  Technical coordination groups such as the IOCCP, the Ocean Observations 
Panel for Climate (OOPC), the North Pacific Marine Science Organization (PICES) Carbon and 
Climate Group (Pacific), and research program-based groups such as CarboOcean (Atlantic), 
and the CLIVAR Basin Panels could provide support for these activities. 

 
3. Hold smaller follow-up workshops to present results and outline product development, including 

scientific journal articles (e.g., papers contributing to a special issue of a journal) as well as 
publication and release of the data synthesis and merging these data with the global dataset.   

 
This 3-step procedure for each basin should take no more than 2-3 years from first workshop to final 
product delivery to be able to show continued progress and justification of the continued program.  A 
process like this would provide flexibility for science issues to evolve over time and foster integration 
among a wide range of communities (physics, biogeochemistry, observationalists, modelers, etc.).  
Moreover, it would also provide a more sustained and continual framework for producing coordinated 
basin- and global- scale data products on a regular basis.  It should be noted, however, that new 
resources would need to be found to support the working groups and workshops, as well as data 
handling. 
 
4.4   Development of an international communication and coordination forum 
 
Having up-to-date and comprehensive information is crucial to plan, implement, and coordinate global 
hydrography.  At present, there are several Web sites providing information about particular aspects of 
ship-based repeat hydrography.  What is lacking is a common international information and 
communications forum to facilitate field program planning, agreements on standards and methods, and 
data sharing/synthesis activities.   
 
GO-SHIP recommends the development of a single Web site that will serve as a central communication 
and coordination forum for both physical and carbon/biogeochemistry aspects of ship-based repeat 
hydrography.  Along with the site, an email list should be developed to improve communication among 
the various groups.  A Web site will be developed jointly by CLIVAR and the IOCCP for community 
review and launch in late 2009.  Elements of the site will include: 
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• Cruise plans (maps, tables, contact information) 
• Data directory 
• Hydrography Manual 
• Reference Documents (data policies, national / global research program strategies, etc.) 
• Summary of synthesis activities and research programs 
• Calendar 
• News / Bulletin Board 

 
 
The sponsors of GO-SHIP are committed to working with the international community to develop a 
sustained coordination activity and to seek endorsement from appropriate international and 
intergovernmental organizations for repeat hydrography to become a recognized part of the global 
observing system. 
 
The sponsors of GO-SHIP are committed to working with the international community to develop a 
sustained coordination activity and to seek endorsement from appropriate international and 
intergovernmental organizations for repeat hydrography to become a recognized part of the global 
observing system. 
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the Marine Environment and Baseline Study Guidelines. 1976 
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17 Oceanographic Components of the Global Atmospheric Research  
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18 Global Ocean Pollution: An Overview. 1977 (out of stock) 
19 Bruun Memorial Lectures - The Importance and Application  
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20 A Focus for Ocean Research: The Intergovernmental Oceanographic  
Commission - History, Functions, Achievements. 1979 
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21 Bruun Memorial Lectures, 1979: Marine Environment and Ocean Resources. 
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E, F, S, R 

22 Scientific Report of the Interealibration Exercise of the  
IOC-WMO-UNEP Pilot Project on Monitoring Background Levels  
of Selected Pollutants in Open Ocean Waters. 1982 
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23 Operational Sea-Level Stations. 1983 E, F, S, R 
24 Time-Series of Ocean Measurements. Vol.1. 1983 E, F, S, R 
25 A Framework for the Implementation of the Comprehensive Plan  

for the Global Investigation of Pollution in the Marine Environment. 1984 
(out of stock) 

26 The Determination of Polychlorinated Biphenyls in Open-ocean Waters. 1984 E only 
27 Ocean Observing System Development Programme. 1984 E, F, S, R 
28 Bruun Memorial Lectures, 1982: Ocean Science for the Year 2000. 1984 E, F, S, R 
29 Catalogue of Tide Gauges in the Pacific. 1985 E only 
30 Time-Series of Ocean Measurements. Vol. 2. 1984 E only 
31 Time-Series of Ocean Measurements. Vol. 3. 1986 E only 
32 Summary of Radiometric Ages from the Pacific. 1987 E only 
33 Time-Series of Ocean Measurements. Vol. 4. 1988 E only 
34 Bruun Memorial Lectures, 1987: Recent Advances in Selected Areas of Ocean 

Sciences in the Regions of the Caribbean, Indian Ocean and the Western 
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Composite 
E, F, S 
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35 Global Sea-Level Observing System (GLOSS) Implementation Plan. 1990 E only 
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37 Tsunami Glossary - A Glossary of Terms and Acronyms Used in the  
Tsunami Literature. 1991 
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38 The Oceans and Climate: A Guide to Present Needs. 1991 E only 
39 Bruun Memorial Lectures, 1991: Modelling and Prediction in Marine Science. 

1992 
E only 
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41 Marine Debris: Solid Waste Management Action for the Wider Caribbean. 

1994 
E only 
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F only 

52 Cold water carbonate mounds and sediment transport on the Northeast Atlantic 
Margin. 1998 

E only 

53 The Baltic Floating University: Training Through Research in the Baltic, 
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E only 

54 Geological Processes on the Northeast Atlantic Margin (8th training-through-
research cruise, June-August 1998). 1999 

E only 

55 Bruun Memorial Lectures, 1999: Ocean Predictability. 2000 E only 
56 Multidisciplinary Study of Geological Processes on the North East Atlantic and 

Western Mediterranean Margins (9th training-through-research cruise, June-
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E only 
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E only 

58 Bruun Memorial Lectures, 2001: Operational Oceanography – a perspective 
from the private sector. 2001 

E only 

59 Monitoring and Management Strategies for Harmful Algal Blooms in Coastal 
Waters. 2001 

E only 

60 Interdisciplinary Approaches to Geoscience on the North East Atlantic Margin 
and Mid-Atlantic Ridge (10th training-through-research cruise, July-August 
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E only 

61 Forecasting Ocean Science? Pros and Cons, Potsdam Lecture, 1999. 2002 E only 
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E only 
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E only 

64  R. Revelle Memorial Lecture, 2006: Global Sea Levels, Past, Present  
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E only 
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E only 

69 Biodiversity and Distribution of the Megafauna / Biodiversité et distribution de 
la mégafaune. 2006  
Vol.1 The polymetallic nodule ecosystem of the Eastern Equatorial Pacific 

Ocean / Ecosystème de nodules polymétalliques de l’océan Pacifique 
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Vol.2 Annotated photographic Atlas of the echinoderms of the Clarion-
Clipperton fracture zone / Atlas photographique annoté des 
échinodermes de la zone de fractures de Clarion et de Clipperton 
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70 Interdisciplinary geoscience studies of the Gulf of Cadiz and Western 
Mediterranean Basin (14th training-through-research cruise, July-September 
2004). 2006 

E only 

71 Indian Ocean Tsunami Warning and Mitigation System, IOTWS. 
Implementation Plan, July-August 2006. 2006 

E only 

72 Deep-water Cold Seeps, Sedimentary Environments and Ecosystems of the 
Black and Tyrrhenian Seas and the Gulf of Cadiz (15th training-through-
research cruise, June–August 2005). 2007 

E only 

73 Implementation Plan for the Tsunami Early Warning and Mitigation System in 
the North-Eastern Atlantic, the Mediterranean and Connected Seas 
(NEAMTWS), 2007–2011. 2007 (electronic only) 

E only  

74 Bruun Memorial Lectures, 2005: The Ecology and Oceanography of Harmful 
Algal Blooms – Multidisciplinary approaches to research and management. 
2007 

E only 

75 National Ocean Policy. The Basic Texts from: Australia, Brazil, Canada, 
China, Colombia, Japan, Norway, Portugal, Russian Federation, United States 
of America. (Also Law of Sea Dossier 1). 2008 

E only 

76 Deep-water Depositional Systems and Cold Seeps of the Western 
Mediterranean, Gulf of Cadiz and Norwegian Continental margins (16th 
training-through-research cruise, May–July 2006). 2008 

E only 

77 Indian Ocean Tsunami Warning and Mitigation System (IOTWS) – 12 
September 2007 Indian Ocean Tsunami Event. Post-Event Assessment of 
IOTWS Performance. 2008 

E only 

78 Tsunami and Other Coastal Hazards Warning System for the Caribbean and 
Adjacent Regions (CARIBE EWS) – Implementation Plan 2008. 2008 

E only 

79 Filling Gaps in Large Marine Ecosystem Nitrogen Loadings Forecast for 64 
LMEs – GEF/LME global project Promoting Ecosystem-based Approaches to 
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E only 
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81 Indian Ocean Tsunami Warning and Mitigation System (IOTWS) – 
Implementation Plan for Regional Tsunami Watch Providers (RTWP). 2008 

E only 
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E only 
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E only  
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87. Operational Users Guide for the Pacific Tsunami Warning and Mitigation 
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E only 
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89. Ship-based Repeat Hydrography: A Strategy for a Sustained Global 
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