Introduction to measuring fluxes over land using eddy covariance

Ray Leuning CSIRO Marine and Atmospheric Research

Courtesy Dr Ned Patton, NCAR

Free convection

Courtesy of Dr Watenabe

Eddy flux measurement theory

- Mass balance of a control volume
- Time vs spatial averaging concepts
- Time domain
 - Reynolds decomposition & averaging
 - Covariance
 - Coordinate system
 - Flux calculation
- Frequency domain
 - Variance, covariance
 - High-cut filtering
 - High-pass filtering & averaging

Mass conservation in Control Volume

change in $\chi = \Sigma(Flux in) - \Sigma(Flux out)$

Some notation

Averaging, Reynolds decomposition & covariance

$$\overline{w\chi_c} = (w' - \overline{w})(\chi_c' - \overline{\chi_c}) = \overline{w\chi_c} + \overline{w\chi_c}$$

Mass balance on a control volume

Coordinate system

- Have used rectangular Cartesian coordinates
- Can rarely measure all components of mass balance. To maximize information at tower choose site and coordinate system to ensure:

$$\int_{S_1} \overline{u\chi_c} d\mathbf{S}_1 = \int_{S_1} \overline{u\chi_c} d\mathbf{S}_2$$
$$\overline{v} = \overline{w} = 0$$

Horizontal homogeneity - no advection

Coordinate rotation (a topic in itself)

 $\overline{w\chi} = \overline{w\chi} + w\chi' = w\chi'$ Leaves only vertical eddy flux

Horizontally homogeneous flow

Design considerations for eddy flux measurements

- Measurement height
- Fetch/footprint rule of thumb $z_m = x/100$
- Horizontal homogeneity of surface and topography
- Averaging low frequency cutoff
- High frequency filtering

Courtesy Prof HP Schmid Indiana University

Internal boundary & equilibrium layers Fully Adjusted Layer Wind hB **Blending Height** Internal Boundary Equilibrium Layer Z_{02} Z_{03} Χ

Height-to-fetch ratio

100:1 fetch rule of thumb

- Neutral conditions
- > for stable conditions
- < for unstable conditions</p>

Instrument placement

 Often a compromise between a representative footprint and avoiding advective effects

 $z_m \leq X/100$

Typical eddy flux instrumentation

Sonic anemometer

Air intake for closed-path CO₂ & H₂O analyser

Open-path CO₂ - & H₂O analyser

High frequency attenuation

Line-averaging along instrument path

loss of variance
 Spatial separation between
 instruments

- loss of covariance
- Samples eddies > ~2d

Frequency domain

- variance and covariance

Variance
$$\overline{\chi_{c}^{'2}} = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} (\chi_{c} - \overline{\chi_{c}})^{2} dt \qquad \approx \int_{0}^{\infty} S_{\chi_{c}\chi_{c}}(n) dn$$

Covariance $\overline{\chi_{c}^{'}\chi_{c}^{'}} = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} (w - \overline{w})(\chi_{c} - \overline{\chi_{c}}) dt \approx \int_{0}^{\infty} C_{w\chi_{c}}(n) dn$
= eddy flux Time domain Frequency domain

 $S_{\chi c}$ = contribution of the total variance of χ_c per unit *dn* $C_{w\chi c}$ = contribution of total covariance of $w\chi_c$ per unit *dn* Approximation because calculations are over a finite time interval *dt*

Variance spectrum - high-cut filter

Covariance spectrum – high cut filter

Frequency scaling & high frequency filtering

Frequency scaling & high frequency filtering

Low Frequency covariance

- Average for long enough to
 - include all significant low-frequency contributions to the covariance
- Averaging period increases with
 - measurement height
 - free convection (unstable boundary layers)
 - complex topography

Typical averaging periods 30 mins

May be too short to capture all the significant LF covariance.

Finnigan et al., (2001)

- Convective conditions at Manaus tropical forest site ensure significant low frequency content in the covariance.
- This is lost if the averaging period is < ~4 hours

From theory to measurements

- Eddy fluxes
 - System design
 - Webb, Pearman & Leuning theory
 - Sonic anemometers
 - Open-path gas analysers
 - Closed-path gas analysers
- Change in heat & mass storage in canopy
 - Temperature profiles
- Other flux station instrumentation
- Checking energy balance closure

Where sonic virtual temperature is

 $T_v = T(1+0.514q)$

Still require

$$\lambda E = \lambda \overline{c_d w' \chi'_v}$$
$$F_c = \overline{c_d w' \chi'_c}$$

LI-7500 CO₂ and water vapour analyser

Measures mol m⁻³ in optical path, not required mixing ratios $\chi_v \chi_c$

But! Eddy fluxes have been expressed in terms of mixing ratio. What to do?

$$\overline{F_c} = \overline{c_d} \, \overline{w' \chi_c'}$$

Webb, Pearman & Leuning (1980) theory Steady state, horiz. homogeneous flow

Can write trace gas flux using concentrations

$$\overline{F_c} = \overline{c_d} \, \overline{w' \chi_c'} \equiv \overline{wc_c} = \overline{wc_c} + \overline{wc_c'} \quad \text{but } \overline{w} \neq 0$$

What is w? WPL assumed nonet flux of dry air

$$\overline{F_d} = 0 = \overline{w} \overline{c_d} + \overline{w' c_d} \quad \Longrightarrow \quad \overline{w} = -\overline{w' c_d'} / \overline{c_d}$$

Why is there a *w*? Consider 'hot' and 'cold' eddies over dry surface

$$\overline{w} = -wc_d / \overline{c_d}$$
 Need expression for c_d

WPL showed

Cannot measure w directly

What about non-steady state, horizontally homogeneous flow?

Change in concentration, but not mixing ratio

Eddy flux for trace gas

Leuning (2007) showed original WPL still correct - No source/sink of dry air in the control volume

$$\overline{F_{c}} = \overline{c}_{d} \overline{w' \chi_{c}'} = \overline{w' c_{c}'} + \overline{\chi_{c}} \left[\overline{w' c_{v}'} + \overline{c} \frac{\overline{w' T'}}{\overline{T}} \right]$$
Raw CO₂ flux Water vapor flux Heat flux

Magnitude of WPL corrections – add to raw flux

Leuning & Judd, 1996

WPL corrections to open path

Testing Webb Pearman & Leuning 2007 – zero CO₂ flux over a tarmac

Kondo and Tsukamoto (pers comm)

Error due to differing frequency responses for cospectra of wT and wc_c

Cospectra

Frequency Response Corrections

Define correction factor

 $C_F > 1$, typically

(Leuning and Moncrieff, 1990; Leuning & Judd 1996)

Open path measurements – calculation sequence

1)
$$\overline{H} = \overline{\rho}c_p w'T$$

2)
$$\overline{E} = (1 + \overline{\chi}_v) \left[\overline{w'c_v} + \frac{\overline{c_v}}{\overline{T}} \frac{\overline{H}}{\overline{\rho}c_p} \right]$$

3)
$$\overline{F}_{c} = \overline{wc_{c}} + \overline{c}_{c} \left[\frac{\overline{E}}{\overline{c}} + \frac{\overline{H}}{\overline{\rho}c_{p}\overline{T}} \right]$$

Assumes *H*, $E \& F_c$ have already been corrected for high & low frequency filtering

Otway flux station Much loss of data - mist & rain

Conversion of LI7500 to closed-path analyser

Modified LI7500

Closed-path analyser

Measure c_c, c_v, T & P simultaneously in gas analyser and calculate mixing ratio at sampling rate used for eddy covariance

$$\chi_{v} = \frac{c_{v}}{P_{i}/(RT_{i}) - c_{v}}, \ \chi_{c} = \frac{c_{c}}{P_{i}/(RT_{i}) - c_{v}}$$

- Must also consider
 - Time-lag
 - Hi-frequency attenuation by air flow in tubing

Closed-path gas sampling

Lag at maximum correlation for closed

Path H₂O lag @ max. correlation function of flow rate & rel. humidity

CO₂ lag @ max. correlation function of flow rate only

High Frequency Attenuation - Closed path

- Tubing acts like a low-pass filter by mixing the air
- Higher frequencies strongly attenuated depends on:
 - Flow rate through tube
 - Tube diameter, length and material

(Leuning and Moncrieff, 1990; Leuning & Judd 1996)

Energy balance

Uncertainties in net radiation!

Reminder of assumptions

- horizontally homogeneous flow
- advection neglected

Measurements on a single tower – change in storage term

CO₂ & T profiles – change in storage term

$$F_{\Delta storage} = \frac{C_d}{\Delta t} \left[\left. \int_0^h \chi_c dz \right|_{t=\Delta t} - \left. \int_0^h \chi_c dz \right|_{t=0} \right]$$

Summary (1):

- Mass balance of a control volume
- Time vs spatial averaging concepts
- Time domain
 - Reynolds decomposition & averaging
 - Covariance
 - Coordinate system
 - Flux calculation
- Frequency domain
 - Variance, covariance
 - High-cut filtering
 - High-pass filtering & averaging

Summary (2):

- Measuring trace gas concentrations
 - Open and closed-path gas analysers
- Webb, Pearman & Leuning corrections
 - Correcting for system high and low frequency response
- The change in storage term
- Advection and night time respiration

Advection and night time fluxes

- Eddy flux underestimates night time fluxes at many sites
- Stable stratification causes decoupling of flow above and within canopy
- Drainage flows cause advection not measured
- Most groups apply `u*-filter' to select windy nights when advection is small

Dynamics of advection

Once drainage flows commence, the down flowing air has to be replaced with air from above. Entrainment of CO_2 poor air leads to development of horizontal CO_2 gradients.

Complex terrain – flow over hills

Courtesy Dr Ned Patton, NCAR

The u_{*} threshold

To estimate respiration - use u*-threshold to select periods when eddy flux and change in storage terms are important but not advection term

But, there are sites with no unique *u**threshold

Early evening maximum of *R*

Comparison with independent methods shows that R_{Rmax} , the **maximum** of the sum of eddy flux and storage term measured in the early evening, provides the most accurate data to derive temperature response functions for ecosystem respiration.

Time series of λE

