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Atmospheric turbulence and air flow
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Eddy flux measurement theory

= Mass balance of a control volume
= Time vs spatial averaging concepts

= [ime domain
= Reynolds decomposition & averaging
= Covariance
= Coordinate system
= Flux calculation

= Frequency domain
= Variance, covariance
= High-cut filtering
= High-pass filtering & averaging



Mass conservation in Control Volume

we

change in y = Z(Flux in) — Z(Flux out)



Some notation

| Averaging, Reynolds decomposition & covariance
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| Mass balance on a control volume

+




Coordinate system

= Have used rectangular Cartesian coordinates

= Can rarely measure all components of mass
balance. To maximize information at tower
choose site and coordinate system to ensure:

j uy dsS = j uy ds Horizontal homogeneity — no
s 1 c 2 advection

Coordinate rotation
(a topic in itself)

W/YC =W )(C +W /Y; =W /Y; Leaves only vertical eddy flux



Horizontally homogeneous flow
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Design considerations for eddy
flux measurements

Measurement height
Fetch/footprint - rule of thumb 2z, = x/100
Horizontal homogeneity of surface and
topography

Averaging — low frequency cutoff
High frequency filtering




Layers and controlling scales of the ABL

Sublayers

neutral, weakly stable unstable, convective

A free atmosphere
entrainment
Z=ZiN1000m layer
outer region Scales
residual layer Mixed z, w¥*
layer

z~50-100m 4 - - __
Logarithmic layer
(“constant flux layer”) (z-d), u*
z~2-3h, Surface
B layer
INnner region roughness sublayer
z=h

Canopy © ¥
layer 5// u

Flux towers
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Internal boundary & equilibrium layers
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| Height-to-fetch ratio

= 100:1 fetch rule of thumb
= Neutral condltlon:.;. Zm < X / 100
= > for stable conditions
= < for unstable conditions

= Instrument placement

= Often a compromise between a
representative footprint and avoiding
advective effects



Typical eddy flux
Instrumentation

Sonic anemometer

Air intake for
closed-path CO, &

H,O analyser

Open-path CO,
& H,O analyser




High frequency

!-| attenuation

Line-averaging along
instrument path

— loss of variance

Spatial separation between
Instruments

— loss of covariance

- Samples eddies > ~2d




Frequency domain
- variance and covariance

t+At

— 1
Variance X, = AL j X. - )(C) dt j S, . (nNdn

t+At

Covariance W Y, = — j (W=w)(x, = x,)dt = j C,, (N)dn

= eddy flux T T
Time domain Frequency domain

S,. = contribution of the total variance of y, per unit dn

C..c = contribution of total covariance of wy, per unit dn

WyC

Approximation because calculations are over a finite time interval dt



Variance spectrum - high-cut filter
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Covariance spectrum — high cut filter
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Frequency scaling & high frequency filtering

System filter
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Frequency scaling & high frequency filtering

System filter
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Measurement height

= System filter = Atmospheric
turbulence
f =u/d, f >10u/z,,
1 ¥ 1 v
\ > m
0 f 0 ¢

f.>f - 2z =>10d
Remember equilibrium layer

z < X /100



| Low Frequency covariance

= Average for long enough to
= include all significant low-frequency
contributions to the covariance
= Averaging period increases with
= Mmeasurement height
= free convection (unstable boundary layers)
= complex topography



Typical averaging periods 30 mins
May be too short to capture all the significant LF covariance.

Finnigan et al., (2001)

= Convective conditions at Manaus tropical forest site ensure significant low
frequency content in the covariance.

= This is lost if the averaging period is < ~4 hours
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| From theory to measurements

= Eddy fluxes
= System design

= Webb, Pearman & Leuning theory
= Sonic anemometers
= Open-path gas analysers
= Closed-path gas analysers

= Change in heat & mass storage in canopy
= Temperature profiles

= Other flux station instrumentation
= Checking energy balance closure



| Measurements on a single tower

Vertical
eddy flux W’ /Y C

F,=c, j%dz+c Wy,

i

X, Change in

— ot storage

E ahdt dz




| Sonic anemometer gives:

u,v,\w u,v,w
H = LOCpd WTV
Where sonic virtual temperature is
T,=T(1+0.514

Still require

AE =Acawy,

FC :(—3dVV')(;



| LI-7500 CO, and water vapour analyser

Measures mol m-3 in optical path,

not required mixing ratios X, X

But! Eddy fluxes have been E
expressed in terms of mixing ratio.
What to do?



Webb, Pearman & Leuning (1980) theory
| Steady state, horiz. homogeneous flow

Can write trace gas flux using concentrations

F. =c,wyx. =wc, =wc, +wc, but wz0

C

Whatisw ? WPL assumed no net flux of dry air

F =0=wc, +wc, =) W=-WCc, /C,



Why is there a W?
Consider *hot” and ‘cold’ eddies over dry surface
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| WPL theory

w=-wc, /c,

WPL showed

— 1|— -wT
W==—| WC, +C——
Cd

d

=
-

Need expression for C;j

< 3 mms™

Water vapor fILix

Heat flux

Cannot measure wdirectly




What about non-steady state,
horizontally homogeneous flow?

\\ VQ Mass flux

”’”\ ﬁ

Ao Xe

d, =(p/RT)| c|,,, =(p/RT)

t+At

» time

Change in concentration, but not mixing ratio



| Eddy flux for trace gas

Leuning (2007) showed original WPL still correct

- No source/sink of dry air in the control volume

— - = — — —_wWT
FC:CdW)(C:WCC+)(C WC, +C——

T

Raw CO, flux |Water vapor flux | Heat flux




Magnitude of WPL corrections —
add to raw flux
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WPL corrections to open path
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Testing Webb Pearman & Leuning 2007
— zero CO, flux over a tarmac

Kondo and Tsukamoto (pers comm)

Flux instrumentation




Cospectra
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| Frequency Response Corrections

Define correction factor

f ch( f )df <+«——true’ cospectrum
0

Cr=7
[Gue( T )cue( f)df «—filtered cospectrum
0

I

filter function

C-> 1, typically

(Lewning and Mownceriefd, 1990; Leuning § Judd 1996)



Open path measurements —

| calculation sequence

1) H=pc,wT

2) E=(1+y,) we, +——

3) Fe=WC +0o| S+ _

Assumes H, E & F_have already been
corrected for high & low frequency filtering
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Conversion of LI7500 to closed-path analyser

filter
aiir sarnpe in }QI

thermnocouple




Modified LI7500




| Closed-path analyser

= Measure ¢, ¢, 7& Psimultaneously in gas analyser
and calculate mixing ratio at sampling rate used for
eddy covariance

—_— CV — CC
AT PIRT)=¢, X T PIRT)—q,

= Must also consider
= Time-lag
=« Hi-frequency attenuation by air flow in tubing



| Closed-path gas sampling

/\ /\ attenuation

time delay

]
% 1 =
2 .
g o
A
(a) Sine Wave

analyser




Lag at maximum correlation for closed
ath

,O lag @ max. correlation function of flow rate & rel. humidity
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High Frequency Attenuation

| - Closed path

= Tubing acts like a low-pass filter by mixing
the air

= Higher frequencies strongly attenuated —
depends on:

. Flow rate through tube
. Tube diameter, length and material

(Lewning and Mownceriefd, 1990; Leuning § Judd 1996)
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H.O flux comparison
11-Aug-07 to 30 Jun-08
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Energy balance

H+LE (W m'z)
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Uncertainties in net radiation!

Net Radiation
(data from 26 Feb 2007 to 1 Aug 2007)

1200

1000 . y = 0.8346x + 22.799
- R%=0.9839

800

600

400

Rebs (W m?)

200

-200 0 200 400 600 800 1000 1200
CNR1 (Wm™)




Reminder of assumptions

- horizontally homogeneous flow
- advection neglected
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Measurements on a single tower —

| change in storage term

Vertical eddy flux W' Y. I
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Profiles




CO, & T profiles
— change in storage term
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Summary (1):

= Mass balance of a control volume
= Time vs spatial averaging concepts

= [ime domain
= Reynolds decomposition & averaging
= Covariance
= Coordinate system
= Flux calculation

= Frequency domain
= Variance, covariance
= High-cut filtering
= High-pass filtering & averaging



%_Summary (2):

= Measuring trace gas concentrations
= Open and closed-path gas analysers

= Webb, Pearman & Leuning corrections

= Correcting for system high and low frequency
response

= The change in storage term
= Advection and night time respiration






| Advection and night time fluxes

Eddy flux underestimates night time fluxes at many
sites

Stable stratification causes decoupling of flow above
and within canopy

Drainage flows cause advection — not measured

Most groups apply ‘u*-filter’ to select windy nights
when advection is small



Dynamics of advection

Once drainage flows commence, the down flowing air has to be
replaced with air from above. Entrainment of CO,, poor air leads
to development of horizontal CO, gradients.




. Complex terrain — flow over hills

Streamwise Velocity

Max Slope = 0.2 x/L
401234567 8(ms"

Courtesy Dr Ned Patton, NCAR



The u. threshold

To estimate respiration - use u*-threshold to select periods when
eddy flux and change in storage terms are important but not
advection term

0.6 0.8 1
Friction velocity, u, (m 3'1)



But, there are sites with no unique ¢*-

| threshold
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Early evening maximum of R
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Results from alternative approach:
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Comparison with independent methods shows that Ry, the

maximum of the sum of eddy flux and storage term measured in

the early evening, provides the most accurate data to derive
temperature response functions for ecosystem respiration.



Time series of AE
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Time series of F.
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