

**BIO-INTELLIGENCE CHIPS (BIC) Proposers' Day Safe and Secure Operations** 

EADING INTELLIGENCE INTEGRATION

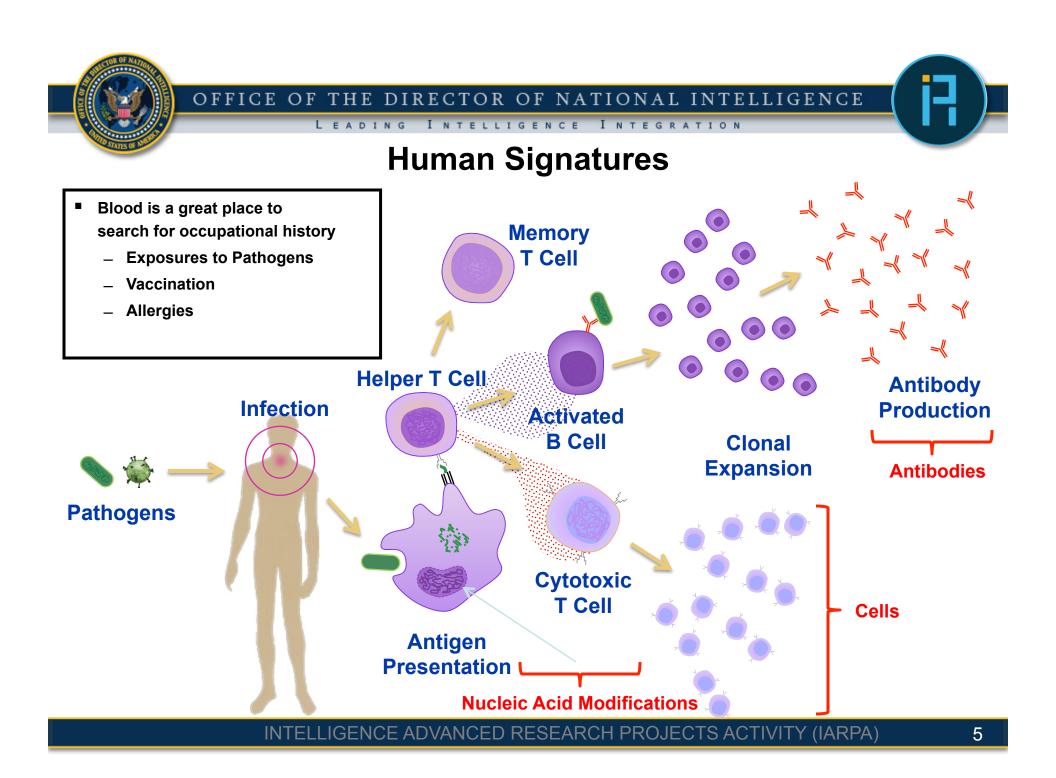
Dennis L. Polla Deputy Office Director 15 November 2012

> University of Maryland Stamp Union College Park, MD



## Disclaimer

- This presentation is provided solely for information and planning purposes
- The Proposers' Day does not constitute a formal solicitation for proposals or proposal abstracts
- Nothing said at Proposers' Day changes the requirements set forth in a BAA
- BAA supersedes anything presented or said at the Proposers' Day by IARPA




## Detect Whether Someone Has Been Involved with Pathogens

- The human body is a great sensor which efficiently retains information associated with environmental exposure and often produces unique responses
  - BIC plans to determine whether a person has been involved with the handling or production of specific biological materials
- Existing techniques that do this are generally limited to detecting single markers, causing high false alarm rates
  - BIC will use multi-analyte processing to enable the cross-correlation of many biomarkers to create more authoritative signatures
- Current systems are bulky and operate only in a lab environment, not in the field
  - BIC will build upon advances in lab-on-a-chip technologies that can enable rapid, portable detection devices



## The Human Body as a Sensor: The Multi-analyte Approach





INTEGRA

LLIGENC

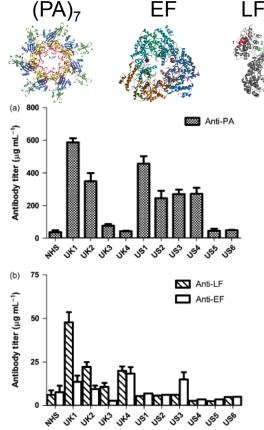


## **Example Bio-agents of Interest**

- 1) Bacillus anthracis (Anthrax)
- 2) Filoviruses: Ebola and Marburg
- 3) Engineered Pandemic Influenza (H5N1 or equivalent)
- 4) Ricin toxin from bean of Ricinus communis
- 5) Burkholderia pseudomallei (melioidosis) and mallei (glanders)
- 6) Botulinum Toxin
- 7) Variola major (Smallpox)
- 8) Francisella tularensis
- 9) Staphylococcal enterotoxin (SEB)
- 10) Yersinia pestis (Plague)
- 11) Coxiella burnetii (Q Fever)



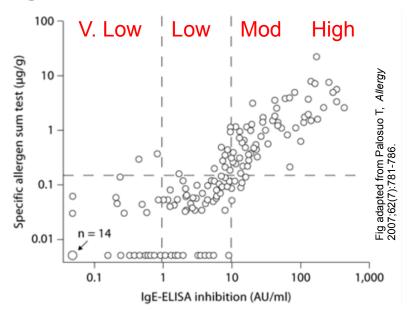
#### Example Vaccination Signature: Differentiating *B. anthracis* Vaccination from Natural Infection


G E N С

- Three proteins compose the toxins involved in anthrax pathogenesis:
  - Protective Antigen (PA), Edema Factor (EF) & Lethal Factor (LF)
  - Immune system responds by secreting toxin-specific antibodies (Ab)
- Hypothesis: Relative concentrations of Ab generated in response to toxin proteins (e.g., LF, EF, PA) can discriminate naturally infected from vaccinated individuals
- **Observations** 
  - Natural Infections:
  - Vaccinated Subjects from US and UK:
- Limitations:
  - Small sample size (n=17 patients, 6 controls, 10 vaccinated)
  - Response variation across subjects was high (Brenneman 2011)
  - Findings are limited to the present vaccine formulation. Changes in future vaccine formulation may alter Ab ratios
  - Querying for the presence/absence of pathway-specific enzyme (e.g. bacterial transketolase) will likely improve confidence of result (Walz 2007)

 $[\mathcal{V}_{PA}] > [\mathcal{V}_{PA}]$ 

 $[\mathcal{V}_{|F}] < [\mathcal{V}_{PA}]$ 






Brenneman, K.E. FEMS Immun & Med Microbiol, 2011. 62(2): p. 164-172.

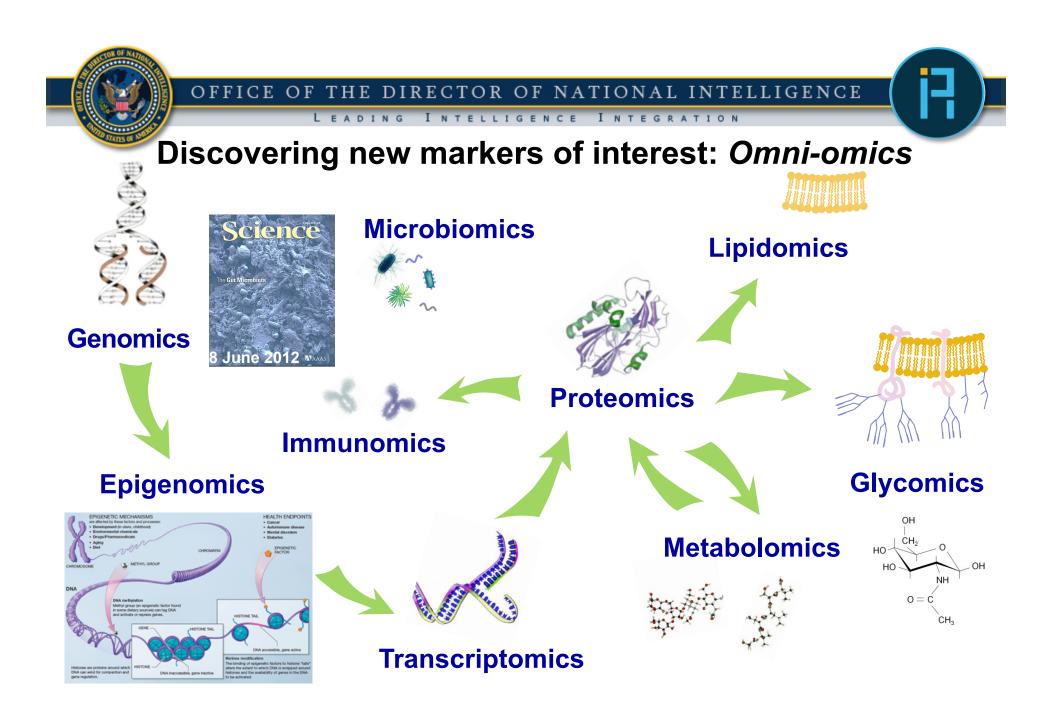
### **Environmental Example 1: Allergies to Latex Proteins**

- Study on medical gloves finds positive correlation between 4 latex allergen proteins (Hev b 1, 3, 5, 6.02) & IgE from diluted sera, n=6 (Palosuo 2007, 1998)
- Based on 12 different brands of gloves, ratio of IgE to IgG correlated with latex allergy severity, n=20 + 5 ctrls (Chen 1996)
- Microarray-based component-resolved allergy diagnostics differentiated patients with genuine allergy from sensitization, n=42 + 20 ctrls (Ebo 2010)
- Limitations:
  - Serology tests are not absolutely clinically predictive (Ebo 2012); known cross-reactivity with food allergies (Ebo 2003)
  - Potential large population of potential false alarms (e.g. healthcare worker), so the existence of the allergy is only part of the equation



IgE = Immunoglobulin E ; AU = Allergen unit ELISA = Enzyme-linked Immunosorbent Assay

The horizontal dotted line marks 0.15 µg/g limit in the four-allergen sum test that delineates Low from Mod-High


*Limit of Detection Hevea brasiliensis* (Hev b) 5, 6.02 = 0.3 μg/g Hev b 1,3 = 0.05 μg/g

Allergen-specific IgE and IgG are promising biomarkers for latex allergies



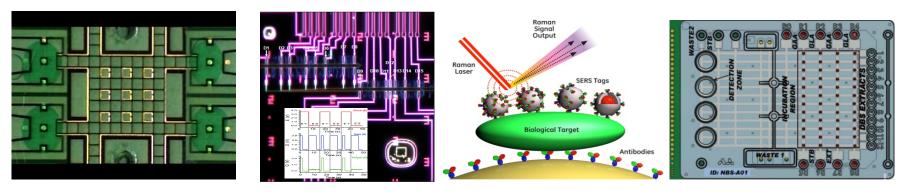
### Environmental Example 2: Allergies to Laboratory Animals

 Several studies reported that >25% of laboratory workers exposed to research animals develop symptoms of allergy (Aoyama 1992, Wood 2001, Bush 2003). Mus m1 (19 kD) and albumin are known allergens from mice.





### Advancements in Lab-on-a-Chip technologies



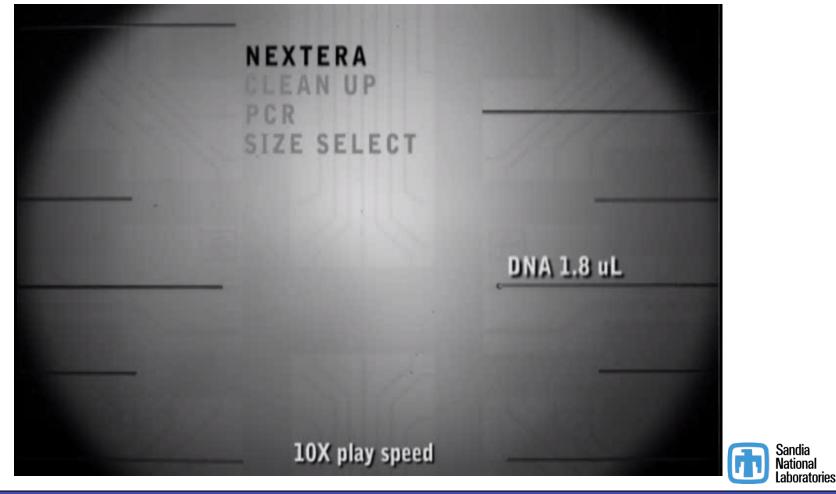

### Lab-on-a-chip Emphasis

- Advances in acoustic focusing, digital microfluidics and nanoparticles enable new biological lab-on-a-chip capabilities and platforms. These chip-scale methods include:
  - On-chip separation, purification, mixing, dilution (Sample Pre-processing and Cleanup)
  - Individually addressable sub-pL fluid volumes (Sample Volume)

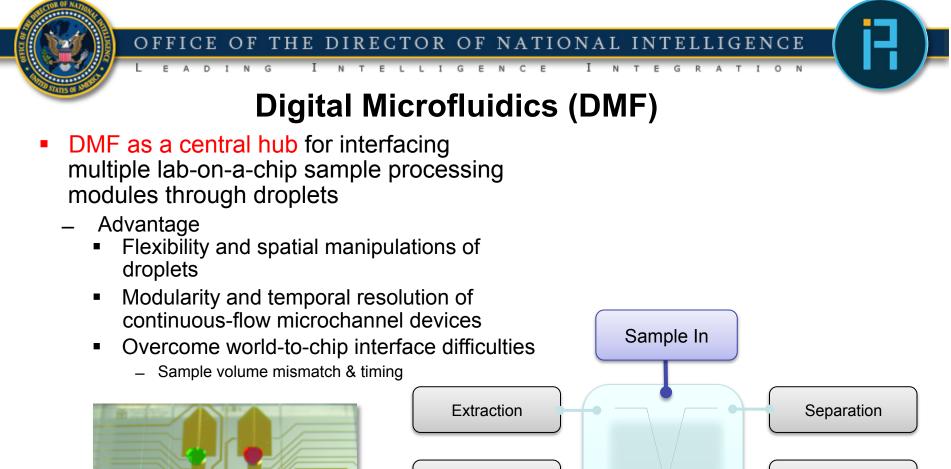
Automation

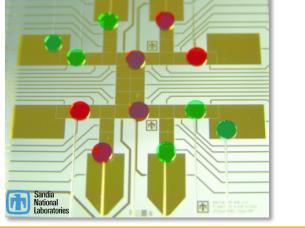
- Rapid single-cell / molecule detection (Detection)
- Unprecedented multiplexed analysis using multiple probe types (Multi-analyte Analysis)

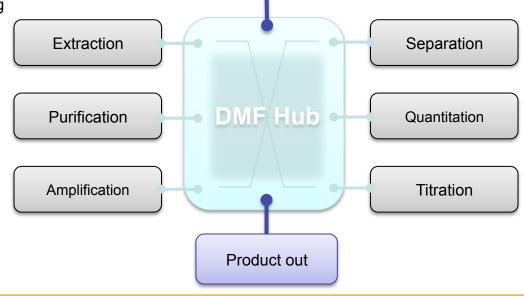



Sample clean-up and pre-processing Detection

Multi-analyte Analysis





## Science and Technology Trends



Advances in "lab-on-a chip" will catalyze rapid bio-analysis



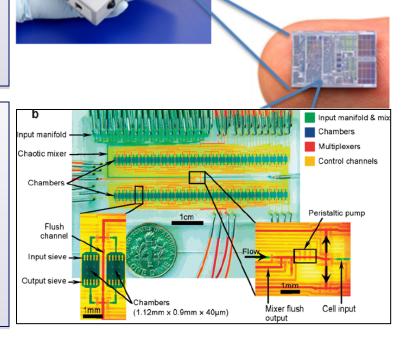








## Bio-intelligence Chips (BIC) Summary


OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

#### Vision:

- Rapidly determine human exposure to biological pathogens and associated production activities
- Build an agile, dynamically reconfigurable database of assays to enable field programmable test methodologies
- Develop hand-portable instrument capable of analyzing biological analytes from human secretions with singlemolecule resolution in less than 10 min
- Leverage developments in *omni-omics* to generate a multi-dimensional serumprint of every person-of-interest

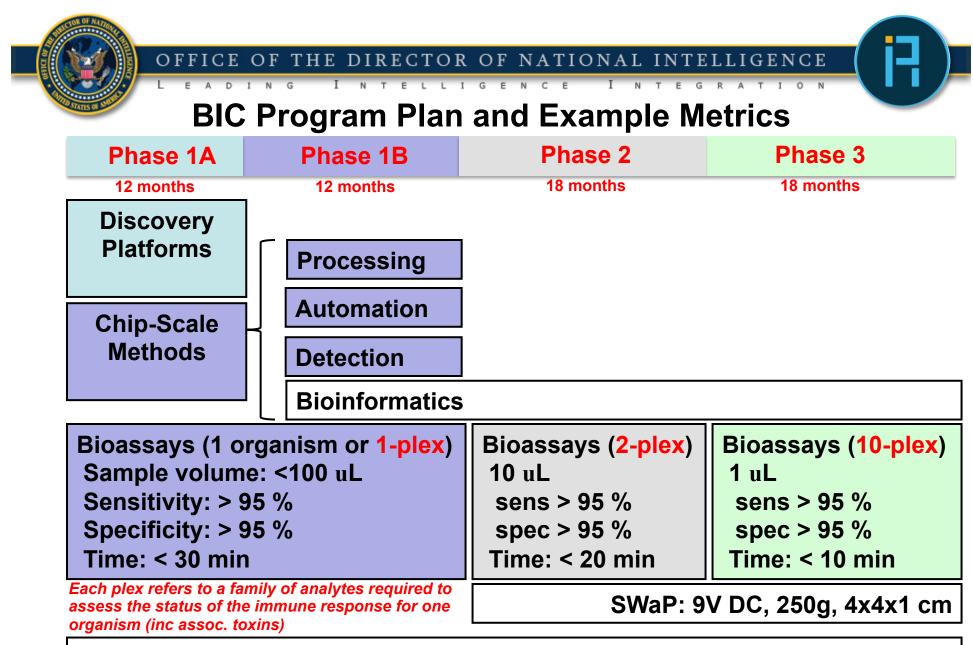
#### Key Technical Challenges:

- On-chip sample separation from small molecules to whole cells
- Individually addressable sub-pL automated fluidics control including the ability to recycle analytes
- Rapid single-molecule / single-cell detection using a variety of modalities: different probe-types and phenomenologies
- Multiplexing

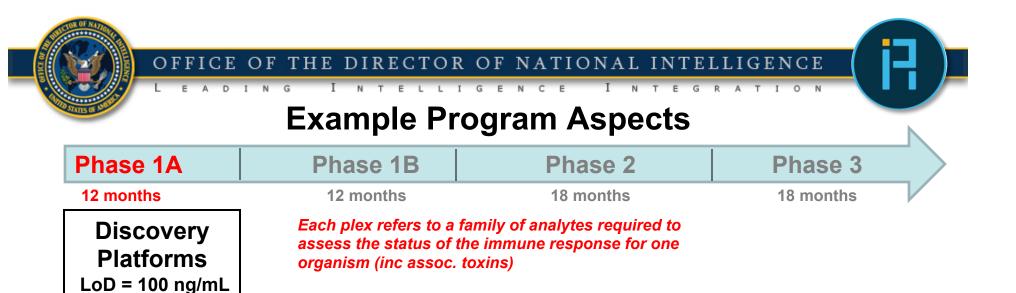




### **Bio-intelligence Chips – Program Details**







## BIC Program Objective

- Develop a deployable instrument to do rapid multiplexed bioanalysis of human biomarkers in the field, e.g.
  - Isolation and detection of antibodies
  - Detection of antigen-specific memory cells
  - Finding modifications in nucleic acids
- Develop new capabilities that could potentially enable the identification of the potential bioweapons maker/handler through rapid analysis of human biomarkers found in blood to identify signatures of interest
  - Obtain serology fingerprints (serum prints) through the cross-correlation of diverse bioassays





**Reagent shelf-life: > 12 months** 



- Determine bioassay signatures of program interest in a 2-plex format. Simultaneous, 2-plex discovery is required while the identification of only 1-plex is mandatory for the on-chip bioassay which will be evaluated and downselected in Phase 1B
- The limit of detection for proposed biomarker must be commensurate with physiological analyte concentrations
- Example deliverables: a listing of analytes and specific epitopes that identifies organism accompanied by dose response curves (include error bars) or Receiver Operating Characteristic (ROC) curves



D

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE E

N С E N

E G



RATION

## **Example Program Aspects**

G

| Phase 1A                                                                                                                 | Phase 1B                           | Phase 2                                                                                                                                                                                                                                                                                 | Phase 3                                      |  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| 12 months                                                                                                                | 12 months                          | 18 months                                                                                                                                                                                                                                                                               | 18 months                                    |  |
| Each plex refers to a family of analytes required<br>to assess the status of the immune response for                     |                                    | Phase 1B proposers may choose to<br>develop technologies for any of the chip-                                                                                                                                                                                                           |                                              |  |
| one organism<br>(inc assoc. toxins)                                                                                      | Processing                         | scale methods and/or propose an integrated bioassay                                                                                                                                                                                                                                     |                                              |  |
| Chip-Scale<br>Methods                                                                                                    | Automation                         | <ul> <li>Proposers shall specify their own<br/>component-level metrics based on state-</li> </ul>                                                                                                                                                                                       |                                              |  |
|                                                                                                                          | Detection                          | <ul> <li>of-the-art</li> <li>Proposers who choose to develop a chip-</li> </ul>                                                                                                                                                                                                         |                                              |  |
|                                                                                                                          | I   Informatics                    | scale bioassay shall                                                                                                                                                                                                                                                                    |                                              |  |
| Bioassays (1 organism or 1-plex)<br>Sample volume: <100 uL<br>Sensitivity: >95 %<br>Specificity: >95 %<br>Time: < 30 min |                                    | <ul> <li>Apply knowledge of Phase 1A and<br/>develop an on-chip 1-plex assay<br/>using whole blood</li> <li>Example deliverables: a listing of<br/>analytes and specific epitopes that<br/>identifies organism accompanied by<br/>dose response curves and/or ROC<br/>curves</li> </ul> |                                              |  |
|                                                                                                                          | Reagent shelf<br>life: > 12 months |                                                                                                                                                                                                                                                                                         | -board is desirable to<br>dent test and<br>) |  |
| IN                                                                                                                       |                                    |                                                                                                                                                                                                                                                                                         |                                              |  |



D



GRATION

N

E

## **Example Program Aspects**

| Phase 1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Phase 2                                                                                                                                                                                                                                                                                        | Phase 3                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 months                                                                                                                                                                                                                                                                                      | 18 months                                                                                                                                                                                                                               |
| <ul> <li>Develop on-chip 2-plex assay of relevance to human exposure to biological pathogens</li> <li>The assay shall use ~10 μL of whole blood &amp; produce an answer end-to-end in &lt; 20 min. The assay shall exceed &gt; 95% sensitivity and specificity</li> <li>Example deliverables: a listing of analytes and specific epitopes that distinguishes vaccination from natural infection for at least 2-plex accompanied by dose response curves and/or ROC curves</li> <li>A portable breadboard is mandatory to support independent T&amp;E</li> </ul> |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                | Each plex refers to a family<br>of analytes required to<br>assess the status of the<br>immune response for one<br>organism (inc assoc.<br>toxins)                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                | V DC, 250g, 4x4x1 cm                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                | life: > 12 months                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 months<br>p 2-plex assay of<br>uman exposure to<br>ogens<br>II use ~10 μL of<br>produce an answer<br>20 min. The assay<br>95% sensitivity and<br>erables: a listing of<br>pecific epitopes that<br>accination from<br>n for at least 2-plex<br>by dose response<br>ROC curves<br>adboard is | 12 months18 monthsp 2-plex assay of<br>uman exposure to<br>ogensInformaticsII use ~10 μL of<br>produce an answer<br>20 min. The assay<br>95% sensitivity andBioassays (2-plex)<br>10 uL<br>sens > 95 %<br>spec > 95 %<br>Time: < 20 min |



E N С

E

N

E G

G

D

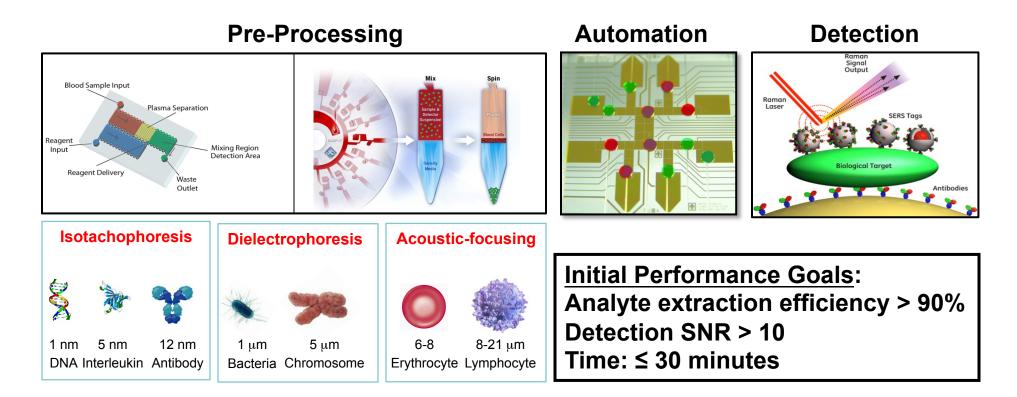


RATION


### **Example Program Aspects**

| Phase 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Phase 1B           | Phase 2                                                                                                                                           | Phase 3                                                                     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| 12 months                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 months          | 18 months                                                                                                                                         | 18 months                                                                   |  |  |
| <ul> <li>Develop on-chip 10-plex bioassay based on at least two orthogonal modes (e.g., mass spectroscopy and fluorescence)</li> <li>The assay shall use ~1 µL of whole blood &amp; produce an answer end-to-end in &lt; 10 min. The assay shall exceed &gt; 95% sensitivity and specificity</li> <li>Example deliverables: for each detection mode, a listing of analytes and specific epitopes for at least 10-plex accompanied by dose response curves and/or ROC curves</li> </ul> |                    | Informatics                                                                                                                                       |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Each plex refers to a family<br>of analytes required to<br>assess the status of the<br>immune response for one<br>organism (inc assoc.<br>toxins) | Bioassays (10-plex)<br>1 uL<br>sens > 95 %<br>spec > 95 %<br>Time: < 10 min |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | SWaP: 9V DC, 250g, 4x4x1 cm                                                                                                                       |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                                                                                                                                   | -                                                                           |  |  |
| <ul> <li>A portable proto<br/>to support indep</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                              | otype is mandatory |                                                                                                                                                   |                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Reagent shelf life: > 12 months                                                                                                                   |                                                                             |  |  |
| INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA) 22                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                                                                                                                                   |                                                                             |  |  |




## Challenges for Multi-Bioassay Design: Discovery Platforms

Proteins, peptoids, peptides, aptamers, etc. can be explored





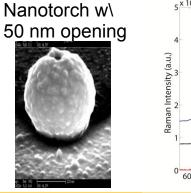
### Challenges for Chip-scale Methods: Sample Preprocessing, Automation, Detection

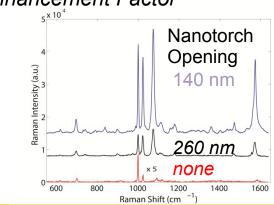




INTELLIGENC

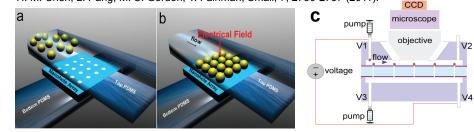


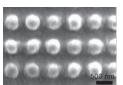

UNIVERSITY OF CALIFORNIA, SAN DIEGO


### **Challenges: Detection**

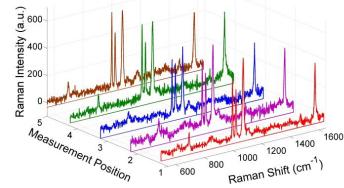
- For detectors that employ a maximal E-field with localization of analytes
- Multi-layer fluidic platform with both microfluidic and nanofluidic channels
  - Electrokinetic forces to control the flow of nanoparticles in a nanochannel

LEADING


- Nanoparticles can be captured, assembled, and released, forming a real-time nanophotonic structure
- Single-molecule SERS
  - Advanced structures
  - >10<sup>8</sup> Enhancement Factor







H. M. Chen, L. Pang, M. S. Gordon, Y. Fainman, Small, 7, 2750-2757 (2011).

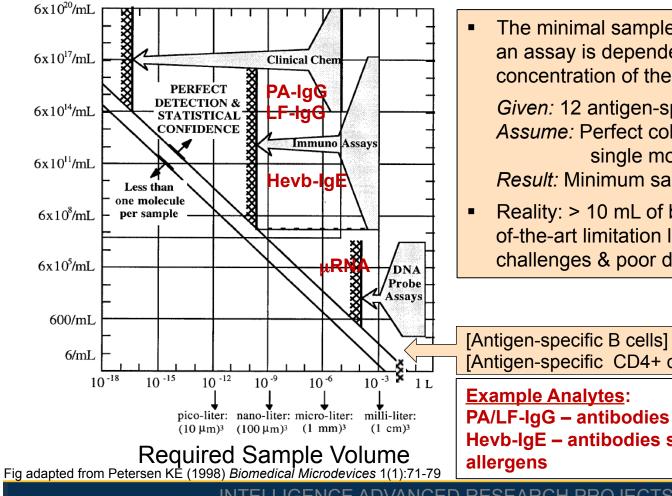
INTEGRATION





## >80% reproducibility from 5 different nanotorches within same substrate




H. M. Chen, L. Pang, A. King, G. M. Hwang, Y. Fainman, Nanoscale (2012)

INTELLIGENCE



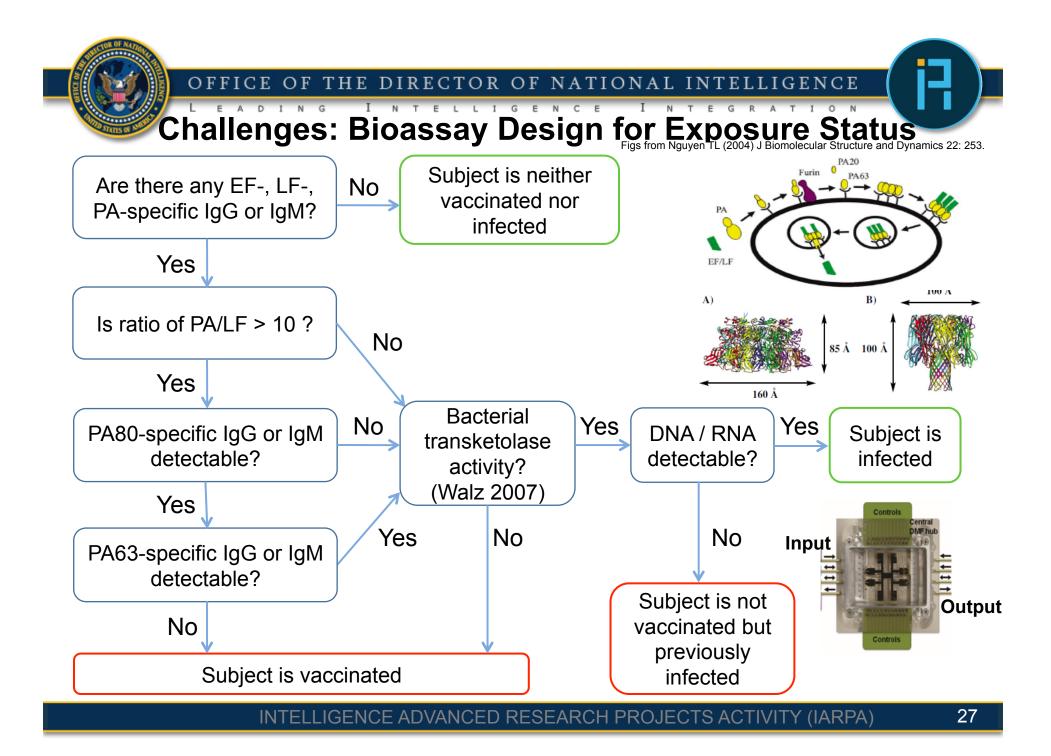
## **Challenges for Chip-Scale Methods: Sample Volume**

What is the minimum sample volume required to minimize false negatives and maximize detection probability?



LEADING

#### The minimal sample volume required for an assay is dependent on the physiological concentration of the analyte.


INTEGRATION

*Given:* 12 antigen-specific B cells/mL of blood *Assume:* Perfect collector/separator and single molecule detector. *Result:* Minimum sample volume = 1/12<sup>th</sup> mL

 Reality: > 10 mL of blood required based on stateof-the-art limitation largely due to preservation challenges & poor detection limit

[Antigen-specific B cells] ~ 12/ml (Nduati 2010) [Antigen-specific CD4+ cells] ~ 8/ml (Alanio 2010)

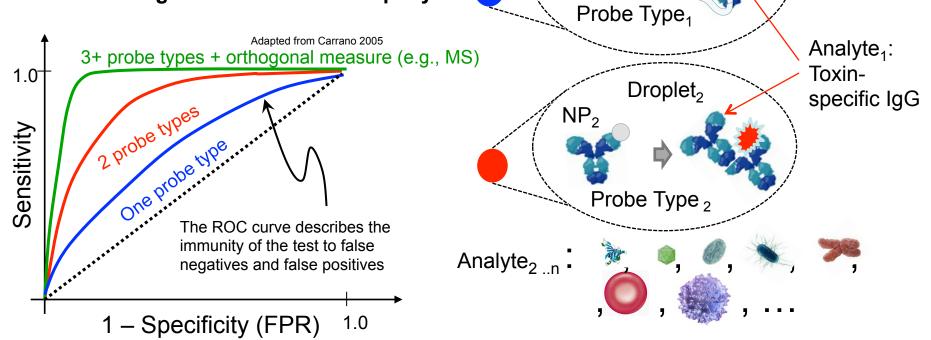
PA/LF-IgG – antibodies specific to anthrax proteins Hevb-IgE – antibodies specific to latex protein allergens





#### INTELLIGENCE INTEGRATION **Challenges: Multi-analyte Analysis**

**Droplet**<sub>1</sub>


NΡ

Multiplexed assays (protein-based or nucleic acid-based). Multiplexed readout strategies for diverse assay types have, to date, not been integrated on a common substrate, in part due to non-specific binding.

#### **Approach:**

Nanoparticle (NP) based assays enable single-substrate platform for acquiring relevant biological data en masse rapidly.

EADING



Independent reactions co-occur in different droplets, reducing false positive interpretations



- BIC will leverage the findings of *omni-omics* research community data worldwide (e.g., protein markers, metabolites)
- And optimize and integrate component-level developments in on-chip sample-prep, automation, and nanoparticle substrates
- The rapidity and multiplexity in BIC enable the concomitant consideration of diverse assay results



## **Guidance on Phases**

### Phases 1A&1B

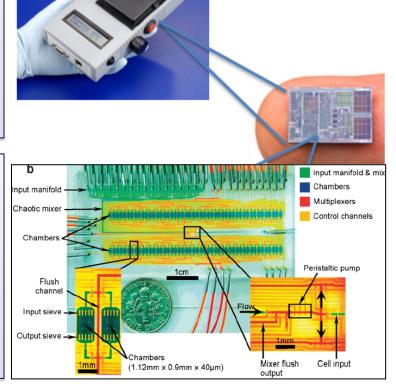
Organizations with innovative approaches can propose to one or more of the areas sought in the discovery platform, chip-scale methods (samplepreprocessing, automation, detection, multiplex analysis, algorithms development), or bioassay development emphases. Please apply respective phase-specific performance metrics to your proposal.

### Phases 2 & 3

Phases 2 and 3 will build on the successes of Phase 1; deliverables will focus on entire systems, not individual areas. Proposals should therefore describe their multidisciplinary capabilities, which could include lab-on-a-chip designers, bioassay development, diagnostic instrumentation/ equipment designers, bio-technologists, immunologists and others needed to support the proposed approach.






## **Bio-intelligence Chips Summary**

#### Vision:

- Rapidly determine human exposure to biological pathogens and associated production activities
- Build an agile, dynamically reconfigurable database of assays to enable field programmable test methodologies
- Develop hand-portable instrument capable of analyzing biological analytes from human secretions with singlemolecule resolution in less than 10 min
- Leverage developments in *omni-omics* to generate a multi-dimensional serumprint of every person-of-interest

#### Key Technical Challenges:

- On-chip sample separation from small molecules to whole cells
- Individually addressable sub-pL automated fluidics control including the ability to recycle analytes
- Rapid single-molecule / single-cell detection using a variety of modalities: different probe-types and phenomenologies
- Multiplexing



## Intelligence Advanced Research Projects Activity (IARPA) Proposer's Day Briefing Bio Intelligence Chips (BIC)

LEADING INTELLIGENCE INTEGRATION

15 Nov 2012

UNCLASSIFIED

INTEGRA

## **Recurring questions**

- Questions and Answers
- Intellectual Property
- Preparing the Proposal (BAA Section 4)
  - Electronic Proposal Delivery
  - Organizational Conflicts of Interest
- Streamlining the Award Process
  - Accounting system
  - Key Personnel
  - Statements of work
- IARPA Funding



INTEGRA

## Responding to Q&As

 Please read entire BAA before submitting questions

D I

- Pay attention to Section 4 (Application & Submission Info)
- Read Frequently Asked Questions, IARPA web site @ http://www.iarpa.gov/faq.html
- Send your questions as soon as possible
  - Write questions as clearly as possible
  - Do NOT include proprietary information



## Intellectual Property

LIGENCE

INTEGRA

- Should no proprietary claims be made, Government rights for data first produced under IARPA contracts will be unlimited.
- The default is usually Government Purpose rights for data developed with mixed funding – if you do not specify, this is the minimum that we expect
- You should state in the proposal any restrictions on deliverables relating to existing materials (data, software, tools, etc.)
- If selected for negotiations, you must provide the terms relating to any restricted data or software, to the Contracting Agent



## intelligence Integration

# Preparing the Proposal

LEADING

- Note restrictions in BAA Section 4 on proposal submissions
  - Interested Offerors must register electronically IAW instructions on: https://iarpa-ideas.gov
  - Interested Offerors are strongly encouraged to register in IDEAS at least 1 week prior to proposal "Due Date"
  - Classified proposals Contact IARPA Chief of Security
- BAA format is established to answer most questions
- Check FBO for amendments & IARPA website for Q&As
- BAA Section 5 Read Evaluation Criteria carefully
  - e.g. "The technical approach is credible, and includes a clear assessment of primary risks and a means to address them"



INTEGRATION

INTELLIGENCE

## Preparing the Proposal (BAA Sect 4)

Note IARPA's OCI policy – see
 <u>http://www.iarpa.gov/IARPA OCI 081809.pdf</u>

EADING

- See also eligibility restrictions on use of Federally Funded Research and Development Centers, University Affiliated Research Centers, and other similar organizations that have a special relationship with the Government
- Focus on possible OCIs of your institution as well as the personnel on your team
- See Section 4: It specifies the non-Government (e.g., SETA, FFRDC, UARC, etc.) support we will be using. If you have a potential or <u>perceived</u> conflict, request waiver as soon as possible
- Cost Proposal we only need what we ask for in BAA

INTELLIGENCE

## **Streamlining the Award Process**

INTEGRATION

 Approved accounting system needed for Cost Reimbursable contracts

EADING

- Must be able to accumulate costs on job-order basis
- DCAA (or cognizant auditor) must approve system
- See <u>http://www.dcaa.mil</u>, Information for Contractors under "Publications"
- Statements of Work (format) may need to be revised
- Key Personnel
  - Expectations of time, note the Evaluation Criteria requiring relevant experience and expertise
- Following selection, Contracting Agent may request your review of subcontractor proposals



## IARPA Funding

LLIGENC

INTEGRATION

 IARPA funds applied research for the **Intelligence** Community

EADIN

- IARPA cannot waive the requirements of Export Administrative Regulation (EAR) or International Traffic in Arms Regulation (ITAR)
- Not subject to DoD funding restrictions for R&D related to overhead rates
- IARPA is not DOD



- BAA is being developed
  - Following issuance, look for amendments and Q&As
- There are likely to be changes
- Content of BAA will be specific to program
- Nothing said here will supersede BAA