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Biodegradation plays a Prominent Role 
in Fate and Transport of Contaminants

Although the potential for biodegradation has been 
well documented in the literature,  there is a 
significant burden of proof and lag time associated 
with achieving the acceptance of natural and /or 
enhanced bioremediation by regulatory and public 
stakeholders.
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Molecular Biological Tools (MBTs)

Tools that target “biomarkers”:
Specific nucleic acid sequences, peptides,   
proteins, or lipids

Outcome is to provide information about:
• Types of microorganisms present 
• Processes relevant to the assessment and/or 
remediation of natural or engineered systems

• microbial activity in situ
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Current State of Field Application of MBTs

Site Characterization Questions Prior to Selection

• What is the potential for degradation based              
on the presence/absence of genes or    
microorganisms of interest?

• What is the link between the presence of  target 
genes or microorganisms and the activity of 
interest?

• Is the spatial and temporal distribution of 
organisms appropriate to meet goals?
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General Description of Genomic & 
Molecular Tools

General Questions

Are the key microbes present?
Are their genes being expressed?

What other groups of microbes present?
What is the microbial density?

Tool Selection

Use DNA & RNA Based Tools for fingerprinting
(Polymerase Chain Reaction [PCR])  
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General Description of Genomic & 
Molecular Tools

General Questions

How active is the microbial community?

Tool Selection

Use Protein Based Tools
(enzyme probes)



6

General Description of Genomic & 
Molecular Tools

General Questions

What groups of microbes are present?
What is the total biomass?

Tool Selection

Use Lipid Based Tools
(phospholipid fatty acids)



7

General Description of Genomic & 
Molecular Tools

General Questions

Can the contaminants be biologically degraded at the site 
under conditions that pertain in the groundwater?

Tool Selection

Use  Stable Isotope Based Tools
(Stable Isotope Probing)
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General Description of Genomic & 
Molecular Tools

General Questions

Are the contaminants actually being biodegraded?

Tool Selection

Use  Stable Isotope Based Tools
(Compound Specific Isotope Analysis)



99

PCR uses the polymerase chain reaction to 
copy DNA in a sample that binds with a short 
DNA primer that contains base  sequences of 
the DNA being amplified.  The copied DNA is 
copied, then the copies are copied, and so on, 
until there is enough DNA to measure. 

The most common application copies the DNA 
for a component of the ribosome, the 16s 
rRNA

 

gene.
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Quantitative or Real time PCR uses 
primers with a fluorescent tag.  As the 
primers are incorporated into DNA, this is 
detected in each PCR cycle by an 
increase in the fluorescence of the 
solution. 

The original density of the organisms is 
related to the number of PCR cycles 
necessary to reach a predetermined 
fluorescence.   
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Quantitative RTm PCR (qPCR) 
is the Most Widely Used 

Genomic MBT in the Field
Using DNA
• qPCR

 

enables both detection and quantification of a specific 
sequence in a DNA sample (16S rRNA

 

gene)

• It is offered as a commercial service by multiple laboratories 
to detect and quantify key genes of interest, especially for 
Dehalococcoides spp. (i.e., detection of “functional genes”

 such as reductive dehalogenase
 

[(RDase) genes].

Using RNA
• The potential exists to detect an actual “activity”

 

by using 
mRNA and expressed proteins from environmental sample.
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Microbiology of Reductive 
Dechlorination

 
of Chloroethenes

Dehalobacter 
Dehalospirillum 
Desulfitobacterium 
Desulfuromonas 
Dehalococcoides

some strains of 
Dehalococcoides

Can accumulate if requisite 
bacteria are not present
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qPCR: Key Organism Identification

• Dehalococcoides is somewhat of an exception in 
bioremediation, where there is a strong link 
between the organism type (identification) and the 
activity (reductive dechlorination) because of the 
simple metabolic pathway.



1515

Evaluation of the Role of 
Dehalococcoides Organisms in 
the Natural Attenuation of 
Chlorinated Ethylenes

 

in Ground 
Water. Xiaoxia

 

Lu, Donald H. 
Kampbell

 

and John T. Wilson. 
2006.EPA/600/R-06/029

Relationship between 
Dehalococcoides DNA in Ground 
Water and Rates of Reductive 
Dechlorination

 

at Field Scale. 
Xiaoxia

 

Lu, John T. Wilson, and 
Donald H. Kampbell. 2006.  Water 
Research 40(2006):3131-3140
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Compared the density of Dehalococcides 
cells in monitoring wells as determined by 
Direct PCR to the density as determined 
by Quantitative PCR, and to the rate of 
reductive dechlorination

 

achieved at field 
scale.
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A Guide for Assessing 
Biodegradation and Source 
Identification of Organic 
Ground Water Contaminants 
using Compound Specific 
Isotope Analysis (CSIA) 

EPA 600/R-08/148 | 
December 2008 | 
www.epa.gov/ada
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Element Stable 
Isotopes

Relative 
Abundance

Hydrogen 1H 0.99985
2H 0.00015

Carbon 12C 0.9889
13C 0.0111

Chlorine 35Cl 0.7577
37Cl 0.2423



2121

Analysis of Stable Carbon Isotope Ratios

The ratio of stable isotopes is determined 
with an Isotope Ratio Mass Spectrometer 
(IRMS).

The IRMS compares the ratio of 13C to 12C in 
the sample against the ratio of 13C to 12C in a 
reference standard.
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Delta C thirteen is the conventional unit for 
the stable carbon isotope ratio in the 

sample.  It is a measure of how much it 
varies from the standard.

Notice that delta C thirteen is expressed in 
parts per thousand.  

You will see this expressed as
o/oo

 

or permil
 

or per mill.

δ13C‰
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Where R is the ratio of 13C 
to 12C in the sample and 
Rs

 

is the ratio in the 
standard.
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Can clearly resolve samples from each 
other if their δ13C differ by more than 

2‰.
Can we use differences in isotopic 

ratios to track plumes, or to associate 
plumes with their sources?
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PCE TCE

Source 13C (‰/PDB)

Manufacturer A -27.12±0.03 -31.53±0.01

Manufacturer B -35.27±0.12 -27.90±0.08

Manufacturer C -24.06±0.08 -29.93±0.18

Aldrich -33.49±0.08

Dow -23.19±0.10 -31.90±0.05

ICI -37.20±0.03 -31.32±0.03

PPG -33.84±0.03 -27.80±0.01

Vulcan -24.1±0.04

Range -23.19 to
-37.20

-27.80 to 
-33.49
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Effect of source variability and transport processes on 
carbon isotope ratios of TCE and PCE in two sandy 
aquifers. Journal of Contaminant Hydrology 74: 265-282 
(2004)
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Effect of source variability and transport processes on 
carbon isotope ratios of TCE and PCE in two sandy 
aquifers. Journal of Contaminant Hydrology 74: 265-282 
(2004)
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What does it take to make it work?

1)No appreciable biodegradation from 
source to impacted well.
2)An appreciable difference in δ13C 
between plausible sources.
3)Samples from a transect 
perpendicular to ground water flow.  
Simple point to point comparisons may 
be misleading.
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Application to a Superfund Site in 
Region 4.  Can SCIR identify the 
source of a plume in fractured rock?

1)Sampled ground water in two 
impacted neighborhoods.

2)Compared the δ13C in TCE to the 
range of δ13C in commerce. 



34

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20
P

C
E

 (1
1)

TC
E

 (1
3)

D
C

E 
(6

)

VC
 (1

)

1,
1,

1-
TC

A
 (8

)

1,
2-

D
C

A
 (1

)

C
T 

(3
)

C
F 

(4
)

D
C

M
 (6

)

High
Mean
Low

13
C

 o / oo

34Range of δ13C Reported for Un-fractionated Chlorinated Solvents 
Figure 6.1 of EPA Guide



35

y = -3.75x + 3.10
R² = 0.83
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Application to a Superfund Site in 
Region 4.  Can SCIR identify the 
source of a plume in fractured rock?

1)Sampled ground water in two 
impacted neighborhoods.

2)Compared the δ13C in TCE to the 
range of δ13C in commerce.

3)If there is more than about 1% 
degradation products, probably not 
going to work. 
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What happens to δ13C during 
biodegradation?  

Can we use changes in δ13C to 
understand biodegradation?
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What happens to δ13C during 
biodegradation? 

Initially, the daughter product is lighter 
than the parent compound (the δ13C is 
more negative).

As the daughter product degrades, it 
becomes heavier (the δ13C becomes 
less negative).
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What happens to δ13C during 
biodegradation? 

If the daughter product is heavier (the 
δ13C is less negative) than the 
plausible range for the parent,  that is 
substantial evidence that the daughter 
product has also been degraded.



42

Figure 7.1 of EPA Guide
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At locations along the flow path where the parent 
compound is entirely degraded, we can assume that 
the “original un-fractionated”

 

δ13C for the 
degradation product was the original un-fractionated 
δ13C for the parent compound.
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How can CSIA be used to determine 
whether a daughter product is 
degrading?

A site in Region 6.  A “bull’s eye”
 plume.  No predominant direction of 

ground water flow.  
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Distribution of concentrations of TCE and 
chlorinated degradation products at the end of the 

second five year review cycle.

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45

To
ta

l C
hl

or
in

at
ed

 H
yd

ro
ca

rb
on

s 
(µ

m
ol

e/
L)

Rank in Concentration

Highest Conc. Sampled
Last Conc. Sampled



4949

0.01

0.1

1

10

0 5 10 15 20 25 30 35 40 45

To
ta

l C
hl

or
in

at
ed

 H
yd

ro
ca

rb
on

s 
(µ

m
ol

e/
L)

Rank in Concentration

Highest Conc. Sampled
Last Conc. Sampled
MCL Vinyl Chloride



5050

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10

To
ta

l C
hl

or
in

at
ed

 H
yd

ro
ca

rb
on

s 
(µ

m
ol

e/
L)

Rank in Concentration

Conc. increasing

Conc. increasing

MCL in 2047 (NS at 80%)

MCL in 2035 (2047)

MCL in 2035 (2048)

Conc. increasing
Conc. increasing

MCL in 2033 (2074)

MCL in 2035 (2048)
MCL in 2029 (2034)



5151

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10

To
ta

l C
hl

or
in

at
ed

 H
yd

ro
ca

rb
on

s 
(µ

m
ol

e/
L)

Rank in Concentration

Well#23 Conc. increasing



5252

0

50

100

150

200

250

300

350

400

0

1

2

3

4

5

6

7

0.0 5.0 10.0 15.0

V
in

yl
 C

hl
or

id
e 

(µ
g/

L)
 

V
O

C
s 

(µ
M

ol
ar

) 

Elapsed Time (years)

Well #23

TCE

cis-DCE

Vinyl Chloride



5353

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0.010.11

1
3 C

o /
oo

Fraction TCE remaining

TCE Initial TCE



54

y = -3.75x + 3.10
R² = 0.83
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PCR 

SiREM Labs
130 Research Lane, Suite 2 
Guelph, Ontario
Canada, N1G 5G3

Phil Dennis
1-866-251-1747 ext. 238
pdennis@siremlab.com

Commercial Source of Analytical Services 
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PCR, PLFA, Stable Isotope Probes

Microbial Insights, Inc.  
2340 Stock Creek Blvd.  
Rockford, TN  
37853  
United States  

Greg Davis
Tel: 865-573-8188, 
Fax: 865-573-8133, 
Email: gdavis@microbe.com

Commercial Source of Analytical Services 
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CSIA 

Patrick McLoughlin
pmcloughlin@microseeps.com
Microseeps

 

Inc.
University of Pittsburgh Applied Research Center
220 William Pitt Way
Pittsburgh, PA 15238
412 826 5245 ph
412 826 3433 fax

Commercial Source of Analytical Services 
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CSIA

Paul Philp
Department of Geology and Geophysics
100 East Boyd Avenue
University of Oklahoma
Norman, Oklahoma 73019
405 325 4469
fax (405)-325-3140
pphilp@ou.edu

Commercial Source of Analytical Services 
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CSIA

Zymax
 

Forensics
Yi Wang
Director, Zymax

 

Forensics Isotope
600 South Andreasen

 

Drive
Suite B,
Escondido, California
92029
yi.wang@zymaxUSA.com

Commercial Source of Analytical Services 
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CSIA

Barbara Sherwood Lollar
Department of Geology
University of Toronto
22 Russell Street, Toronto, Ontario
M5S 3B1

Phone:  (416) 978-0770
Fax:  (416) 978-3938
E-mail:  bslollar@chem.utoronto.ca

Commercial Source of Analytical Services 
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