



# Applications and Data Environments Breakout Group IV: Regional Data Environment



Federal Highway Administration
Office of Transportation Operations

#### **Randy Butler**



Federal Highway Administration
Office of Operations and Freight

#### **Karl Wunderlich**

**Noblis** 

Mobility and Environment Workshop - November 30, 2010





### Today's Exercise (Part 1) Scorecards

- Feedback materials provided in the breakout rooms
  - Application scorecards
  - 3 poker chips (for voting)
- Facilitators will brief assumptions about the data environment that applications can draw upon
- Facilitators will clarify application evaluation criteria
- Consider a set of (up to 12) IntelliDrive application concepts
  - Facilitators provide one slide that describes the application
  - Field questions and clarifying discussion
  - Individually, you rate the application (HIGH, MEDIUM, LOW) against the criteria on your scorecard





### Today's Exercise (Part 2) Voting

- Once you have scored each application, each participant votes for the three most promising applications
  - "Most promising": strong potential for transformative impact, low deployment risk, and clear alignment with IntelliDrive program goals
  - BLUE = 3 points (top priority)
  - RED = 2 points (second-highest priority)
  - WHITE = 1 point (third-highest priority)
  - Deposit your chips in the voting bins identified for each application (also turn in your scorecards)
- Quick break (5 minutes) to tabulate the results
- Reconvene to consider results within each breakout
  - Discuss the implications of your group process
  - Identify a presenter from your group for the breakout report at 3 PM





#### **Exercise Ground Rules**

- For today's exercise, these items can't be changed
  - Evaluation criteria
  - Data Environment assumptions
  - Application concepts (no altering or adding new ones)
- Policy-related issues are <u>NOT in play for discussion</u>
  - Intellectual Property, Privacy, Access/Security, Meta-data, Quality,
     Aggregation, Standards, Financial/Business Models....
  - If these topics come up, we will park the discussion until tomorrow,
     when we have special session to deal with these in turn



# Data Environment Assessment Scorecard Activity



### Regional Data Environment Description



- Organizes multi-source data in a regional, state-wide, rural, multi-state or national data environment
  - Vehicles (light, transit, freight, non-motorized, public safety)
  - Mobile devices
  - Roadside/wayside infrastructure
- Federated with related data environments
  - Can pull in federated data to assist in regional control decisions





# Regional Data Environment Assumptions

- Spans a network of subsidiary sub-networks
  - Roadway sub-networks (e.g., arterial, freeway, or rural)
  - Parking facilities
  - Integrated transit sub-network (rail, bus and ferry sub-networks)
- Roadway facilities within the network may have access restrictions (e.g., HOV or Truck Only)
- Tolls may be collected on some or all lanes of these facilities
- Weather and incident-related closures are infrequent but significant events
- Regional network carries significant traveler demand and supports timecritical goods movement between intermodal facilities
- Directional passenger and freight demand patterns vary by time-of-day, day-of-week, and season





# Vehicle and Traveler Data Source Assumptions

- Nearly all travelers carry GPS-enabled mobile devices
- Some travelers opt-in to configure their mobile devices to contribute data regarding position, time and trip characteristics
- Many light vehicles opt-in to contribute data, some broadcast HIA messages
- Many transit vehicles contribute position, passenger count, and other data, some broadcast HIA
- Many freight vehicles provide data on position, credentials and other data, some broadcast HIA
- Most emergency vehicles broadcast HIA and vehicle type data





# Infrastructure Data Source Assumptions

- Road Weather sensors, loop detectors, other roadside sensors as currently deployed (2010 baseline)
- Many signalized intersections act as advanced intersections
  - DSRC-capable roadside equipment for 2way communication with enabled devices and vehicles
  - Broadcast Signal Phase and Timing (SPaT) data via DSRC
- Some transit and curbside parking facilities provide utilization data (spaces used/remaining), every minute





# Application Assessment Scorecard Activity



### Application Evaluation Criteria

- Next, we're going to go through application concepts that utilize data from the regional data environment
- We will present each concept on a single slide
  - You can ask clarifying questions, or offer suggestions about how data might be leveraged
  - But the concept itself cannot be altered, modified or enhanced in discussion
  - Please record notes or comments on each concept on your scorecard
- You rate each application on three criteria (High, Medium, Low)
  - Potential Impact: will this application have transformative impact?
  - Deployment Readiness: if we assume the data is available, can this application be developed, tested and widely deployed by 2025?
  - Program Alignment: does the application align with program objectives and is there a clear federal role in its development and deployment?





## Application #1: ATIS

- Multi-modal Real-Time Traveler Information
- Problem Addressed:
  - Improve precision and accuracy traveler information with respect to travel times, cost, or availability on alternate routes or modes

#### Description

- Considers real-time and historical travel conditions for the traveler's trip (prespecified origin, destination, and time of departure)
- Suggests potential routes and modes (e.g., HOV, transit, tolled lanes) with travel times, travel time reliability, and costs for each alternative
- Predicts travel times based on existing and expected traffic patterns, weather conditions, incident locations, and work zone locations and timings





# Application #2: DR-OPT

- Drayage Optimization
- Problem Addressed:
  - Reduce freight delays at key facilities that overbook their capacity to ensure uninterrupted operations within the terminal/warehouse

#### Description

- Optimize drayage operations so that load movements are coordinated between freight facilities
- Individual trucks are assigned time windows within which they will be expected to arrive at a pickup or drop-off location
- Early or late arrivals to the facility are dynamically balanced
- Web-based forum for load matching provided to reduce empty moves





# Application #3: F-ATIS

- Freight Real-Time Traveler Information with Performance Monitoring
- Problem Addressed:
  - Uncertainties in traffic congestion and weather conditions pose a productivity and safety risks to freight traffic, result in negative environmental impacts

#### Description

- Enhance traveler information systems to address specific freight needs
- Provide route guidance to freight facilities, incident alerts, road closures, work zones, routing restrictions (hazmat, oversize/overweight)
- Tailored weather information, regulatory and enforcement information (speed limit reductions), "concierge" services and maintenance locations
- Intermodal connection information, container disposition and schedule
- Performance monitoring





# Application #4: MAYDAY

- Mayday Relay
- Problem Addressed:
  - Run-off-the-road single vehicle crashes in rural areas are frequent, response can be delayed due to limited communications and infrequent patrolling

#### Description

- Enabled vehicles send a mayday message, including vehicle location, airbag status, g-loading (magnitude and direction)
- Passing IntelliDrive-enabled vehicle receives the mayday message, and relays the message at a roadside hot spot
- Message passed to 911 center for EMS dispatch, minimizing the time required to deliver medical attention to crash victims





# Application #5: EFP

- Multi-modal Integrated Payment System
- Problem Addressed:
  - Unfamiliarity with fare payment methods and inconvenience are factors that deter some travelers from using transit more often

#### Description

- Utilize standards for an open architecture electronic payment system
- Establish a transportation payment environment that reduces delays at toll plazas and parking payment kiosks, and reduces dwell times at bus stops
- Promote ease of transfers across modes and increase customer convenience
- Mine trip chaining patterns to improve service planning and operations
- Support implementation of congestion-based transit fare pricing





### Application #6: T-DISP

- Dynamic Transit Operations
- Problem Addressed:
  - Traditional fixed route/fixed schedule transit is inherently inefficient for the traveler in low density, low ridership, and dispersed origin/destination areas

#### Description

- Enable demand-responsive transportation services utilizing GPS and mapping capabilities of mobile devices
- Travelers input a desired destination and time of departure tagged with their current location
- Central system dynamically schedules and dispatches or modifies the route of an in-service vehicle by matching compatible trips together
- Like a stock exchange, providers can bid/trade within a transparent platform





### Application #7: T-EVAC

- Emergency Communications and Evacuation
- Problem Addressed:
  - In an evacuation, many people willing to evacuate are unable to leave, and coordinating efforts is limited by data scattered across multiple institutions

#### Description

- Integrate data across multiple agencies to identify and locate people who are more likely to require guidance and evacuation assistance
- Provide a mobile-accessible database that contains information about who needs help, what kind of help, and where help is needed
- Individuals who require assistance transmit a "help" message to and receive directions from the authorities
- Enable dynamic dispatching and routing of available resources (e.g., vehicles)
   during the evacuation





### Application #8: T-MAP

- Universal Map Application
- Problem Addressed:
  - Interoperability among proprietary map applications on current CAD/AVL systems increases cost and complexity of transit management

#### Description

- Pursue an open map concept to establish an universal map application supported by private transit CAD/AVL systems
- Application processes RSS feeds from supporting agencies to incorporate incidents, detours, street closures, and other data on transit map applications
- Transit agencies provide vehicle locations, passenger amenities, and service level to agencies scheduling street repairs or other road closures





## Application #9: VMT

- IntelliDrive-Driven Mileage Based User Fees
- Problem Addressed:
  - Projected reduced gas tax revenue for same vehicle miles traveled (VMT),
     while cost of providing transportation system increases with inflation

#### Description

- Integrate IntelliDrive and Mileage Based User Fees (MBUF) to eliminate redundant GPS, maps, driver interfaces, and communications in the vehicle
- Accumulate miles driven in categories determined by policy and charge for the miles driven, ensure interoperability among jurisdictions
- Considerations may include vehicle type, time of day, roadway type, jurisdiction, direction of travel, and geographic area of travel





# Application #10: WX-INFO

- Real-Time Route Specific Weather Information for Motorized and Non-Motorized Modes
- Problem Addressed:
  - improve mobility and safety of users of motorized and non-motorized modes of transportation (e.g., automobiles, transit, freight, bicyclists, and pedestrians) by providing real-time, highly localized weather and road condition

#### Description

- Fuse weather-related probe data generated by probe vehicles with weather data from traditional weather information sources
- Develop highly localized weather and pavement conditions for specific roadways, pathways, and bikeways





### Application #11: **WX-MDSS**

- **Enhanced MDSS (Maintenance Decision Support System) Communications**
- **Problem Addressed:** 
  - Reduce reliance on (potentially expensive) commercial wireless networks to communicate with snowplows or other maintenance vehicles
  - Keep treatment recommendations current

#### **Description**

- MDSS equipped maintenance vehicles utilize DSRC hot spots to download treatment recommendations and upload recent maintenance activities
- In many rural areas access to commercial networks is limited and/or expensive
- Utilize DSRC hot spots to reduce costs and improve communications latency for state DOTs





### Voting





### Breakout Exercise (Part 2) Voting

- Now that we've worked through all the applications,
   vote for the three most promising applications
  - "Most promising": strong potential for transformative impact, low deployment risk, and clear alignment with IntelliDrive program goals
  - BLUE = 3 points (top priority)
  - RED = 2 points (second-highest priority)
  - WHITE = 1 point (third-highest priority)
  - Deposit your chips in the voting bins identified for each application (also turn in your scorecards)
- We'll take a quick break (5 minutes) to tabulate the results
- One Bin, One Participant, One Chip rule
  - Do NOT dump all of your chips in a single bin
  - We want your individual priority of the top THREE applications





### **Quick Break**



### Exercise Results



#### Results Discussion

- Were similar or dissimilar applications selected during voting?
- Did the highest ranking applications align in the same quadrants of the impact/deployment readiness chart?
- Regarding the top 6 applications:
  - Are they highly overlapping? Or independent?
  - Do they require coordinated research?
  - Will they require coordinated deployment?
- Who would like to volunteer to report out the breakout group findings?



### Exercise Complete