SECTION 50

BONDING

TABLE OF CONTENTS

PAGE

SECTION SECTION TITLE

 NUMBERSECTION 50 BONDING 1
50.1 Bond Scheme 1
50.1.1 Maximum Reclamation Liability during the Permit Term 1
50.2 Extended-Liability Bond Areas 1
50.3 Bonding of Facilities Used in Common 2
50.4 Reclamation Cost Estimate. 2
50.4.1 Reclamation Costs 2
50.4.1.1 Facility Demolition and Removal 2
50.4.1.2 Earthmoving 2
50.4.1.2.1 Equipment Selection 4
50.4.1.2.2 Equipment Productivity and Costs 4
50.4.1.3 Revegetation 4
50.4.1.4 Miscellaneous 4
50.4.3 Indirect Reclamation Costs 4
50.4.2 Total Performance Bond Cost 5
Personnel 5
References 5

SECTION 50

BONDING

LIST OF TABLES

TABLE

NUMBER TABLE TITLE
50.4-1 Summary of Pinabete Permit Area Reclamation Bond Amount

SECTION 50

BONDING

LIST OF EXHIBITS

EXHIBIT

NUMBER EXHIBIT TITLE

$\underline{50.1-1}$	Post-Mining Configuration For Bond Term
$\underline{50.1-2}$	Bond Surface Configuration
$\underline{50.4-1}$	Cut and Fill Contours
$\underline{50.4-2}$	Cut and Fill Blocks
$\underline{50.4-3}$	Topsoil Replacement

SECTION 50

BONDING

LIST OF APPENDICES

APPENDIX
 NUMBER APPENDIX TITLE

50.A Detailed Reclamation Bond Calculation

SECTION 50

BONDING

LIST OF REVISIONS DURING PERMIT TERM

| REV. | DATE |
| :--- | ---: | ---: |
| NUMBER REVISION DESCRIPTION | APPROVED |

SECTION 50 BONDING

50.1 Bond Scheme

The determination of the reclamation bond is an estimate of the maximum foreseeable reclamation cost that the Regulatory Authority would incur in the event of bond forfeiture by BHP Navajo Coal Company (BNCC) during the permit term ending in 2021. Areas bonded under this Pinabete Mine Plan permit area (permit area) bond include those areas which will be disturbed in the process of recovering coal from the permit area and those areas required to construct facilities or infrastructure that support the production activities. The reclamation costs detailed in this section and the reclamation procedures detailed in Part 5 (Reclamation Plan) apply only for determining the bond amount at year 2021 and are not necessarily meant to represent current or future operational practices. Direct costs are calculated in Worksheets 2 through 15 and are totaled in Worksheet 16 in Appendix 50.A. Indirect costs are applied as percentages of the direct cost in Worksheet 16 to determine a total bond cost.

50.1.1 Maximum Reclamation Liability during the Permit Term

During the permit term ending 2021, the reclamation liabilities will be greatest at the end of the five-year term. BNCC will progress pit development throughout the permit term while not yet disturbing sufficient acreage to facilitate significant reclamation activities, the cumulative disturbance will reach the maximum late in the permit term. Throughout the five-year term, strip progression results in an increase in disturbed land, increased pit depths, and slight increases in pit lengths.

The amount of mining (stripping) disturbance to occur during the permit term is related to strip progression and timing, which is presented on Exhibit 50.1-1. The bond scenario presented here does not necessarily match the strip progression timing shown in the permit term disturbance exhibits. This is due to the remaining uncertainty regarding actual start dates for the mining (stripping) operations, which are ultimately a function of the timing of the coal requirements from the customer. In order to address this uncertainty and ensure that BNCC will be sufficiently bonded over the first permit term, the maximum likely amount of mining (stripping) disturbance has been considered for the bond scenario. In other words, this is a conservative bond scenario and BNCC is unlikely to disturb more than the acreage indicated in the bond scenario. The regraded area of disturbance (bond final surface configuration) is also shown on Exhibit 50.1-2.

50.2 Extended-Liability Bond Areas

BNCC does not have any extended liability bond areas associated with the permit area; therefore, this section is not applicable.

50.3 Bonding of Facilities Used in Common

Facilities and infrastructure (e.g., powerlines, ancillary roads, etc.) within the permit area in Area 4 North which are currently considered in BNCC Navajo Mine’s bond amount (Office of Surface Mining Reclamation and Enforcement (OSM) Permit No. NM-0003F) (BNCC 2009) will be separated from the Navajo Mine bond and incorporated into the Pinabete Mine Plan permit area bond by minor revision after the approval of this permit application package.

50.4 Reclamation Cost Estimate

50.4.1 Reclamation Costs

Reclamation costs are calculated as shown in Appendix 50.A, Worksheets 1 through 16. The methods and format used in this calculation are consistent with the guidance contained in the OSM Handbook for Calculation of Reclamation Bond Amounts (OSM 2000). A summary of the reclamation bond amount is presented in Table 50.4-1.

Reclamation liabilities attributable to the Pinabete Mine Plan during the first permit term (2016 to 2021) will occur in Area 4 North (pit development in Area 4 South will occur after the first permit term). It is assumed that the final bond pit will progress as shown in Exhibit 50.1-1 and will be stripped to the lowest economically recoverable coal seam. Reclamation activities will consist of the following:

1) Facility demolition and removal,
2) Earthmoving - primary and secondary regrade, topdressing, mitigation,
3) Revegetation, and
4) Miscellaneous

50.4.1.1 Facility Demolition and Removal

Facility demolition and removal of all existing permit structures on the mine site includes electric power lines; explosive stores; coal facilities; water control ponds; transportation facilities; and miscellaneous structures. A majority of these facilities are included with the Navajo Mine Area 4 North Bond update which is located in the Navajo Mine Permit Application Package (OSM permit No. NM-0003F, Appendix 12-B) (BNCC 2009). New facilities associated with the Pinabete Mine Plan permit area that are constructed during the first permit term are two sedimentation ponds (Pond 415 and Pond 416). Removal of these ponds is included in earthmoving costs. As a result, there are no facility demolition and removal costs.

50.4.1.2 Earthmoving

A post-mining "snapshot" of the mine area was projected for year 2021, as shown in the bond post-mining configuration (PMC) map, Exhibit 50.1-1.

The bond final surface configuration (BSC) selected for the initial permit term is to return the disturbed area as close as possible to the pre-mining topography. To achieve BSC (Exhibit 50.1-2), PMC topography in these areas was altered to create reclaimed surfaces falling as close as practical to the pre-mining topography. The BSC surfaces maintain 6.5 horizontal:1 vertical ($6.5 \mathrm{~h}: 1 \mathrm{v}$) maximum final interior slopes, $4 \mathrm{~h}: 1 \mathrm{v}$ maximum outslopes, balance cut and fill volumes, and ensure positive drainage.

The next design step was to subtract a computerized grid of the PMC from the BSC. The result is a cut-fill contours map (Exhibit 50.4-1) with the cut areas shown as red contours, and the fill areas shown as green contours. The cut and fill areas are then subdivided into polygons and the cut and fills are balanced by taking extra cut to polygons that require fill. The result is the cut-fill blocks map (Exhibit 50.4-2).

The CAD software gives the volume and centroid of each block. The centroids are used to calculate haulage distances and grades, except in the case of deep pits and ramps where haulage is assumed to be to the crest where the material can be pushed over the edge. The haulage profiles and grades are weight averaged by volume to give an average distance and grade for each equipment type.

All bond earthmoving activities are tabulated in Worksheet 3 as follows:

Worksheet 5	Dozers
Worksheet 8	Loaders
Worksheet 9	Trucks
Worksheet 11	Scrapers
Worksheet 12	Graders
Worksheet 15	Drilling and Blasting of Highwalls

Quantities from these worksheets are used as input to Worksheets 5 through 12, where equipment hours are calculated. Worksheet 13 uses these hours to calculate earthmoving costs. The earthmoving costs are totaled in Worksheet 16, Item 2. In addition to regrade activities, earthmoving includes spoil mitigation, topdressing placement, and concrete disposal.

Once regrading and/or facilities removal activities have been completed in an area, required suitable root zone mitigation and/or topdressing material is placed on these areas (Exhibit 50.4-3).

Suitable spoil and regolith/topdressing material (either stockpiled or in situ) are used to complete the 4-feet suitable root zone material requirements on spoil surfaces. Stockpiled and/or in-situ regolith/topdressing material is used to complete the topdressing material depth requirement on all reclaimed surfaces. Refer to Section 36 (Post-Reclamation Soil) for additional information regarding root zone material and topdressing replacement requirements.

50.4.1.2.1 Equipment Selection

Large earthmoving equipment was selected assuming that a competent, qualified contractor will be doing the reclamation work using their own equipment.

50.4.1.2.2 Equipment Productivity and Costs

Reclamation activities will take place with a 15-shift-per-week schedule. Equipment ownership and operating costs are tabulated in Appendix Table 50-A-23 (Appendix 50.A) taken from Cost Reference Guide for Construction Equipment (CRG-PRIMEDIA Equipment Watch 2011). Equipment operator wage rates are listed in Appendix Table 50-A-24 (Appendix 50.A) and were taken from the ACME Inc. Navajo Mine reclamation contract in force for 2011.

For haul routes greater than 600 feet, scrapers are more economical than dozers. For haul routes greater than 3,000 feet, dump trucks are more economical than scrapers. Dozers are assumed to work alone with no support equipment other than a lowboy for transport. Truck and scraper fleets both require load and dump dozers, and half-time water truck and grader for haul road maintenance. All fleets are assigned light plants for night work. Fuel and lube trucks are included in the fuel costs (Appendix Table 50-A-23 in Appendix 50.A).

Productivities for each particular activity are calculated in Worksheets 5 through 12 (Appendix 50.A), using the material properties and haulage profile pertaining to the task.

50.4.1.3 Revegetation

After regrading, the bonded areas will be graded with graders and then these areas and facilities areas will be topdressed as noted in previously. After topdressing, revegetation activities will commence. This involves seeding, crimping, mulching, and irrigation as described in Section 37 (Post-Reclamation Vegetation). Costs are noted in Appendix 50.A, Worksheet 14.

50.4.1.4 Miscellaneous

No miscellaneous costs were required for the initial permit term bond scenario.

50.4.3 Indirect Reclamation Costs

Mobilization and demobilization costs are assumed to be 1% of the direct costs, since the reclamation project would be very large. Contingencies are 5% of the direct costs; the engineering redesign fee, the contractor profit and overhead, and the reclamation fee are set at $1.8 \%, 15.0 \%$, and 3.9% of direct costs respectively, per agreement with OSM staff.

50.4.2 Total Performance Bond Cost

The total performance bond cost is the sum of the direct and indirect costs and is shown in Worksheet 16, Appendix 50.A.

Personnel
Persons or organizations responsible for data collection, analysis, and preparation of this permit application package section:

Ron Van Valkenburg	Norwest Corporation Kalt Lake City, UT
Matt Owens	
BHP Navajo Coal Company	

References

Baker, T. and C. Babbitt (Editors). 2007 Heavy Construction Cost Data: 2008. $22^{\text {nd }}$ Edition. RS Means Company, Inc. Kingston, Massachusetts.

BHP Navajo Coal Company (BNCC). 2009. Navajo Mine Permit Application Package. OSM Permit No. NM-0003F. On file at Office of Surface Mining Reclamation and Enforcement- Western Region Technical Office. Denver, Colorado.

CRG-PRIMEDIA Equipment Watch, Cost Reference Guide for Construction Equipment. 2011. $1^{\text {st }}$ Half Edition.

Office of Surface Mining Reclamation and Enforcement (OSM). 2000. Handbook for Calculation of Reclamation Bond Amount. U.S. Department of Interior. Washington, D.C.

Table 50.4-1 Summary of Pinabete Permit Area Reclamation Bond Amount

		2012 Estimate			
1	Total facility and structure removal costs	\$			
2	Total earthmoving costs	\$	23,03		
3	Total revegetation costs	\$	2,48		
4	Total other reclamation activities costs	\$			
5	Subtotal: Total Direct Costs			\$	25,793,011
6	Mobilization and demobilization (at 1.0\% of Item 5)		1.0\%	\$	257,930
7	Contingencies (at 5.0\% of item 5)		5.0\%	\$	1,289,651
8	Engineering redesign fee (at 1.8 of Item 5)		1.8\%	\$	464,274
9	Contractor profit and overhead (at 15.0\% of Item 5)		15.0\%	\$	3,868,952
10	Reclamation management fee (at 3.9\% of Item 5)		3.9\%	\$	1,005,927
	Total Bond Amount				32,679,745
	LESS Navajo Mine Area 4 North Bond Amount ${ }^{1}$			\$	16,459,152
	Total Pinabete Permit Area Bond Amount				16,220,593

[^0]

Appendix 50.A

Detailed Reclamation Bond Calculation

LEGEND	
$X X X$	Data From A Link
$X X X$	Data Calculated From A Link
$X X X$	User Input Data
$X X X$	Calculated Data To A Link
$X X X$	Calculated Data
$X X X$	Requires Updating
$X X X$	Newly Updated

Figure 1

HISTORICAL EQUIPMENT OWNERSHIP AND OPERATING COSTS

Equipment Model	Ownership Costs (\$/hr)					Overhaul Costs (\$/hr)							Field Repair and Fuel Costs (\$/hr)																						EscalatedTotal$(\$ / h r)$
	Depreciation		Depreciation MultiplierAdjusted Depreciatio			Labor		$\begin{gathered} \hline \text { Labor } \\ \text { Multiplier } \end{gathered}$	$\begin{gathered} \text { Adjusted } \\ \text { Labor } \end{gathered}$		O/H Parts		Labor		$\begin{array}{\|c\|} \hline \text { Labor } \\ \text { Multiplier } \end{array}$	Adjusted Labor		Parts		Fuel		$\begin{gathered} \text { Fuel } \\ \text { Multiplier } \end{gathered}$	Adjusted Fuel		Lube		Tires		Tire Multiplie		Adjusted Tires		GEC (2)		
D9R Dozer Semi-U Blad	\$	24.39	0.83	\$	20.33	\$	6.88	0.870	\$	5.98	\$	18.38	\$	8.06	0.870	\$	7.01	\$	17.90	\$	21.67	1.728	\$	37.46	\$	6.63	\$		\$	1.73	\$	-	\$	2.98	126.20
D10R Dozer Semi-U Blad	\$	34.24	0.83	\$	28.53	\$	6.88	0.870	\$	5.98	\$	25.53	\$	8.06	0.870	\$	7.01	\$	24.87	\$	30.12	1.728	\$	52.06	\$	9.21	\$		\$	1.73	\$		s	4.14	170.63
D11R Dozer U Blade	\$	55.27	0.83	s	46.06	\$	6.88	0.870	s	5.98	\$	22	\$	8.06	0.870	\$	7.01	\$	0.15	\$	44.92	1.728	\$	77.64	\$	4.49	\$		\$	1.73	\$		\$	6.69	260.64
637G Scraper	\$	25.01	0.83	\$. 84	\$	6.72	. 870	\$	5.84	\$	33	\$	10.07	0.870	\$	8.76	\$	8. 19	\$	28.12	1.728	s	48.60	\$	8.77	\$	5.21	\$	1.73	\$	5.21	s	0.77	44.95
992 G Loader	\$	67.59	0.83	\$	5.33	\$	4.20	0.870	\$	3.65	\$	14.26	\$	5.12	0.870	\$	4.45	\$	15.73	\$	38.66	1.728	\$	66.82	\$	12.77	\$	22.57	\$	1.73	\$	22.57	\$	2.14	213.30
777 D Truck	\$	42.09	0.83	s	35.08	\$	16.06	0.870	\$	13.97	\$	14.58	\$	9.86	0.870	s	8.57	\$	9.00	\$	27.20	1.728	s	47.01	\$	10.54	\$	13.72	\$	1.73	\$	13.72	s	-	162.43
16 H Grader	\$	18.42	0.83	\$	15.35	\$	3.02	0.870	\$	2.63	\$	8.57	\$	2.52	0.870	\$	2.19	\$	8.31	\$	13.29	1.728	\$	22.97	\$	4.25	\$	5.29	\$	1.73	\$	5.29	\$	0.69	75.60
Water Truck 10,000 gal	\$	28.40	0.83	\$	23.67	\$	5.76	0.870	\$	5.01	\$	5.71	\$	13.97	0.870	\$	12.15	\$	11.01	\$	22.25	1.728	\$	38.46	\$	5.81	\$	9.32	\$	1.73	\$	9.32	s		117.79
Small BackhcCat 446B	\$	6.11	0.83	s	5.09	\$	2.10	0.870	\$	1.83	\$	2.25	\$	2.77	0.870	\$	2.41	\$	1.99	\$	5.99	1.728	\$	10.35	\$	1.52	\$	1.62	\$	1.73	\$	1.62	\$	0.28	28.94
16 H Grader, ripping	\$	19.21	0.83	\$	16.01	\$	3.05	0.870	\$	2.65	\$	8.78	\$	2.72	0.870	\$	2.37	\$	8.67	\$	13.29	1.728	\$	22.97	\$	4.32	\$	5.29	\$	1.73	\$	5.29	\$	0.92	77.55
Pickup Truck	\$	2.40	0.83	\$	2.00	\$	0.47	0.870	\$	0.41	\$	0.48	\$	0.59	0.870	\$	0.51	\$	0.47	\$	3.88	1.728	\$	6.71	\$	0.52	\$	0.36	\$	1.73	\$	0.36	\$.	11.96
Mechanic truck	\$	3.19	0.83	s	2.66	\$	0.47	0.870	\$	0.41	\$	0.64	\$	0.59	0.870	\$	0.51	\$	0.62	\$	2.26	1.728	\$	3.91	\$	0.41	\$	0.48	\$	1.73	S	0.48	s		10.26

The Total $\$ / h r$ are used in Worksheet 13

1) CRG - PRIMEDIA Equipmentwatch, "Cost Reference Guide for Construction Equipment," 2004 edition

GEC - Ground Engaging Components
Mentian Assur

Depreciation: Assume two shifts per day
Assume 90% availability on all equipme

0.8

Labor - Heavy Equipment Mechanic: Field Repair and Fuel Costs
(0.08)(CRG Wages) + Local Wages) / CRG Wages $\quad \$ 35.46 \mathrm{hr}$
CFG Wages

Mean	erence	er (1)	ID	Item	Unit	2008 Bare Costs (1)	2008 Unit Costs
0241	16.13	0012	1	Large urban buildings, steel	CF	\$0.22	\$0.22
0241	16.13	5000	1 a	Large urban buildings, steel, no interior walls reduce by 50\%	CF	\$0.11	\$0.11
0241	16.13	0050	2	Large urban buildings, concrete	CF	\$0.30	\$0.30
0241	16.13	5000	2 a	Large urban buildings, concrete, no interior walls reduce by 5	CF	\$0.15	\$0.15
0241	16.13	0080	3	Large Urban buildings, masonry	CF	\$0.23	\$0.23
0241	16.13	5000	3 a	Large Urban buildings, masonry, no interior walls reduce by 5	CF	\$0.12	\$0.12
0241	16.13	0100	4	Large urban buildings, mixture of types	CF	\$0.23	\$0.23
0241	16.13	0500	5	Small urban buildings, steel	CF	\$0.23	\$0.23
0241	16.13	5000	5 a	Small urban buildings, steel, no interior walls reduce by 50%	CF	\$0.12	\$0.12
0241	16.13	0600	6	Small urban buildings, concrete	CF	\$0.30	\$0.30
0241	16.13	5000	6 a	Small urban buildings, concrete, no interior walls reduce by 5	CF	\$0.15	\$0.15
0241	16.13	0650	7	Small Urban buildings, masonry	CF	\$0.23	\$0.23
0241	16.13	5000	7a	Small Urban buildings, masonry, no interior walls reduce by 5	CF	\$0.12	\$0.12
0241	16.17	0240	8	Floor, 4" concrete slab, plain	SF	\$2.69	\$2.89
0241	16.17	0280	8 a	Floor, 4" concrete slab, mesh reinforced	SF	\$2.86	\$3.06
0241	16.17	0300	8b	Floor, 4" concrete slab, mesh reinforced, rods	SF	\$3.37	\$3.57
0241	16.17	0400	9	Floor, 6" concrete slab, plain	SF	\$3.59	\$3.88
0241	16.17	0420	9 a	Floor, 6" concrete slab, mesh reinforced	SF	\$3.96	\$4.25
0241	16.17	0440	9 b	Floor, 6" concrete slab, mesh reinforced, rods	SF	\$4.49	\$4.78
0241	16.17	0420	10	Floor, 8"concrete slab, mesh reinforced	SF	\$5.28	\$5.67
0241	16.17	0440	10a	Floor, 8"concrete slab, mesh reinforced, rods	SF	\$5.99	\$6.38
0241	16.17	0440	11	Floor, 12"concrete slab, mesh reinforces rods	SF	\$8.98	\$9.57
0241	16.17	1000	12	Footings, concrete, $1^{\prime} \times 2^{\prime}$	LF	\$9.33	\$10.50
0241	16.17	2600	12a	Footings, concrete, $1^{\prime} \times 2^{\prime}$, average reinforcing $+10 \%$	LF	\$10.26	\$11.43
0241	16.17	1080	13	Footings, concrete, 1.5' $\times 2^{\prime}$	LF	\$11.16	\$12.92
0241	16.17	2600	13 a	Footings, concrete, 1.5' $\times 2$ 2, average reinforcing $+10 \%$	LF	\$12.28	\$14.03
0241	16.17	1120	14	Footings, concrete 1.5' $\times 3^{\prime}$	LF	\$13.95	\$16.58
0241	16.17	2600	14a	Footings, concrete, 1.5' $\times 3$, average reinforcing + 10%	LF	\$15.35	\$17.98
0241	16.17	1140	15	Footings, concrete, 2' $\times 3^{\prime}$	LF	\$15.95	\$19.46
0241	16.17	2600	15a	Footings, concrete, $2^{\prime} \times 3$ 3', average reinforcing $+10 \%$	LF	\$17.55	\$21.06
0241	16.17	1140	16	Footings, concrete, 2' $\times 6^{\prime}$	LF	\$31.90	\$38.92
0241	16.17	2600	16a	Footings, concrete, 2' $\times 6^{\prime}$, average reinforcing $+10 \%$	LF	\$35.09	\$42.11
0241	16.18	1140	51	Footings, concrete, $2^{\prime} \times 66^{\prime}$, average reinforcing $+10 \%$	LF	\$102.08	\$120.81
0241	16.17	2400	17	Walls, concrete, 3.5" thick	SF	\$4.92	\$5.09
0241	16.17	2400	18	Walls, concrete, $6^{\prime \prime}$ thick	SF	\$8.43	\$8.72
0241	16.17	2600	18a	Walls, concrete, 6 " thick, Average reinforcing $+10 \%$	SF	\$9.27	\$9.57
0241	16.17	2420	19	Walls, concrete, 8" thick	SF	\$9.64	\$10.03
0241	16.17	2600	19a	Walls, concrete, 8 " thick, Average reinforcing $+10 \%$	SF	\$10.60	\$10.99
0241	16.17	2440	49	Walls, concrete, 10" thick	SF	\$11.20	\$11.69
0241	16.17	2600	49a	Walls, concrete, 10" thick, Average reinforcing + 10\%	SF	\$12.32	\$12.81
0241	16.17	2500	50	Walls, concrete, 12" thick	SF	\$13.45	\$14.04
0241	16.17	2600	50a	Walls, concrete, 12 " thick, Average reinforcing $+10 \%$	SF	\$14.80	\$15.38
0241	16.17	2500	20	Walls, concrete, 18" thick, Average reinforcing $+10 \%$	SF	\$23.86	\$24.74
0241	16.17	2500	21	Walls, concrete, 2' thick, Average reinforcing $+10 \%$	SF	\$31.81	\$32.98

TABLE 50-A-23

EQUIPMENT OWNERSHIP AND OPERATING COSTS

EquipmentModel		Ownership Costs (\$/hr)					Overhaul Costs (\$/hr)							Field Repair and Fuel Costs (\$/hr)																					$\underset{[5 / h r]}{2008 \text { Total }}$	
		Depreciation		$\begin{array}{\|c\|} \hline \text { Depreciatio } \\ \text { n Multiplier } \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { Adjusted } \\ \text { Depreciation } \\ \hline \end{array}$		Labor		Labor Multiplier	AdjustedLabor		O/H Parts		Labor		Labor Multiplier	$\begin{gathered} \text { Adjusted } \\ \text { Labor } \end{gathered}$		Parts		Fuel		Fuel Multiplier	AdjustedFuel		Lube		Tires		Tire Multiplier	Adjusted Tires		GEC (2)			
D9R Dozer	Semi-U Bladd	\$	24.39		\$	20.33	\$	9.27		\$	7.39	\$	21.54	\$	10.85		\$	8.65	\$	20.98	\$	44.20		\$	45.21	\$	8.88	\$		1.00	\$		\$	2.98	\$	143.09
D10R Dozer	Semi-U Blad	\$	34.24	0.83	\$	28.53	\$	9.27	0.80	\$	7.39	\$	29.93	\$	10.85	0.80	\$	8.65	\$	29.15	\$	61.88	1.02	\$	63.29	\$	12.38	\$	-	1.00	\$			4.14		183.47
D11R Dozer	u blade	\$	67.91	0.83	\$	56.59	\$	9.27	0.80	\$	7.39	\$	54.65	\$	10.85	0.80	\$	8.65	\$	53.22	\$	91.63	1.02	\$	93.72	\$	21.45	\$	-	1.00	\$	-		8.22		303.90
637 Sc Sraper		\$	39.27	0.83	\$	32.73	\$	13.57	0.80	\$	10.82	\$	27.48	\$	20.35	0.80	\$	16.23	\$	27.69	\$	91.64	1.02	\$	93.73	\$	18.47	\$	6.48	1.00	\$	6.48	s	1.18		234.80
992 L Loader		\$	83.57	0.83	\$	69.64	\$	5.65	0.80	\$	4.51	\$	18.62	\$	6.90	0.80	\$	5.50	\$	20.54	\$	77.96	1.02	\$	79.74	\$	18.81	\$	29.46	1.00	\$	29.46		2.65		249.47
777D Truck		\$	42.09	0.83	\$	35.08	\$	20.80	0.80	\$	16.59	\$	16.72	\$	12.78	0.80	\$	10.19	\$	10.32	\$	57.78	1.02	\$	59.10	\$	13.60	\$	15.73	1.00	\$	15.73				177.32
16H Grader		\$	23.31	0.83	\$	19.43	\$	4.07	0.80	\$	3.25	\$	11.71	\$	3.39	0.80	\$	2.70	\$	11.35	\$	28.09	1.02	\$	28.73	\$	6.50	\$	7.23	1.00	\$	7.23	s	0.88		91.77
Water Truck	10,000 gal	\$	31.73	0.83	\$	26.44	\$	7.46	0.80	\$	5.95	\$	6.37	\$	18.09	0.80	\$	14.43	\$	12.30	\$	47.26	1.02	\$	48.34	\$	8.73	\$	10.41	1.00	\$	10.41				132.96
Small Backhoe	Cat 446D	\$	7.02	0.83	\$	5.85	\$	2.83	0.80	\$	2.26	\$	2.74	\$	3.73	0.80	\$	2.97	\$	2.42	\$	12.10	1.02	\$	12.38	\$	2.27	\$	1.97	1.00	\$	1.97	s	0.32		33.18
Grader Ripper		\$	2.19	0.83	\$	1.83	\$	0.05	0.80	\$	0.04	\$	0.68	\$	0.90	0.80	\$	0.72	\$	1.01	\$	-	1.02	\$	-	\$	0.19	\$	-	1.00	\$.	\$	0.84		5.30
16H Grader, rip		\$	25.50	0.83	\$	21.25	\$	4.12	0.80	\$	3.29	\$	12.39	\$	4.29	0.80	\$	3.42	\$	12.36	\$	28.09	1.02	\$	28.73	\$	6.69	\$	7.23	1.00	\$	7.23	\$	1.72		97.08
Pickup Truck	1 ton 4x4	\$	3.50	0.83	\$	2.92	\$	0.68	0.80	\$	0.54	\$	0.76	\$	0.86	0.80	\$	0.69	\$	0.73	\$	16.24	1.02	\$	16.61	\$	1.84	\$	0.56	1.00	\$	0.56	\$	-		24.65
Mechanic truck	1.75 ton 4×4	\$	4.92	0.83	\$	4.10	\$	0.68	0.80	\$	0.54	\$	1.06	\$	0.86	0.80	\$	0.69	\$	1.03	\$		1.02	\$	17.50	\$	1.63	\$	0.79	1.00	\$	0.79	\$	-		27.34
DMM2 Drill		\$	42.48	0.83	\$	35.40	\$	47.57	0.80	\$	37.93	\$	23.44	\$	88.83	0.80	\$	70.84	\$	40.84	\$	82.60	1.02	\$	84.48	\$	15.68	\$	-	1.00	s	.	\$	4.08		312.69

The Total $\$ / h r$ are used in Worksheet 13

CRG - PRIMEDIA Equipmentwatch, "Cost Reference Guide for Construction Equipment," 1st Half 2011 edition.
2) GEC - Ground Engaging Components
Multipliers are calculated as follows:

Depreciation:	Assume two shifts per day		
	Assume 90% availability on all equipment		0.83
Labor - Heavy Equipment Mechanic: Field Repair and Fuel Costs			
((0.08)(CRG Wages) + Local Wages) / CRG Wages			
	CFG Wages	\$49.37 /hr	
	Local Wages	\$35.42 /hr	
			0.80
Parts:	No adjustment		1
Fuel (Diesel):	CFG Cost	\$3.07/gal	
	Local Cost	\$3.14/gal	
	Fuel Multiplier		1.02
Lube:	No adjustment		1
Tires:	No adjustment		1
GEC:	No adjustment		1
Inflation:			11.3\%

| TABLE 50-A-24 |
| :--- | :---: |
| EQUIPMENT OPERATOR WAGE RATES |

1) Labor Rates including burden, excluding Profit\&Overheac from ACME Inc. contract in force for 2011.

TABLE 50-A-26 BOND EQUIPMENT AVAILABILITIES	
EQUIPMENT	AVERAGE AVAILABILITY
Front-End Loaders	90.0%
Haul Trucks	90.0%
Dozers	90.0%
Scrapers	90.0%
Drills	90.0%
Motor Graders	90.0%

Navajo Mine Area 4 Project (2016 to 2021)

Dozer Polygons					
Poly ID	Volume	Av. Push Distance	Grade	Area	
	yd^{3}	ft .	\%	ft^{2}	Acres
D-1	148,000	296	-6.0	298,185	6.8
D-2	615,000	297	-7.9	967,949	22.2
D-3	160,000	230	-8.2	343,771	7.9
D-4	557,000	424	-9.1	835,263	19.2
D-5	594,000	305	-10.8	784,394	18.0
D-6	447,000	142	-13.4	1,627,685	37.4
D-7	376,000	161	-2.0	1,033,351	23.7
D-8	116,000	229	-17.3	231,796	5.3
D-9	558,000	343	-10.3	781,331	17.9
D-10	1,122,000	422	-16.2	884,165	20.3
D-11	200,000	169	-23.8	290,376	6.7
D-12	113,000	160	-15.2	205,816	4.7
D-13	125,000	251	-9.7	219,575	5.0
D-14	210,000	200	-19.7	347,249	8.0
D-15	415,000	247	-18.6	705,422	16.2
D-16	341,000	77	3.1	1,229,156	28.2
D-17	470,000	280	-17.5	680,018	15.6
D-18	240,000	237	-18.0	403,153	9.3
D-19	357,000	343	-18.0	421,780	9.7
D-20	414,000	423	-16.5	495,153	11.4
D-21	551,000	411	-14.9	603,640	13.9
D-22	435,000	387	-15.0	386,551	8.9
D-23	401,000	443	-5.2	419,033	9.6
D-24	383,000	407	-4.9	507,072	11.6
D-25	186,000	281	1.2	479,916	11.0
D-26	609,000	441	-4.2	802,972	18.4
D-27	816,000	461	-5.2	619,609	14.2
D-28	813,000	471	-5.7	708,896	16.3
D-29	350,000	362	-11.3	392,946	9.0
D-30	639,000	343	-9.3	692,411	15.9
D-31	398,000	287	-14.7	539,048	12.4
D-32	164,000	215	-15.8	289,203	6.6
D-33	38,000	129	-12.7	276,826	6.4
D-34	114,000	256	-8.6	303,370	7.0
D-35	134,000	274	-12.6	174,102	4.0
D-36	46,000	152	-23.9	109,252	2.5
D-37	1,130,000	210	-12.0	2,392,735	54.9
D-38	312,000	93	-15.4	1,056,409	24.3
D-39	38,000	193	-15.7	324,081	7.4
Total	15,135,000			23,863,663	548
Wt. Average		323	-11.0		

For Wt. Average	
Distance	Grade
$43,808,000$	$-888,000$
$182,655,000$	$-4,858,500$
$36,800,000$	$-1,312,000$
$236,168,000$	$-5,068,700$
$181,170,000$	$-6,415,200$
$63,474,000$	$-5,989,800$
$60,536,000$	$-752,000$
$26,564,000$	$-2,006,800$
$191,394,000$	$-5,747,400$
$473,484,000$	$-18,176,400$
$33,800,000$	$-4,760,000$
$18,080,000$	$-1,717,600$
$31,375,000$	$-1,212,500$
$42,000,000$	$-4,137,000$
$102,505,000$	$-7,719,000$
$26,257,000$	$1,05,100$
$131,60,000$	$-8,225,000$
$56,880,000$	$-4,320,000$
$122,451,000$	$-6,426,000$
$175,122,000$	$-6,831,000$
$226,461,000$	$-8,209,900$
$168,345,000$	$-6,525,000$
$177,643,000$	$-2,085,200$
$155,881,000$	$-1,876,700$
$52,266,000$	223,200
$268,56,000$	$-2,557,800$
$376,176,000$	$-4,243,200$
$382,923,000$	$-4,634,100$
$126,700,000$	$-3,955,000$
$219,177,000$	$-5,942,700$
$114,226,000$	$-5,850,600$
$35,260,000$	$-2,591,200$
$4,902,000$	$-482,600$
$29,184,000$	$-180,400$
$36,716,000$	$-1,688,400$
$6,992,000$	$-1,099,400$
$237,300,000$	$-13,560,000$
$29,016,000$	$-4,804,800$
$7,334,000$	$-596,600$
$4,891,194,000$	$-166,966,200$

Poly ID	Volume	Av. One way Distance	Grade	Cut area		Fill Area (if separate)	
	yd^{3}	ft .	\%	ft^{2}	Acres	ft^{2}	Acres
T-1	1,404,000	1326	-5.1	1,010,786	23.2	1,568,094	36.0
T-2	4,442,000	520	-9.6	5,781,685	132.7		0.0
T-3	2,131,000	4435	-1.7	1,598,039	36.7	1,293,090	29.7
T-4	2,756,000	3666	-2.6	3,204,708	73.6	592,567	13.6
T-5	2,998,000	918	-2.8	4,059,397	93.2		0.0
T-6	1,042,000	3931	-2.4	550,815	12.6	246,147	5.7
T-7	928,000	796	-6.1	1,699,471	39.0		0.0
T-8	4,100,000	1722	-4.8	2,384,529	54.7	1,321,731	30.3
TOTALS		WEIGHTED AVERAGES		TOTALS			
Scraper	13,872,000	1061	-6.0	20,289,432	466	5,021,629	115
Truck / Shovel	5,929,000	3989	-2.2	20,289,432		5,021,629	115

Scrapers For Wt. Average		Truck Shovel For Wt. Average	
Distance	Grade	Distance	Grade
1,861,704,000	-7,160,400		
2,309,840,000	-42,643,200		
		9,450,985,000	-3,622,700
		10,103,496,000	-7,165,600
2,752,164,000	-8,394,400		
		4,096,102,000	-2,500,800
738,688,000	-5,660,800		
7,060,200,000	-19,680,000		
\#\#\#\#\#\#\#\#\#\#\#\#	-83,538,800	23,650,583,000	-13,289

1) Cut off between scraper and truck / shovel is 2000 one way
High Wall Reclamation

TABLE 50-A-7
AREA 4 BOND REGRADE EARTHMOVING
DOZERS

Total yards go to Worksheet 3

TABLE 50-A-10
AREA 4 BOND REGRADE EARTHMOVING
TRUCKS AND LOADER

Cut Block		Permanent Program \%	Permanent Volume cu. yds.	$\begin{aligned} & \text { Fill } \\ & \text { Block } \end{aligned}$	Centroid Distance ft .	Planned Adj. Distance ft .	Cut Elev. ft	Fill Elev.	$\begin{gathered} \text { Grade } \\ \% \\ \hline \end{gathered}$	Comments
Area 4 Project										
$\begin{aligned} & \text { T-3 } \\ & \text { T-4 } \\ & \text { T-6 } \end{aligned}$	$\begin{aligned} & 2,131,000 \\ & 2,756,000 \\ & 1,042,000 \end{aligned}$	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$	$\begin{aligned} & 2,131,000 \\ & 2,756,000 \\ & 1,042,000 \end{aligned}$			$\begin{aligned} & 4,435 \\ & 3,666 \\ & 3,931 \end{aligned}$			$\begin{aligned} & -1.7 \\ & -2.6 \\ & -2.4 \end{aligned}$	Adj. Dist. reflects haul route Adj. Dist. reflects haul route Adj. Dist. reflects haul route
Totals				Weighted Average						
Area 4 Project	5,929,000	100\%	5,929,000			3,989			-2.2	
GRAND TOTAL	5,929,000		5,929,000							

[^1]TABLE 50-A-18
AREA 4 BOND REGRADE EARTHMOVING
SCRAPERS

Cut Block	Total Volume cu. yds.	Permanent Program \%	Permanent Volume cu. yds.	Fill Block	Centroid Distance ft .	Planned Adj. Distance ft .	Cut Elev. ft	Fill Elev. ft	Grade \%	Comments
Area 4 Project										
$\begin{aligned} & \text { T-1 } \\ & \text { T-2 } \\ & \text { T-5 } \\ & \text { T-7 } \\ & \text { T-8 } \end{aligned}$	$\begin{gathered} 1,404,000 \\ 4,442,000 \\ 2,998,000 \\ 928,000 \\ 4,100,000 \end{gathered}$	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$	$\begin{array}{r} 1,404,000 \\ 4,442,000 \\ 2,998,000 \\ 928,000 \\ 4,100,000 \end{array}$			$\begin{array}{r} 1,326 \\ 520 \\ 918 \\ 796 \\ 1,722 \end{array}$			$\begin{aligned} & -5.1 \\ & -9.6 \\ & -2.8 \\ & -6.1 \\ & -4.8 \end{aligned}$	Adj. Dist. reflects haul route
Area 4 Project	13,872,000	100\%	13,872,000			1,061			-6.0	
GRAND TOTAL	13,872,000		13,872,000							

Total yards go to Worksheet 3

TABLE 50-A-13

AREA 4 BOND REGRADE TOPSOILING

TRUCKS AND LOADER
17-May-12

$\begin{aligned} & \text { Cut } \\ & \text { Block } \end{aligned}$	Total Volume cu. yds.	Area acres	Perm. Topsoil Volume cu. yds.	Root Zone Volume cu. yds.	Fill Block	Centroid Distance ft .	Planned Adj. Distance ft .	Cut Elev. ft	$\left\lvert\, \begin{gathered} \text { Fill Elev. } \\ \mathrm{ft} \end{gathered}\right.$	Grade \%	Comments
Area 4 Project	865,111	1,128.9	865,111		Area 4 Project		2,970			4.00\%	Adj. Dist. reflects haul route
TOTAL	865,111	1,128.9	865,111		Weighted Averag		2,970			4.00\%	

Total yards and acres go to Worksheet 3
Assumption:

TABLE 50-A-16
AREA 4 BOND REGRADE MITIGATION
TRUCKS AND LOADER
17-May-12

Cut Block	Total Volume cu. yds.	Area acres	Topsoil Volume cu. yds.	Perm. Root Zone Volume cu. yds.	$\begin{gathered} \text { Fill } \\ \text { Block } \end{gathered}$	Centroid Distance ft .	Planned Adj. Distance ft .	Cut Elev. ft	Fill Elev. ft	Grade \%	Comments
Area 4 Project	693,364	1,128.9		693,364	Area 4 Project		8,372			4.00\%	Adj. Dist. reflects haul route
TOTAL	693,364	1,129		693,364	Weighted Average		8,372			4.00\%	

Total yards go to Worksheet 3
Assumptions:

[^2]TABLE 50-A-22 AREA BOND REGRADE MITIGATION

SCRAPERS

17-May-12

Cut Block	Total Volume cu. yds.	Area acres	Topsoil Volume cu. yds.	Root Zone Volume cu. yds.	Fill Block	Centroid Distance ft.	Planned Adj. Distance ft .	Cut Elev. ft	Fill Elev. ft	Grade \%	Comments
Area 4 Project					Area 4 Project						Adj. Dist. reflects haul route
TOTAL	-	-		-	Weighted Average						

Total yards go to Worksheet 3
Assumptions:
10.8% of all reclaim acres require mitigation
4.0 feet total of mitigation and topsoil

Assume that all mitigation suitable materials will be found an average of 2000 one way feet away from location of need
Analysis of mine plan drawing shows that this should be possible.

TABLE 50-A-21
AREA 4 BOND REGRADE TOPSOILING
SCRAPERS

Cut Block	Total Topsoil Volume cu. yds.	Area acres	Perm. Topsoil Volume cu. yds.	Root Zone Volume cu. yds.	Fill Block	Centroid Distance ft .	Planned Adj. Distance ft .	Cut Elev. ft	Fill Elev. ft	Grade \%	Comments
Area 4 Project					Area 4 Project						Adj. Dist. reflects haul route
TOTAL	-	-	-		Weighted Average:						

Total yards and acres go to Worksheet 3

Assumption:
0.48 feet topsoil replacement depth Area 4

Used Marston's weighted average of 2970 feet haul for topsoil on Area 4 Nortr

TABLE 12-B-2
CULVERT VOLUMES FOR DEMOLITION AND REMOVAL

CULVERT ID	Diameter [in]	Length [ft]	Volume [ft ${ }^{3}$]
CP-189	30	318	1,561
		1,561	

TABLE 12-B-3

BACKFILLING OF PONDS AND IMPOUNDMENTS

Pond	Pond Volume		Dam ${ }^{2}$					Dozer Push Distance [ft]	Backfill Volume ${ }^{3}$ [bcy] ${ }^{1}$
	[ac-ft]	[bcy] ${ }^{1}$	Bottom [ft]	Top [ft]	Height [ft]	Length [ft]	Volume [bcy] ${ }^{1}$		
Pond 3	1.2	1,936	-	-	-	-	Incised	200	1,936
Pond 4	6.8	10,971	-	-	-	-	Incised	200	10,971
Pond 401	3.9	6,292	-	-	-	-	Incised	200	6,292
Pond 402	7.9	12,745	-	-	-	-	Incised	200	12,745
Pond 416	10.4	16,779	-	-	-	-	Incised	200	16,779
Pond 408	1.5	2,420	-	-	-	-	Incised	200	2,420
Pond 409-410	0.9	1,452	-	-	-	-	Incised	200	1,452
Pond 411	1.7	2,743	-	-	-	-	Incised	200	2,743
Pond 412	3.2	5,163	-	-	-	-	Incised	200	5,163
Pond 413	2.6	4,195	-	-	-	-	Incised	200	4,195
Pond 415	1.0	1,565	40	10	6	80	444	100	444
Pond 416	18.7	30,153	50	14	10	800	9,481	150	9,481
	TOTAL	96,413		Wei	ted Aver	e Push D	stance [ft]	173.40	74,621

(1) $\mathrm{BCY}=$ Bank cubic yards
(2) Dam volume is the trapezoidal cross-sectional area times the length.
(3) Backfill volume is the smaller of the dam volume or pond volume.

This assumes that either the pond is filled or the dam is removed and pushed into the pond.

TABLE 12-B-25 DRILL AND BLAST QUANTITIES							
Area	Volume $\left[\mathrm{yd}^{3}\right]$	Equipment					
Area 4 Project	$1,336,000$	Ingersoll-Rand DM23	Comments				
Total	$\mathbf{1 , 3 3 6 , 0 0 0}$		Drilling and Blasting pit highwalls				

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|l|}{\begin{tabular}{l}
WORKSHEET NO. 2 \\
STRUCTURE DEMOLITION AND DISPOSAL COST SUMMARY
\end{tabular}} \\
\hline \multirow[t]{2}{*}{Structure} \& \& \& \& \& \& \& \multicolumn{4}{|l|}{Buildings / Utilities / Other Structures} \& \multicolumn{4}{|l|}{Floors, Surfaces \& Walls} \& \multicolumn{4}{|l|}{Footings} \\
\hline \& \& \& \& \& \& \& Volume [ft3] \& Ref \& Unit Cost \& Cost \& Area [ft2] \& Ref \& \[
\begin{aligned}
\& \text { Unit } \\
\& \text { Cost }
\end{aligned}
\] \& Cost \& Length [ft] \& Ref \& \[
\begin{aligned}
\& \text { Unit } \\
\& \text { Cost }
\end{aligned}
\] \& Cost \\
\hline Concrete - Floors, Surfaces \& Walls \& Length (tt) \& Width (tt) \& Area (sf) \& \& \# \& Construction \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& - \& 8b
8 b
11
9 b
9 b
8 b
8 b
11
9 b
11
10 a
8 b
11
8 b
8 b \& 3.57
3.57
9.57
4.78
4.78
3.57
3.57
9.57
4.78
9.57
6.38
3.57
9.57
3.57
3.57 \& \(\$ 0\)
\(\$ 0\)
\(\$ 0\)
\(\$ 0\)
\(\$ 0\)
\(\$ 0\)
\(\$ 0\)
\(\$ 0\)
\(\$ 0\)
\(\$ 0\)
\(\$ 0\)
\(\$ 0\)
\(\$ 0\)
\(\$ 0\)
\(\$ 0\) \& \& \& \& \\
\hline Concrete/Asphalt - Aprons \& Driveways \& Length (ft) \& Width (tt) \& Area (sf) \& \& \# \& Construction \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& 28
28
28
29
11
\(9 b\)

81 \& \begin{tabular}{l}
0.88

0.88

0.88

1.26

9.57

4.78

9.57

9.57

3.57

 \&

\$0

\$0

\$0

$\$ 0$

\$0

\$0

\$0

\$0
\end{tabular} \& \& \& \&

\hline Concrete - CSBF Below Grade \& Height (tt) \& Width (tt) \& Area (sf) \& Thick (ft) \& \# \& Construction \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& $$
\begin{array}{|r|}
\hline 50 \mathrm{a} \\
21 \\
50 \\
\hline
\end{array}
$$ \& \[

$$
\begin{aligned}
& 15.38 \\
& 32.98 \\
& 14.04 \\
& \hline
\end{aligned}
$$
\] \& $\$ 0$

$\$ 0$
$\$ 0$ \& \& \& \&

\hline Utilities \& \& \& Length (If) \& \& \& Construction \& Length (f) \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& 25
25
32
26 \& 3.36
3.36
$7,019.97$
1.82 \& $\$ 0$
$\$ 0$
$\$ 0$
$\$ 0$ \& \& \& \& \& \& \& \&

\hline
\end{tabular}

WORKSHEET NO. 2 STRUCTURE DEMOLITION AND DISPOSAL COST SUMMARY																		
Structure							Buildings / Utilities / Other Structures				Floors, Surfaces \& Walls				Footings			
							Volume [ft3]	Ref	Unit Cost	Cost	Area [ft2]	Ref	Unit Cost	Cost	Length [ft]	Ref	$\begin{aligned} & \text { Unit } \\ & \text { Cost } \end{aligned}$	Cost
Other Structures	Length (t)	Width (tt)	Area (sf)	Capacity (gal)	\#	Construction												
							- -	24 24 20 31 11 11 11 28 28 28 28 28 71 31	3.71 3.71 24.74 0.23 9.57 9.57 9.57 0.88 0.88 0.88 0.88 0.88 $2,910.00$ 0.23	$\$ 0$ $\$ 0$ $\$ 0$ $\$ 0$ $\$ 0$ $\$ 0$ $\$ 0$ $\$ 0$ $\$ 0$ $\$ 0$ $\$ 0$ $\$ 0$ $\$ 0$ $\$ 0$								
Conveyors	Length (tt)	Width (tt)	Area (sf)		\#	Construction												
							-	33 29 11	$\begin{array}{r} \hline 22.75 \\ 1.26 \\ 9.57 \\ \hline \end{array}$	$\$ 0$ $\$ 0$ $\$ 0$								
Area 4 South																		
Buildings - Above Concrete	Length (t)	Width (tt)	Area (sf)	Height (ft)	\#	Construction												
			$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$			Steel Building Steel Building			$\begin{aligned} & \hline 0.22 \\ & 0.22 \end{aligned}$	$\begin{aligned} & \$ 0 \\ & \$ 0 \end{aligned}$								

WORKSHEET NO. 2 STRUCTURE DEMOLITION AND DISPOSAL COST SUMMARY																		
Structure							Buildings / Utilities / Other Structures				Floors, Surfaces \& Walls				Footings			
							Volume [ft3]	Ref	Unit Cost	Cost	Area [ft2]	Ref	$\begin{gathered} \text { Unit } \\ \text { Cost } \end{gathered}$	Cost	Length [ft]	Ref	$\begin{aligned} & \text { Unit } \\ & \text { Cost } \end{aligned}$	Cost
Concrete - Footings		Length (ft) on Short Axis			\#	Construction												
						Concrete									-	12a	11.43	\$0
Concrete - Floors, Surfaces \& Walls	Length (ft)	Width (ft)	Area (sf)		\#	Construction												
			\cdots			Concrete MSE Wall					-	$\begin{aligned} & 9 \mathrm{a} \\ & 20 \end{aligned}$	$\begin{array}{r} 4.25 \\ 24.74 \end{array}$	$\begin{aligned} & \$ 0 \\ & \$ 0 \end{aligned}$				
Concrete/Asphalt - Aprons \& Driveways																		
Concrete - Truck Dump Below Grade	Height (tt)	Width (ft)	Area (sf)	Thick (ft)	\#	Construction												
			- - -								-	21 11 $50 a$	$\begin{array}{r} \hline 32.98 \\ 9.57 \\ 15.38 \end{array}$	$\begin{aligned} & \$ 0 \\ & \$ 0 \\ & \$ 0 \\ & \hline \end{aligned}$				
Utilities			Length (If)			Construction												
Underground Piping Aboveground PipingOverhead Powerlines (69-kV max)			11,818 2,659 57,300 112,455				-	25 25 32 26	3.36 3.36 $7,019.97$ 1.82	$\begin{aligned} & \$ 0 \\ & \$ 0 \\ & \$ 0 \\ & \$ 0 \\ & \hline \end{aligned}$								
Other Structures	Length (ft)	Width (ft)	Area (sf)	Capacity (gal)	\#	Construction												
Raw Water Storage Tank						Steel Tank	-	31	0.23	\$0								
Conveyors	Length (ft)	Width (ft)	Area (sf)		\#	Construction												
CV-01 through CV-04 Conveyor Footing Ties						Concrete Ties Concrete	-	33 29 11	$\begin{array}{r} \hline 22.75 \\ 1.26 \\ 9.57 \\ \hline \end{array}$	$\begin{aligned} & \$ 0 \\ & \$ 0 \\ & \$ 0 \\ & \hline \end{aligned}$								
TOTAL										\$0				\$0				\$0

WORKSHEET NO. 3

MATERIAL HANDLING SUMMARY SHEET

Swell factor $=$ 1.142 Weighted Average Between In-Situ and Stockpile Swells

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

WORKSHEET NO. 8B PRODUCTIVITY AND HOURS REQUIRED FOR LOADER USE			
Earthmoving Activity:			
7 $\overline{\text { Mit }}$ Characterization	tigation - Loader/Truck Area 4 Project of Loader Used (type, size, etc.) ${ }^{3}$		
Caterpillar 992G with 15 CYD Bucket Description of Loader Use (origin, destination, grade, haul distance, etc.)			
Load Caterpillar 777D Trucks 0.90 Bucket Fill Factor 15 Rated Bucket Capacity [LCY] Productivity Calculations ${ }^{3}$			
Cycle Time =		$\frac{0.65 \mathrm{~min}}{\frac{\text { basic cycle }}{\text { time }}}=$	$0.65 \mathrm{~min}$
Net Bucket = Capacity	$\frac{15 \text { LCY }_{\substack{\text { heaped bucket } \\ \text { capacity }}}^{*} \frac{1.05}{\text { bucket fill factor }}===}{=}$	15.8 LCY	
Net Hourly = Production	$\frac{15.8 \quad \text { LCY }}{\text { net bucket capacity }^{\prime}} \frac{0.65 \mathrm{~min}}{\text { cycle time }}$	$\frac{50 \quad \mathrm{~min} / \mathrm{hr}}{\substack{\text { work hour } \\ \text { factor }}}=$	1,212 LCY/hr
Hours = Required ${ }^{2}$	$\frac{791,821 \mathrm{LCY}}{\text { volume to be moved }^{1}} \text { / 1,212 LCY/hr }=$	654 hrs	

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

WORKSHEET NO. 8D PRODUCTIVITY AND HOURS REQUIRED FOR LOADER USE		
Earthmoving Activity:		
32 Intentionally Left Blank Characterization of Loader Used (type, size, etc.) ${ }^{3}$		
Caterpillar 992G with 15 CYD Bucket Description of Loader Use (origin, destination, grade, haul	stance, etc.)	
Load Caterpillar 777D Trucks 0.95 Bucket Fill Factor 15 Rated Bucket Capacity [LCY] Productivity Calculations ${ }^{3}$		
Cycle Time = \qquad	$\frac{0.65 \mathrm{~min}}{\frac{\text { basic cycle }}{\text { time }}}=$	0.65 min
$\text { Net Bucket }=\frac{15 \quad \text { LCY }}{\text { Capacity }} \underset{\begin{array}{c} \text { heaped bucket } \\ \text { capacity } \end{array}}{*} \frac{0.95}{\text { bucket fill factor }}=$	14.3 LCY	
$\begin{aligned} & \text { Net Hourly } \\ & \text { Production } \end{aligned} \frac{14.3 \quad \text { LCY }}{\text { net bucket capacity }} \text { / } \frac{0.65 \mathrm{~min}}{\text { cycle time }} \text { * }$	$\frac{50 \mathrm{~min} / \mathrm{hr}}{\frac{\text { work hour }}{\text { factor }}}=$	1,096 LCY/hr
$\begin{array}{r} \text { Hours } \\ \text { Required }^{2} \end{array} \frac{- \text { LCY }^{\prime} /}{\text { volume to be moved }}{ }^{1} \frac{1,096 \mathrm{LCY} / \mathrm{hr}=}{\begin{array}{c} \text { net hourly } \\ \text { production } \end{array}}$	0 hrs	

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

WORKSHEET NO. 8H PRODUCTIVITY AND HOURS REQUIRED FOR LOADER USE		
Earthmoving Activity:		
32 Intentionally Left Blank Characterization of Loader Used (type, size, etc.) ${ }^{3}$		
Caterpillar 992G with 15 CYD Bucket Description of Loader Use (origin, destination, grade, haul	stance, etc.)	
Load Caterpillar 777D Trucks 0.88 Bucket Fill Factor 15 Rated Bucket Capacity [LCY] Productivity Calculations ${ }^{3}$		
Cycle Time = \qquad	$\frac{0.65 \mathrm{~min}}{\frac{\text { basic cycle }}{\text { time }}}=$	0.65 min
$\text { Net Bucket }=\frac{15 \quad \text { LCY }}{\text { Capacity }} \underset{\begin{array}{c} \text { heaped bucket } \\ \text { capacity } \end{array}}{*} \frac{0.88}{\text { bucket fill factor }}=$	13.2 LCY	
$\begin{aligned} & \text { Net Hourly } \\ & \text { Production } \end{aligned} \frac{13.2 \quad \text { LCY }}{\text { net bucket capacity }} \text { / } \frac{0.65 \mathrm{~min}}{\text { cycle time }} \text { * }$	$\frac{50 \mathrm{~min} / \mathrm{hr}}{\begin{array}{c} \text { work hour } \\ \text { factor } \end{array}}=$	1,015 LCY/hr
$\begin{array}{r} \text { Hours } \\ \text { Required }^{2} \end{array} \frac{-\mathrm{LCY}^{\prime} /}{\text { volume to be moved }{ }^{1}} \frac{1,015 \mathrm{LCY} / \mathrm{hr}=}{\begin{array}{c} \text { net hourly } \\ \text { production } \end{array}}$	0 hrs	

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Volume to be moved from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Acres from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Acres from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Acres from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Acres from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Acres from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Acres from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

Data Sources:

1) Acres from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37

WORKSHEET NO. 12B PRODUCTIVITY AND HOURS FOR MOTOR GRADER USE -- GRADING	
Earthmoving Activity:	
33 Grading Topsoil Areas Characterization of Grader Used (type, size capacity, etc.) ${ }^{3}$	
Caterpillar 16H Description of Grader Route (push distance,\% blade effective length, operating speed, etc.):	
11.9 Ripper width [ft] Productivity Calculations ${ }^{3}$:	
Contour Grading:	
	Hours $=$ Required$\frac{1,246 \mathrm{ac}}{$ acreage to be graded 1}$\frac{/}{\substack{\text { hourly } \\ \text { productivity }}}=341 \mathrm{hr}$
	$\underset{\text { Required }^{2}}{\text { Total Hours }}=\frac{341 \mathrm{hr}}{\begin{array}{c} \text { grading hours } \\ \text { required } \end{array}}+\frac{0 \mathrm{hr}}{\frac{\text { scarification }}{\text { hours }} \begin{array}{c} \text { required } \end{array}}=341 \mathrm{hr}$

Data Sources:

1) Acres from Worksheet 3
2) Hours required go to Worksheet 13
3) Caterpillar Performance Handbook, Edition 37
*No Ripping on Topsoiled Areas

	WORKSHEET NO. 13A SUMMARY CALCULATION OF EARTHMOVING COSTS - Dozers						
	Project	Equipment Type 1	Ratio	Equipment Unit Costs $[\$ / \mathrm{hr}]^{2}$	Labor Costs [\$/hr] ${ }^{3}$	Total Hours Required ${ }^{4}$	Total Cost [\$]
2	Grading - Dozer Area 4 Project	D11R Dozer	100\%	(\$304	\$ 35	* 19,924	\$ 6,760,674
23	Backfill Ponds Area 4 Project	D11R Dozer	100\%	(\$304	\$ 35	* 82	\$ 27,879
32	Intentionally Left Blank	D11R Dozer	100\%	(\$304	\$ 35	*	\$
32	Intentionally Left Blank	D11R Dozer	100\%	(\$304	\$ 35	* -	\$
32	Intentionally Left Blank	D11R Dozer	100\%	(\$304	\$ 35	* -	\$
32	Intentionally Left Blank	D11R Dozer	100\%	(\$304	\$ 35	* -	\$
32	Intentionally Left Blank	D11R Dozer	100\%	(\$304	\$ 35	* -	\$

Equipment and Accesory Identification

1) Caterpillar D11R with Universal Blade

Data Sources:
2) PRIMEDIA Equipmentwatch, "Cost Reference Guide for Construction

Equipment," 2011 1st half edition. (see Table 12-B-23)
3) Labor Cost based on 2011 contract with ACME Inc. (see Table 12-B-24)
4) Total Hours Required from Worksheet 5

Equipment and Accesory Identification

1) Caterpillar 992G Loader with standard 15 cubic yard bucket

Caterpillar 16H Grader, standard blade, road maintenance time $=1 / 2$ loader time
Caterpillar D9R Dozer with Semi-Universal Blade time = loader time 10,000 gal. Water truck, road maintenance time $=1 / 2$ loader time
Data Sources:
2) PRIMEDIA Equipmentwatch, "Cost Reference Guide for Construction Equipment," 2011 1st half edition. (see Table 12-B-23)
3) Labor Cost based on 2011 contract with ACME Inc. (see Table 12-B-24)
4) Total Hours Required from Worksheet 8 and Note 1 above

WORKSHEET NO. 13C
SUMMARY CALCULATION OF EARTHMOVING COSTS - Loaders

	Project	$\begin{aligned} & \text { Equipment } \\ & \text { Type }^{1} \end{aligned}$	Ratio	Equipment Unit Costs [\$/hr] ${ }^{2}$		Labor Costs $[\$ / h r]^{3}$		Total Hours equired ${ }^{4}$		
	Intentionally Left Blank	992G Loader	100\%	(\$ 249	+	\$ 35)	*	$=$	\$	
Intentionally Left Blank		16H Grader	50\%	(\$ 92	+	\$ 35)	*	- =	\$	
		D9R Dozer	100\%	(\$ 143	+	\$ 35)	*	- =	\$	
		Water Truck	50\%	(\$133	$+$	\$ 35)	*	- $=$	\$	
		992G Loader	100\%	(\$249 + \$ 35)			- = \$			-
		16H Grader	50\%	(\$ 92	+	\$ 35)	*	- =	\$	
		D9R Dozer	100\%	(\$143	+	\$ 35)	*	=	\$	
		Water Truck	50\%	(\$133	+	\$ 35)	*	- $=$	\$	-
32	Intentionally Left Blank	992G Loader	100\%	(\$249	+	\$ 35)	*	- $=$	\$	-
	Intentionally Left Blank	16 H Grader	50\%	(\$ $\$ 92$	$+$	\$ 35)	*	\cdots	\$	
		D9R Dozer	100\%	(\$143	+	\$ 35)	*	- =	\$	
		Water Truck	50\%	(\$133		\$ 35)	*	- =	\$	-
32		992G Loader	100\%	(\$249 + \$ 35)			- = \$			-
		16H Grader	50\%	(\$ 92	+	\$ 35)	*	- =	\$	
		D9R Dozer	100\%	(\$143	+	\$ 35)	*	- $=$	\$	-
		Water Truck	50\%	(\$133	$+$	\$ 35)	*	-	\$	-
32	Intentionally Left Blank	992G Loader	100\%	(\$ 249	+	\$ 35)	*	=	\$	-
		16H Grader	50\%	(\$ 92	+	\$ 35)	*	- =	\$	-
		D9R Dozer	100\%	(\$143	+	\$ 35)	*	- =	\$	-
		Water Truck	50\%	(\$ 133	+	\$ 35)	*	- =	\$	-
							Total Cost $=$		\$	-

Equipment and Accesory Identification

1) Caterpillar 992G Loader with standard 15 cubic yard bucket Caterpillar 16H Grader, standard blade, road maintenance time $=1 / 2$ loader time Caterpillar D9R Dozer with Semi-Universal Blade time = loader time 10,000 gal. Water truck, road maintenance time $=1 / 2$ loader time
Data Sources:
2) PRIMEDIA Equipmentwatch, "Cost Reference Guide for Construction Equipment," 2011 1st half edition. (see Table 12-B-23)
3) Labor Cost based on 2011 contract with ACME Inc. (see Table 12-B-24)
4) Total Hours Required from Worksheet 8 and Note 1 above

WORKSHEET NO. 13D SUMMARY CALCULATION OF EARTHMOVING COSTS - Trucks						
	Project $\begin{array}{r}\text { Equipment } \\ \text { Type }^{1}\end{array}$	Ratio	Equipment Unit Costs $[\$ / \mathrm{hr}]^{2}$	Labor Costs $[\$ / \mathrm{hr}]^{3}$	Total Hours Required 4	Total Cost [\$]
3	Grading - Loader/Truck Area 4 Project 777D Truck	100\%	(\$177	\$ 35)	* 13,607 = \$	\$ 2,894,776
7	Mitigation - Loader/Truck Area 4 Projecı777D Truck	100\%	(\$ 177	\$ 35)	* 2,716 = \$	\$ 577,759
5	Topsoil - Loader/Truck Area 4 Project 777D Truck	100\%	(\$177	\$ 35)	* 1,935 = \$	\$ 411,718
32	Intentionally Left Blank 777D Truck	100\%	(\$ 177	\$ 35)	- = \$	\$
32	Intentionally Left Blank 777D Truck	100\%	(\$ 177	\$ 35)	- = \$	\$
32	Intentionally Left Blank 777D Truck	100\%	(\$ 177	\$ 35)	- = \$	\$
32	Intentionally Left Blank 777D Truck	100\%	(\$ 177	\$ 35)	- = \$	\$
32	Intentionally Left Blank 777D Truck	100\%	(\$ 177	\$ 35)	- = \$	\$
32	Intentionally Left Blank 777D Truck	100\%	(\$177	\$ 35)	- = \$	\$
32	Intentionally Left Blank 777D Truck	100\%	(\$177	\$ 35)	- = \$	\$

Equipment and Accesory Identification

1) Caterpillar 777D Dump Truck, mechanical drive, standard bed

Data Sources:
2) PRIMEDIA Equipmentwatch, "Cost Reference Guide for Construction Equipment," 2011 1st half edition. (see Table 12-B-23)
3) Labor Cost based on 2011 contract with ACME Inc. (see Table 12-B-24)
4) Total Hours Required from Worksheet 9

WORKSHEET NO. 13E SUMMARY CALCULATION OF EARTHMOVING COSTS - Scrapers							
	Project	Equipment Type ${ }^{1}$	Ratio	Equipment Unit Costs [\$/hr] ${ }^{2}$	Labor Costs $[\$ / \mathrm{hr}]^{3}$	$\begin{array}{r} \text { Total } \\ \text { Hours } \\ \text { Required }^{4} \end{array}$	Total Cost [\$]
4	Grading - Scrapers Area 4 Project	637G Scraper	100\%	(\$ 235	+ \$ 35)	* 13,513 =	\$ 3,651,598
		637G Scraper	100\%	(\$235	+ \$ 35)	* $13,513=$	\$ 3,651,598
		16H Grader	13\%	(\$ 92	+ \$ 35)	* $1,689=$	\$ 214,851
		Water Truck	13\%	(\$133	+ \$ 35)	* 1,689 =	\$ 284,426
2	Intentionally Left Blank	637G Scraper	100\%	$\overline{\$ 235}$	+\$ 35)	* - $=$	\$
		637G Scraper	100\%	(\$235	+ \$ ${ }^{(15)}$	\cdots	\$
		16...................	13\%	(\$92,	+ \$ ${ }^{\text {a }}$ + 3)	\cdots	\$
		Water Truck	13\%	(\$133	+ \$ \$ 35)	*	\$
2	Intentionally Left Blank	637G Scraper	100\%	$\overline{\$ 235}$	+\$ 35)	- $=$	\$
		637G Scraper	100\%	(\$235	+ \$ 35)	*	\$
		16 H Grader	13\%	(\$ 92	+ \$ \$ 35)	- $=$	\$
		Water Truck	13\%	(\$133	+ \$ \$ 35	*....................	\$
2	Intentionally Left Blank	637G Scraper	100\%	(\$235	+\$ ${ }^{\text {a }}$)	-	\$
		637G Scraper	100\%	(\$235	+ \$ 35)	*	\$ -
		16H Grader	13\%	(\$ 92	+ \$ 35)	* - =	\$
		Water Truck	13\%	(\$133	+ \$ 35)	*	\$
32	Intentionally Left Blank	637G Scraper	100\%	$\overline{\$ 235}$	+\$ 35)	-	\$
		637G Scraper	100\%	(\$235	+ \$ 35)	- $=$	\$
		16 H Grader	13\%	(\$ 92	+ \$ ${ }^{\text {+ }}$ + 35)	* -	\$
		Water Truck	13\%	(\$133	+ \$ 35)	* - =	\$
						Total Cost $=$	\$ 7,802,473

Equipment and Accesory Identification

1) Caterpillar 637G Scraper Push-Pull Pair

Caterpillar 16H Grader, standard blade, road maintenance time $=1 / 8$ scraper time 10,000 gal. Water truck, road maintenance time $=1 / 8$ scraper time

Data Sources:
2) PRIMEDIA Equipmentwatch, "Cost Reference Guide for Construction Equipment," 2011 1st half edition. (see Table 12-B-23)
3) Labor Cost based on 2011 contract with ACME Inc. (see Table 12-B-24)
4) Total Hours Required from Worksheet 8 and Note 1 above

	WORKSHEET NO. 13F SUMMARY CALCULATION OF EARTHMOVING COSTS - Scrapers						
	Project	Equipment Type ${ }^{1}$	Ratio	Equipment Unit Costs $[\$ / h r]^{2}$	Labor Costs $[\$ / h r]^{3}$	Total Hours Required ${ }^{4}$	Total Cost [\$]
32	Intentionally Left Blank	637G Scraper	100\%	(\$ 235	\$ 35)	* -	\$
		637G Scraper	100\%	(\$235	\$ 35)	*	\$
		16H Grader	13\%	(\$ 92	\$ 35)	* -	\$
		Water Truck	13\%	(\$133	\$ 35)	*	\$
32	Intentionally Left Blank	637G Scraper	100\%	(\$235	\$ 35)	* -	\$
		637G Scraper	100\%	$\$ 235$	\$ 35)	$\text { * } \quad-=$	\$ -
		16H Grader	13\%	(\$92	\$ 35)	$\text { * } \quad-=$	\$
		Water Truck	13\%	(\$133	\$ 35)		\$ -
2	Intentionally Left Blank						
32	Intentionally Left Blank						
32	Intentionally Left Blank						

Equipment and Accesory Identification

1) Caterpillar 992G Loader with standard 15 cubic yard bucket

Caterpillar 16H Grader, standard blade, road maintenance time $=1 / 8$ scraper time 10,000 gal. Water truck, road maintenance time $=1 / 8$ scraper time

Data Sources:
2) PRIMEDIA Equipmentwatch, "Cost Reference Guide for Construction Equipment," 2011 1st half edition. (see Table 12-B-23)
3) Labor Cost based on 2011 contract with ACME Inc. (see Table 12-B-24)
4) Total Hours Required from Worksheet 8 and Note 1 above

WORKSHEET NO. 13G SUMMARY CALCULATION OF EARTHMOVING COSTS - Motor Graders					
Project	Equipment Type ${ }^{1}$	Ratio	Equipment Labor Unit Costs Costs $[\$ / \mathrm{hr}]^{2}$ $[\$ / \mathrm{hr}]^{3}$	Total Hours Required 4	Total Cost [\$]
Road Ripping Area 4 Project	16H Grader, ripping	100\%	$(\$ 97+\$ 35)$	* $107=$	\$ 14,112
Grading Topsoil Areas	16H Grader	100\%	$(\$ 92+\$ 35)$	* $341=$	\$ 43,407

Equipment and Accesory Identification

1) Caterpillar 16H Motor Grader with Ripper Blade

Data Sources:
2) PRIMEDIA Equipmentwatch, "Cost Reference Guide for Construction

Equipment," 2011 1st half edition. (see Table 12-B-23)
3) Labor Cost based on 2011 contract with ACME Inc. (see Table 12-B-24)
4) Total Hours Required from Worksheet 12

WORKSHEET NO. 13H SUMMARY CALCULATION OF EARTHMOVING COSTS - Drilling						
Project	$\begin{aligned} & \text { Equipment } \\ & \text { Type }^{1} \end{aligned}$	Ratio	Equipment Unit Costs $[\$ / \mathrm{hr}]^{2}$	Labor Costs $[\$ / \mathrm{hr}]^{3}$	Total Hours Required ${ }^{4}$	Total Cost [\$]
Drill \& Blast Area 4 Project	DMM2 Drill	100\%	(\$ 313 +	\$ 35)	$343=$	\$ 119,311
Intentionally Left Blank	DMM2 Drill	100\%	(\$ 313 +	\$ 35)	$0=$	\$ 0

Equipment and Accesory Identification

1) Ingersoll-Rand DMM2 Crawler-type Drill

Data Sources:
2) PRIMEDIA Equipmentwatch, "Cost Reference Guide for Construction Equipment," 2011 1st half edition. (see Table 12-B-23)
3) Labor Cost based on 2011 contract with ACME Inc. (see Table 12-B-24)
4) Total yardage drilled from 12-B-25 D\&B

WORKSHEET NO. 14A
 REVEGETATION COSTS

Name and Description of Areas to be Revegetated:
9 Revegetation Area 4 Project

Description of Revegetation Activities
Seeding For $\left.=\frac{1,129 \mathrm{ac}}{\begin{array}{c}\text { Acreage to be } \\ \text { reseeded }\end{array}} \quad * \frac{382.8 \$ / \mathrm{ac} .}{\begin{array}{c}\text { cost for } \\ \text { seedbed } \\ \text { preparation }\end{array}} \quad+\frac{1281.5 \$ / \mathrm{ac} .}{\begin{array}{c}\text { cost for seeding, } \\ \text { fertilizing, mulching, } \\ \text { and irrigation }\end{array}}\right)=\$ 1,878,822$

20\% Contingency for vegetation failure:
Costs For $\left.=\frac{226 \mathrm{ac}}{\text { Reseeding }} \begin{array}{c}\begin{array}{c}\text { Acreage to be } \\ \text { reseeded }\end{array}\end{array} \frac{(382.8 \$ / \mathrm{ac} .}{\begin{array}{c}\text { cost for } \\ \text { seedbed } \\ \text { preparation }\end{array}}+\frac{1281.5 \$ / \mathrm{ac} .}{\begin{array}{c}\text { cost for seeding, } \\ \text { fertilizing, mulching, } \\ \text { and irrigation }\end{array}}\right)=\$ 375,764$

Other Revegetation Activity for this Area (e.g. Soil Sampling):

	TOTAL REVEGETATION COST $=\mathbf{\$} \mathbf{2 , 2 5 4 , 5 8 7}$

Data Sources:
Navajo Mine records for contractor planting costs
Seedbed Preparation includes discing and ripping, drill seeding, topsoil and spoil sampling
Irrigation costs are included with seeding, fertilizing and mulching costs

WORKSHEET NO. 14B
 REVEGETATION COSTS

Name and Description of Areas to be Revegetated:
34 Revegetation Roads Area 4 Project

Description of Revegetation Activities

20\% Contingency for vegetation failure:

20\% Contingency for vegetation failure:
$\left.\begin{array}{c}\text { Costs For }=\frac{23 \mathrm{ac}}{\text { Reseeding }} \begin{array}{c}\text { Acreage to be } \\ \text { reseeded }\end{array}\end{array} \frac{\left(\begin{array}{c}\text { cost for } \\ \text { seedbed } \\ \text { preparation }\end{array}\right.}{} \quad+\frac{1281.5 \$ / \mathrm{ac} .}{\begin{array}{c}\text { cost for seeding, } \\ \text { fertilizing, mulching, } \\ \text { and irrigation }\end{array}}\right)=\$ 38,991$

Other Revegetation Activity for this Area (e.g. Soil Sampling):

$$
\text { TOTAL REVEGETATION COST }=\$ 233,948
$$

Data Sources:
Navajo Mine records for contractor planting costs
Seedbed Preparation includes discing and ripping, drill seeding, topsoil and spoil sampling
Irrigation costs are included with seeding, fertilizing and mulching costs

WORKSHEET NO. 14C REVEGETATION COSTS		
Name and Description of Areas to be Revegetated:		
32 Intentionally Left Blank Description of Revegetation Activities		
20\% Contingency for vegetation failure:	$\frac{1281.5 \$ / \text { ac. }}{\substack{\text { cost for seeding, } \\ \text { fertilizing, mulching, } \\ \text { and irrigation }}} \quad=$	
Other Revegetation Activity for this Area (e.g. Soil Sampling):	$\frac{1281.5 \$ / a c .}{\left.\frac{\text { cost for seeding, }}{\text { fertilizing, mulching, }} \begin{array}{l}\text { and irrigation }\end{array}\right)=}$	
TOTAL REVEGETATION COST = \$		

Data Sources:
Navajo Mine records for contractor planting costs
Seedbed Preparation includes discing and ripping, drill seeding, topsoil and spoil sampling
Irrigation costs are included with seeding, fertilizing and mulching costs

Data Sources:
Navajo Mine records for contractor planting costs
Seedbed Preparation includes discing and ripping, drill seeding, topsoil and spoil sampling
Irrigation costs are included with seeding, fertilizing and mulching costs

WORKSHEET NO. 15A

PRODUCTIVITY AND HOURS FOR DRILL USE

Earthmoving Activity:
1 Drill \& Blast Area 4 Project

Characterization of Drill Used

WORKSHEET NO. 15B

PRODUCTIVITY AND HOURS FOR DRILL USE

Earthmoving Activity:
32 Intentionally Left Blank

Characterization of Drill Used

Drill Model IR DMM2 Drill										
Drill Bit Diameter	$10.63[\mathrm{in}]$	Burden	$26[\mathrm{ft}]$	1,233 Volume Shot per hole [bcy]						
Drill Rod Length	$35[\mathrm{ft}]$	Bench Height	$40[\mathrm{ft}]$							
Penetration Rate	$228[\mathrm{ft} / \mathrm{hr}]$	Spacing	$32[\mathrm{ft}]$							

Description of Activity:
Drilling holes to provide space for explosives

Calculation:

WORKSHEET NO. 15E	
Other Reclamation Activity Costs	
Earthmoving Activity:	
Rip-Rap for Channels and Drop Structures	
Calculation:	
See detailed calculations in Appendix 12-C	
Cost for Area 4 Project: $\quad \$ 62,260$	
Total: $\$ 62,260$	from 2011 Area 4 N estimate (Marston)

WORKSHEET NO. 16				
		2012 Estimate		
1	Total Facility and Structure Removal Costs	\$		
2	Total Earthmoving Costs	\$ 23,039		
3	Total Revegetation Costs	\$ 2,488		
4	Total Blast and Other Reclamation Activities Costs	\$ 265		
5	Subtotal: Total Direct Costs		\$	25,793,011
6	Mobilization and Demobilization (at 1.0\% of Item 5)	1.0\%	\$	257,930
7	Contingencies (at 5.0\% of Item 5)	5.0\%	\$	1,289,651
8	Engineering Redesign Fee (at 1.8\% of Item 5)	1.8\%	\$	464,274
9	Contractor Profit and Overhead (at 15.0\% of Item 5)	15.0\%	\$	3,868,952
10	Reclamation Management Fee (at 3.9\% of Item 5)	3.9\%	\$	1,005,927
	GRAND TOTAL BOND AMOUNT		\$	32,679,745
	(Sum of Items 5 through 10)			

LESS Pre-2016 2011 Area 4N Calculation
(Facility and structure removal left in Pre-2016)

NEW BOND TO ADD FOR 2016 to 2021 (Area 4 Project)

WORKSHEET NO. 16a
AREA 4 NORTH RECLAMATION BOND SUMMARY SHEET

	2011 Estimate		
1 Total Facility and Structure Removal Costs	\$621,216		
2 Total Earthmoving Costs	\$12,040,004		
3 Total Revegetation Costs	\$1,104,192		
4 Total Other Reclamation Activities Costs	\$161,505		
5 Subtotal: Total Direct Costs		\$13,926,917	\$13,305,701
6 Mobilization and Demobilization (at 1.0\% of Item 5)	1.00\%	\$139,269	\$133,057.01
7 Contingencies (at 2.0\% of Item 5)	2.00\%	\$278,538	\$266,114.02
8 Engineering Redesign Fee (at 1.8\% of Item 5)	1.80\%	\$250,685	\$239,502.62
9 Contractor Profit and Overhead (at 15.0\% of Item 5)	15.00\%	\$2,089,038	\$1,995,855.15
10 Reclamation Management Fee (at 3.9\% of Item 5)	3.90\%	\$543,150	\$518,922.34
GRAND TOTAL BOND AMOUNT (Sum of Items 5 through 10)		\$17,227,596	
			\$16,459,152

LESS STRUCTURE NOT INCLUDED IN Post 2016

[^0]: ${ }^{1}$ Reclamation bond amount to reclaim portions of Area 4 North included within the Navajo Mine permit area (OSM Permit No. NM-0003F).

[^1]: Total yards go to Worksheet 3

[^2]: 10.8% of all reclaim acres require mitigation
 feet total of mitigation and topsoil

