RERTR 2010 — 32^{nd} International Meeting on Reduced Enrichment for Research and Test Reactors

October 10-14, 2010 SANA Lisboa Hotel Lisbon, Portugal

COMPARISON OF BABELLI-ISHII FLOW INSTABILITY CRITERION WITH 75 TESTS DONE BY WHITTLE AND FORGAN

M. Kalimullah and A. P. Olson GTRI Program, Nuclear Engineering Division Argonne National Laboratory, Argonne, IL 60439-4803 – USA

ABSTRACT

The maximum operating power of research reactors is usually determined by flow instability. According to the Babelli-Ishii flow instability criterion, the flow in a channel is *stable* if the ratio of the Subcooling number to the Zuber number N_{sub}/N_{zu} on the left side of the following equation is greater than the quantity on the right hand side, and *unstable* if the ratio N_{sub}/N_{zu} is smaller.

$$\frac{N_{sub}}{N_{zu}} = \left(\frac{L_{nvg}}{L}\right)_{critical} + \frac{A_F}{\zeta_H L} \begin{cases} 0.0022 \text{ Pe} & \text{if} \quad \text{Pe} < 70000 \\ 154 & \text{if} \quad \text{Pe} > 70000 \end{cases}$$

This criterion was verified using a program developed to apply the criterion and a simpler form of this criterion to 75 tests (having uniform heat flux) reported by Whittle and Forgan. The comparison between the measured and calculated coolant inlet velocities at the onset of flow instability in these tests is good. The mean error in the inlet velocities calculated by the main criterion or its simpler form is 0.38 m/s or 0.36 m/s (higher). Both criteria have been implemented in the PLTEMP/ANL code. The derivation of the correlation, all the test data, and the comparison will be presented.

1. Introduction

The maximum operating power of research reactors is usually determined by Ledinegg flow instability in which a small random decrease in flow leads to a large decrease in flow, i.e., a flow excursion (all-vapor flow) causing a rapid heatup of the heater material, ending in its melting and failure if left unprotected [1]. This instability is due to the S-shape of the flow versus pressure drop characteristic of a boiling heated coolant channel that operates at low pressures (1 to ~20 bar) [2]. At higher pressures (> ~60 bar), the flow versus pressure drop characteristic is not S-shaped and hence there is no Ledinegg instability. To predict the onset of this instability in research reactors, some criteria are available, e.g., the Whittle and Forgan criterion [3], and the ORNL criterion [4]. In 2001, Babelli and Ishii reported another criterion [5] for flow instability

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. Work supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation.

based on the Subcooling number and the Zuber number which is the subject of this work.

In this work, two forms of the Babelli-Ishii flow instability criterion were verified using a program developed to apply the criterion to the 75 flow instability tests (using uniform heat flux) reported by Whittle and Forgan [3]. The comparison of the measured and calculated (using either form of the criterion) coolant inlet velocities at the onset of flow instability in these tests shows that both forms predict slightly higher inlet velocities. Both the main criterion, Eq. (8), and the simpler criterion, Eq. (9), have been implemented in the PLTEMP/ANL code [6] for steady-state thermal hydraulic analysis of research reactors.

1. Derivation of Babelli-Ishii Criterion for Flow Instability

Babelli and Ishii obtained Eq. (8) given below as a criterion for excursive flow instability due to boiling inception in a coolant channel heated by a *uniform* wall heat flux, based on their theoretical and experimental work, and the experimental data of Dougherty [7]. The criterion is applicable to both downward and upward flows. By heat balance, the coolant flow rate times the enthalpy change from channel inlet to the net vapor generation (NVG) position (defined as the point where bubble departure from the channel wall is initiated[8]) equals the power generated in the fuel and transferred to the coolant over the non-boiling length, $q_w^{"}\zeta_H L_{nvg}$.

$$\left(h_{nvg} - h_{in}\right) = \frac{q_w \zeta_H L_{nvg}}{\rho_{in} V_{in} A_F}$$
(1)

See nomenclature given at the end. Assume the coolant pressure P_{in} at the start of the heated section to be a *reference pressure* for calculating coolant subcooling at inlet and at the NVG position. Then the enthalpy difference between any pair of axial positions exactly equals the corresponding subcooling difference. The inlet subcooling $\Delta h_{in} = h_f(P_{in}) - h_{in}$, the subcooling at the NVG position $\Delta h_{nvg} = h_f(P_{in}) - h_{nvg}$, and the left hand side of Eq. (1) is

$$(\mathbf{h}_{\mathrm{nvg}} - \mathbf{h}_{\mathrm{in}}) = \Delta \mathbf{h}_{\mathrm{in}} - \Delta \mathbf{h}_{\mathrm{nvg}}$$
⁽²⁾

If the coolant pressure at the NVG position (instead of the pressure P_{in} at the start of the heated section) were used as the system *reference pressure*, then inlet subcooling $\Delta h_{in} = h_f(P_{nvg}) - h_{in}$, the subcooling at the NVG position $\Delta h_{nvg} = h_f(P_{nvg}) - h_{nvg}$, and Eq. (2) remains unchanged. With this assumption, the subcooling at the NVG position is accurate and the subcooling at inlet is approximate, whereas with the former assumption, the subcooling at the NVG position is accurate (the reverse is true). Substituting Eq. (2) into Eq. (1), and solving for the non-boiling length L_{nvg} , one gets

$$\frac{L_{nvg}}{L} = \frac{\rho_{in} V_{in} A_F (\Delta h_{in} - \Delta h_{nvg})}{q_w^{"} \zeta_H L}$$
(3)

Equation (3) is Eq. (2) of the Babelli and Ishii paper [5]. Using the Subcooling number and Zuber number defined below by Eqs. (5) and (6), Babelli and Ishii recast Eq. (3) as

$$\frac{N_{sub}}{N_{zu}} = \frac{L_{nvg}}{L} + \frac{A_F}{\zeta_H L} \left\{ \frac{\rho_{in} V_{in} \Delta h_{nvg}}{q_w^{''}} \right\}$$
(4)

where

N_{sub} = Subcooling number =
$$\frac{\Delta h_{in}}{h_{fg}} \frac{(\rho_{f,nvg} - \rho_{g,nvg})}{\rho_{g,nvg}}$$
 (5)

N_{zu} = Zuber number =
$$\frac{q_w^{'}\zeta_H L}{\rho_{in} V_{in} A_F h_{fg}} \frac{(\rho_{f,nvg} - \rho_{g,nvg})}{\rho_{g,nvg}}$$
(6)

= Ratio of Subcooling number to Zuber number = $\frac{\rho_{in} V_{in} A_F \Delta h_{in}}{q_w^{''} \zeta_H L}$ (7) N_{sub}/N_{zu}

The ratio inside the curly brackets on the right hand side of Eq. (4) is obtained from the Zuber correlation for the net vapor generation. For an accurate application of the Zuber correlation, it is preferred that the system reference pressure is assumed equal to the coolant pressure at the NVG position (rather than the pressure Pin at the start of the heated section), making the value of the subcooling at the NVG position accurate. Substituting the value of $\rho_{in}V_{in} \Delta h_{nvg}/q_w^{"}$ in Eq. (4) from Eq. (6) of the Babelli and Ishii paper [5] which is basically the Saha-Zuber correlation [8] for net vapor generation, one gets Eq. (8), the desired flow instability criterion. The channel flow is stable if the ratio N_{sub}/N_{zu} on the left hand side of Eq. (8) is greater than the quantity on the right hand side, and unstable if the ratio N_{sub}/N_{zu} is smaller.

$$\frac{N_{sub}}{N_{zu}} = \left(\frac{L_{nvg}}{L}\right)_{critical} + \frac{A_F}{\zeta_H L} \begin{cases} 0.0022 \, Pe & \text{if} \quad Pe < 70000 \\ 154 & \text{if} \quad Pe > 70000 \end{cases}$$
(8)
where

 $(L_{nvg}/L)_{critical}$ = Critical value of the dimensionless non-boiling length. Based on experimental data for freon-113 and water, it is plotted in Fig. 4 of Ref. [5] as function of the Subcooling number, and the same data is tabulated here in Table 1.

Table 1. Critical Value of Dimensionless Non-boiling Length (Lnvg/L)critical as Function of Subcooling Number

Subcooling	Experiment	al Value of	Subcooling	Experimental Value of				
Number,	(L _{nvg} /I	_)critical	Number,	$(L_{nvg}/L)_{critical}$				
N _{sub}	Lower Limit	Upper Limit	N _{sub}	Lower Limit	Upper Limit			
2.69	0.0232	0.0232	43.03	0.594	1.297			
5.38	0.0684	0.414	53.78	0.711	1.222			
8.07	0.141	0.594	64.54	0.905	1.083			
10.76	0.256	0.756	69.92	1.00	1.00			
21.51	0.440	1.083	160.00	1.00	1.00			
32.27	0.527	1.222						

In the case of *upward flow*, the quantity is calculated as shown in Eq. (8) given above. However, in the case of *downward flow*, Babelli and Ishii suggest (based on the experimental data of Johnston [9]) that the quantity is always 154.

A simpler criterion for flow instability due to boiling inception may also be inferred from Fig. 5 of Ref. [5] which is a plot on the N_{sub} - N_{zu} plane of several flow instability test data for Freon-113 and water. The plot suggests the following simple criterion for flow instability.

$\frac{N_{sub}}{N_{zu}} = \langle$	>1.36	clearly stable	
	<1.36 to 1.0	may be stable or unstable clearly unstable	(9)
	<1.0	clearly unstable	

2 Application of Flow Instability Criterion of Equation (8) to Whittle and Forgan Tests

The Babelli-Ishii criterion for the onset of flow instability (OFI) was applied to all 75 tests performed by Whittle and Forgan at a uniform heat flux [3]. The test data used in the present calculation of these 75 tests are listed in Table 2. Eight tests (Test Numbers 17 to 24) performed in test section 1A using non-uniform heat fluxes were not analyzed. A program was developed to calculate for each test, the coolant exit temperature, single-phase pressure drop, Subcooling number, Zuber number, and other needed quantities, for an *assumed* coolant inlet velocity. The program found the coolant inlet velocity at OFI by iteration, as described below.

The coolant inlet velocity was varied in steps of 0.001 m/s from a suitable low value to a higher value, in search of the inlet velocity at which the ratio N_{sub}/N_{zub} , the left hand side of Eq. (8) becomes higher than the right hand side, i.e., the flow becomes stable. The inlet velocity just before the flow becomes stable is the inlet velocity at OFI. The inlet velocity at OFI was calculated for each test, and the results are shown in Table 2. The results for all 75 tests remain unchanged irrespective of whether the upper or the lower limit of $(L_{nvg} / L)_{critical}$ (given in Table 1) is used in the calculation. This is because the two limits exist only if the Subcooling number is less than 69.92. However, in all the 75 tests the Subcooling number is greater than 69.92, as shown in Table 2.

The measured flow rate (W) and inlet velocity at OFI (V_{in}), found from the measured exit coolant temperature using the heat balance Eq. (10), are also shown in Table 2. The exit temperature was itself calculated from the measured ratio $r = (T_{sat,out} - T_{out})/(T_{out} - T_{in})$ reported by Whittle and Forgan [3], using Eq. (11). The measured flow rates at OFI thus obtained were found to be in agreement with those obtained by A. P. Olson using a different approach during an earlier analysis of these tests [6].

$$\rho_{\rm in} \, V_{\rm in} \, A_{\rm F} = W = \frac{Q}{h(P_{\rm out}, T_{\rm out}) - h(P_{\rm in}, T_{\rm in})} \tag{10}$$

$$T_{out} = \frac{T_{sat,out} + r T_{in}}{1 + r}$$
(11)

A statistical analysis was done to find the mean and the standard deviation of the difference between the calculated and measured inlet velocities at OFI (calculated – measured). The mean

error was 0.384 m/s with a standard deviation of 0.242 m/s. Figure 1 shows a comparison of the calculated versus the measured coolant inlet velocity at OFI. The data points are generally above the line of slope 1, indicating that the criterion is conservative. The mean value of the Whittle and Forgan parameter η at OFI is found to be 37.55 with a standard deviation of 3.16.

3. Application of Flow Instability Criterion of Eq. (9) to Whittle and Forgan Tests

The simple flow instability criterion of Eq. (9) was also applied to the same 75 tests reported by Whittle and Forgan. The coolant inlet velocity was varied in steps of 0.001 m/s from a suitable low value to a higher value, in search of the inlet velocity at which the ratio N_{sub}/N_{zub} becomes greater than 1.36, i.e., the flow becomes stable according to Eq. (9). The inlet velocity just before the ratio N_{sub}/N_{zub} becomes greater than 1.36 is the inlet velocity at OFI. The inlet velocity at OFI was calculated for each test. Figure 2 shows a comparison of the calculated versus the measured coolant inlet velocity at OFI. A statistical analysis was done to find the mean and the standard deviation of the difference between the calculated and measured inlet velocities (calculated – measured). The mean error was 0.363 m/s with a standard deviation of 0.319 m/s. Again, the mean error is positive, implying that the criterion is conservative.

For the 12 tests done by Whittle and Forgan in their test section number 3 (with $L/D_H = 190.9$), the simple criterion finds the parameter η at OFI to be about 68.2 which is about two times the values of η at OFI found for all other tests. This is because the parameter η at OFI *calculated based on Eq.* (9) equals 0.36(L/D_H), as explained in Section 4 below.

4. Value of Parameter η According to the Simple Instability Criterion

The Whittle and Forgan parameter η at OFI is defined by Eq. (12). Here, the ratio of temperature differences, $\Delta T_{sub,o}/\Delta T_c$ equals the ratio of the corresponding enthalpy differences, $\Delta h_{out}/\Delta h_c$.

$$\eta = \frac{\Delta T_{\text{sub,o}}}{\Delta T_{\text{c}}} \frac{L}{D_{\text{H}}} = \frac{\Delta h_{\text{out}}}{\Delta h_{\text{c}}} \frac{L}{D_{\text{h}}} \quad \text{at OFI}$$
(12)

In the simple instability criterion of Eq. (9), the ratio N_{sub}/N_{zub} equals 1.36 at OFI. The ratio N_{sub}/N_{zub} is defined by Eq. (7) whose numerator can be written as $W\Delta h_{in}$, and the denominator is the total heat transferred, Q, to the coolant in the channel. So the ratio N_{sub}/N_{zub} equals $W\Delta h_{in}/Q$. Noting that Q/W is the coolant enthalpy rise in the channel Δh_c , the ratio N_{sub}/N_{zub} equals $\Delta h_{in}/\Delta h_c$ and this ratio equals 1.36 at OFI based on the criterion of Eq. (9) as shown in Eq. (13).

$$\frac{N_{sub}}{N_{zub}} = \frac{W\Delta h_{in}}{Q} = \frac{\Delta h_{in}}{\Delta h_c} = 1.36 \qquad \text{at OFI}$$
(13)

Thus, $\Delta h_{in} = 1.36 \Delta h_c$ at OFI. Noting that $\Delta h_{in} = \Delta h_{out} + \Delta h_c$, one gets $\Delta h_{out} = 0.36 \Delta h_c$, and using this value of Δh_{out} in Eq. (12), one gets from Eq. (12) the parameter $\eta = 0.36 L/D_H$. It means that the Whittle and Forgan parameter η at OFI based on the simple flow instability criterion of Eq. (9) varies linearly with the heated length-to-hydraulic diameter ratio. That is why

the parameter η at OFI calculated based on Eq. (9) for Test Numbers 63 to 74 (with L/D_H = 190.9) is about 68.2. The values of parameter η at OFI for Test Numbers 63 to 74 are about twice the values of η at OFI found for all other tests. The reason is that Test Numbers 63 to 74 were performed in a test section having an L/D_H nearly twice the L/D_H in all other tests (see L/D_H of all tests in Table 2).

5. Conclusions

The Babelli-Ishii flow instability criterion of Eq. (8) and the simple criterion of Eq. (9) were applied to 75 Whittle and Forgan tests. The comparison of the calculated and measured coolant inlet velocities at OFI in these tests shows that both criteria are slightly conservative. Both criteria are implemented in the PLTEMP/ANL V3.4 code [6].

Nomenclature

= Flow area of channel, m^2 AF = Specific heat of the coolant, $J/kg^{\circ}C$ C_p D_h = Hydraulic diameter based on the *wetted* perimeter of the channel, m = Hydraulic diameter based on the *heated* perimeter of the channel, m D_H h(P,T) = Liquid coolant enthalpy as a function of coolant pressure P and temperature T, J/kg h_{in} = Coolant enthalpy at the heated length inlet = $h(P_{in}, T_{in})$, J/kg = Coolant enthalpy at the heated length exit = $h(P_{out}, T_{out})$, J/kg hout = Saturated liquid enthalpy at the heated length inlet pressure = $h(P_{in})$, J/kg hfin = Saturated liquid enthalpy at the heated length exit pressure = $h(P_{out})$, J/kg h_{f,out} $h_{fg}(P)$ = Latent heat of vaporization as a function of coolant pressure P Δh_c = h_{out} - h_{in} = Coolant enthalpy rise in the channel, J/kg = Subcooling at the start of heated length, $J/kg = h_f(P_{in}) - h_{in} \approx h_f(P_{nvg}) - h_{in}$ Δh_{in} Δh_{out} $= h_{f,out} - h_{out} = Exit$ subcooling in terms of enthalpy, J/kg Δh_{nvg} = Subcooling at the NVG position, $J/kg = h_f(P_{in}) - h_{nvg} \approx h_f(P_{nvg}) - h_{nvg}$ = Coolant thermal conductivity, $W/m^{\circ}C$ Κ L = Channel heated length, m L_{nvg} = Non-boiling length, i.e., the distance from start of heated length of channel to the position of net vapor generation, m N_{zu} = Zuber number = Subcooling number N_{sub} Р = Coolant pressure, Pa = Peclet number = Re Pr = $\rho_{in} C_p V_{in} D_h / K$ Pe Pr = Prandtl number = $\mu C_p/K$ Pin = Channel inlet pressure, Pa Pout = Channel outlet pressure, Pa = Wall heat flux (assumed uniform over the channel length), W/m^2 q_w Q $= q_w \zeta_H L =$ Total power input to the coolant, W = Reynolds number = $\rho_{in} V_{in} D_h / \mu$ Re = Coolant density, kg/m^{-1} ρ Т = Coolant temperature, °C = Coolant temperature at the channel inlet, °C T_{in} = Coolant temperature at the channel outlet, $^{\circ}C$ Tout

 $T_{sat}(P)$ = Coolant saturation temperature at a specific pressure P, °C

 $T_{sat,in}$ = Coolant saturation temperature at channel inlet, °C

 $T_{sat,out}$ = Coolant saturation temperature at channel outlet, °C

 ΔT_c = T_{out} - T_{in} = Coolant temperature rise at OFI, °C

 $\Delta T_{sat} = T_{sat,out} - T_{in} = Saturation temperature at exit minus inlet temperature at OFI, °C$

 $\Delta T_{sub,o} = T_{sat,out} - T_{out} = Exit$ subcooling at the onset of flow instability, °C

$$\eta = \frac{T_{\text{sat,out}} - T_{\text{out}}}{T_{\text{out}} - T_{\text{in}}} \frac{L}{D_{\text{H}}} = A \text{ parameter used by Whittle and Forgan in their analysis of}$$

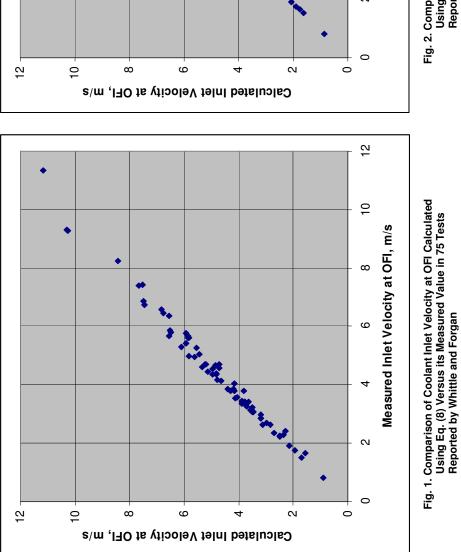
the flow instability tests

= Absolute viscosity of the coolant, Pa-s

- V = Coolant velocity, m/s
- $W = \rho_{in} V_{in} A_F = Coolant flow rate, kg/s$
- $\zeta_{\rm H}$ = Heated perimeter, m

Subscripts

μ


- c = coolant
- F = flow
- f = saturated liquid
- g = saturated vapor
- fg = liquid to vapor phase change
- H = heated
- h = hydraulic
- in = channel heated length inlet
- nvg = position of net vapor generation
- out = channel heated length outlet

sat = saturated

References

- [1] P. B. Whalley, "Boiling, Condensation and Gas-Liquid Flow," The Oxford Engineering Science Series, Oxford University Press, New York, pp. 115-117 (1990).
- [2] N. E. Todreas and M. S. Kazimi, "Nuclear Systems I Thermal Hydraulic Fundamentals," Taylor and Francis, New York, pp. 605-615 (1990).
- [3] W. H. Whittle and R. Forgan, "A Correlation for the Minima in the Pressure Drop Versus Flow-Rate Curves for Sub-cooled Water Flowing in Narrow Heated Channels," Nuclear Engineering and Design, Vol. 6, pp. 89-99 (1967).
- [4] M. Siman-Tov, D. K. Felde, J. L. McDuffee, and G. L. Yoder, "Experimental Study of Static Flow Instability in Sub-cooled Flow Boiling in Parallel Channels," 4th ASME/JSME Thermal Engineers Joint Conference, Maui, Hawaii, CONF-950113-1, Oak Ridge National Laboratory, Oak Ridge, TN (January 1995).
- [5] Babelli and M. Ishii, "Flow Excursion Instability in Downward Flow Systems, Part II: Two-Phase Instability," Nuclear Engineering and Design, Vol. 206, pp. 97-104 (2001).
- [6] A. P. Olson, and M. Kalimullah, "A Users Guide to the PLTEMP/ANL V3.4 Code," RERTR Program, Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL (January 10, 2008).

- [7] T. Dougherty, C. Fighetti, G. Reddy, B. Yang, E. McAssey Jr., and Z. Qureshi, "Flow Instability in Vertical Channels," ASME HTD-Vol. 159, pp. 177-186 (1991).
- [8] P. Saha and N. Zuber, "Point of Net Vapor Generation and Vapor Void Fraction in Subcooled Boiling," Proc. Fifth Int. Heat Transfer Conf., Vol. 4, pp. 175-179 (1974).
- [9] B. S. Johnston, "Subcooled Boiling of Downward Flow in a Vertical Annulus," ASME Heat Transfer Division, HTD-Vol. 109, pp. 149-156 (1989).

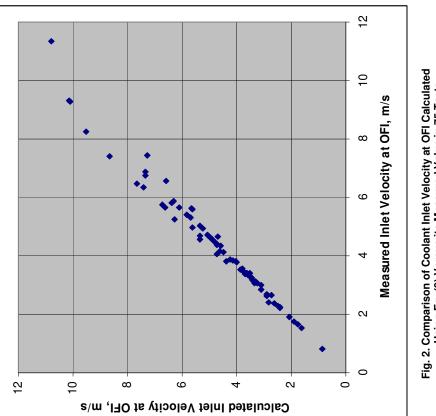


Fig. 2. Comparison of Coolant Inlet Velocity at OFI Calculated Using Eq. (9) Versus its Measured Value in 75 Tests Reported by Whittle and Forgan

Table 2. Comparison of Coolant Inlet Velocity at OFI Calculated Using Eq. (8) Versus its Measured Value in 75 Tests Reported by Whittle and Forgan

Test	Calc.	Inlet	Heat	$\rm L/D_{\rm H}$	Exit	Exit	Ratio	η	Measured			Subcool	Zuber	Ratio
No.	Inlet	Temp	Flux	Ratio	Press	Temp	$\Delta T_c / \Delta T_{sat}$	W&F	Inlet		Number	Number	Number	Nsub
	Vel,m/s	С	W/cm^2		psia	С			Vel,m/s	kg/s				/N _{zub}
1	2.712		104.000	94.488	17.000	89.971	0.712	38.260		0.1908		129.406		1.407
2	3.781		145.000	94.488	17.000	89.974	0.712	38.248				129.402		1.407
3	4.798		184.000	94.488	17.000	89.975	0.712	38.244				129.397		1.407
4	6.520		250.000	94.488	17.000	89.975	0.712	38.246				129.384		1.407
5	2.138	55.000		94.488	17.000	89.976	0.712	38.240				129.406	91.964	1.407
6	3.546		136.000	94.488	17.000	89.977	0.712	38.236				129.402		1.407
7	4.172		160.000	94.488	17.000	89.977	0.712	38.238				129.397		1.407
8	5.216		200.000	94.488	17.000	89.972	0.712	38.257				129.393		1.407
9	3.455		160.000	94.488	17.000	87.105	0.712	38.210				155.577		1.407
10	3.887		180.000	94.488	17.000	87.103	0.712	38.214				155.577		1.407
11	4.405		204.000	94.488	17.000	87.107	0.712	38.201				155.572		1.407
12	3.200	60.000	110.000	94.488	17.000	91.406	0.712	38.284				116.295		1.407
13	4.654	60.000	160.000	94.488	17.000	91.412	0.712	38.262	4.138	0.3336	162317.	116.290	82.638	1.407
14	5.236	60.000	180.000	94.488	17.000	91.412	0.712	38.261	4.715			116.286		1.407
15	5.818	60.000	200.000	94.488	17.000	91.410	0.712	38.267	4.982	0.4016	202915.	116.286	82.631	1.407
16	2.505	35.000	136.000	94.488	17.000	84.247	0.712	38.152	2.229	0.1816	88704.	181.713	129.155	1.407
25	1.684	45.000	78.000	94.488	17.000	87.108	0.712	38.200	1.517	0.1232	59299.	155.590	110.578	1.407
26	2.505	45.000	116.000	94.488	17.000	87.100	0.712	38.226	2.257	0.1832	88210.	155.585	110.551	1.407
27	3.196	45.000	148.000	94.488	17.000	87.100	0.712	38.225	2.843			155.585		1.407
28	2.998	55.000	115.000	94.488	17.000	89.979	0.712	38.228	2.701	0.2183	104912.	129.410	91.977	1.407
29	1.955	55.000	75.000	94.488	17.000	89.982	0.712	38.219	1.762	0.1424	68413.	129.415	91.987	1.407
30	3.807	55.000	146.000	94.488	17.000	89.973	0.712	38.251	3.386	0.2736	133223.	129.406	91.956	1.407
31	0.907	45.000	42.000	94.488	17.000	87.097	0.712	38.233	0.827	0.0672	31939.	155.590	110.550	1.407
32	3.512	55.000	147.000	83.333	17.000	88.671	0.685	38.263	3.084	0.1884	95608.	129.402	88.514	1.462
33	4.061	55.000	170.000	83.333	17.000	88.675	0.685	38.249	3.566	0.2178	110553.	129.402	88.525	1.462
34	4.300	55.000	180.000	83.333	17.000	88.674	0.685	38.252	3.776	0.2307	117060.	129.402	88.522	1.462
35	5.136	55.000	215.000	83.333	17.000	88.676	0.685	38.244	4.454	0.2721	139819.	129.397	88.524	1.462
36	3.878	45.000	196.000	83.333	17.000	85.534	0.685	38.233	3.406	0.2090	106263.	155.577	106.414	1.462
37	4.946	45.000	250.000	83.333	17.000	85.539	0.686	38.218	4.344	0.2665	135528.	155.572	106.423	1.462
38	3.561	45.000	180.000	83.333	17.000	85.539	0.686	38.218	3.128	0.1919	97576.	155.577	106.427	1.462
39	5.331	65.000	177.000	83.333	17.000	91.812	0.685	38.288	4.621	0.2808	144098.	103.170	70.576	1.462
40	6.115	65.000	203.000	83.333	17.000	91.810	0.685	38.299	5.300	0.3221	165290.	103.166	70.566	1.462
41	6.566	65.000	218.000	83.333	17.000	91.813	0.685	38.284	5.669	0.3445	177481.	103.166	70.575	1.462
42	3.704	65.000	123.000	83.333	17.000	91.813	0.685	38.283	3.252			103.179		1.462
43	4.137	45.000	250.000	83.333	25.000	93.422	0.686	38.159	3.543	0.2174	112790.	130.125	89.009	1.462
44	5.629	65.000	242.000	83.333	25.000	99.683	0.686	38.231	4.943	0.3004	151549.	93.463	63.930	1.462
45	3.116	65.000	134.000	83.333	25.000	99.690	0.686	38.207	2.634	0.1601	83891.	93.469	63.949	1.462

Table 2. Cont'd.

Test		Inlet	Heat	L/D _H	Exit	Exit	Ratio	η	Measured				Zuber	Ratio
No.	Inlet Mal m/a	Temp	Flux W/cm^2	Ratio	Press	Temp	$\Delta T_c / \Delta T_{sat}$	W&F	Inlet Mal m/a		Number	Number	Number	N _{sub}
46	Vel,m/s 3.868	C 55 000	200.000	83.333	psia 25.000	С 96.556	0.686	38.180	Vel,m/s 3.355	kg/s	101026	111.814	76.493	/N _{zub} 1.462
40	3.481		180.000		25.000	96.558	0.686	38.173		0.1868		111.814	76.493	1.462
48	4.807		177.000		17.000	90.538	0.723	38.249				129.397	93.439	1.385
49	5.921		218.000		17.000	90.538	0.723	38.249				129.389	93.430	1.385
50	7.497		276.000		17.000	90.540	0.723	38.244				129.376	93.421	1.385
51	4.828		141.000		17.000	93.296	0.723	38.295				103.170	74.495	1.385
52	7.466	65.000	218.000	100.000	17.000	93.296	0.723	38.291	6.743			103.153	74.480	1.385
53	10.276	65.000	300.000	100.000	17.000	93.299	0.723	38.276	9.279	0.4699	234706.	103.131	74.466	1.385
54	3.766	65.000	110.000	100.000	17.000	93.298	0.723	38.283	3.402	0.1723	86013.	103.175	74.506	1.385
55	4.971	45.000	221.000	100.000	17.000	87.779	0.723	38.226	4.550	0.2327	115013.	155.568	112.326	1.385
56	6.500	45.000	289.000	100.000	17.000	87.785	0.724	38.205	5.799	0.2965	150390.	155.559	112.334	1.385
57	5.430	35.000	283.000	100.000	17.000	85.033	0.724	38.172	5.035	0.2584	126321.	181.699	131.215	1.385
58	4.202		219.000		17.000	85.032	0.724	38.175	3.848	0.1974	97753.	181.704	131.216	1.385
59	3.511		183.000		17.000	85.034	0.724	38.169		0.1650		181.708		1.385
60	2.369	55.000		100.000	17.000	92.875	0.771	29.718		0.1162		129.406	99.621	1.299
61	10.311	75.000	223.000		17.000	96.062	0.723	38.311	9.308	0.4686	233771.		55.494	1.385
62	1.546	55.000		100.000	17.000	96.172	0.838	19.331		0.0846		129.406		1.195
63	7.651		170.000		17.000	95.934	0.833	38.233				129.341		1.202
64	4.154	55.000		190.909	17.000	96.226	0.839	36.608		0.1418		129.389		1.193
65	5.849		130.000		17.000	95.937	0.833	38.215		0.1983		129.367		1.201
66	4.732		127.000		17.000	94.269	0.833	38.214		0.1649		155.555		1.202
67	6.558		176.000		17.000	94.275	0.833	38.189				155.533		1.202
68	2.300	45.000		190.909	17.000	98.442	0.904	20.323		0.0850		155.577		1.107
69	8.423		226.000		17.000	94.274	0.833	38.193				155.503		1.202
70	3.803		122.000		17.000	93.738	0.850	33.779		0.1341		181.695		1.178
71 72	6.751		119.000		17.000	97.600	0.833	38.249				103.131		1.201
73	5.559	65.000		190.909	17.000 17.000	97.597 97.595	0.833	38.266 38.281		0.1830		103.149		1.202 1.202
73 74	4.708 5.945	65.000	187.000	190.909	17.000	97.595	0.833 0.833	38.178		0.1587		103.157 181.669		1.202
74	4.851		186.000	94.488	17.000	89.971	0.833	38.261				129.393		1.202
76	6.833		262.000	94.488	17.000	89.971	0.712	38.241	4.003 6.569			129.393	91.930 91.937	1.407
70	3.651		140.000	94.488	17.000	89.972	0.712	38.256				129.300		1.407
78	3.196		148.000	94.488	17.000	87.103	0.712	38.215		0.0969		155.577		1.407
79	5.831		270.000	94.488	17.000	87.105	0.712	38.206				155.559		1.407
80	7.517		348.000	94.488	17.000	87.102	0.712	38.218				155.546		1.407
81	2.827		86.000	94.488	17.000	92.848	0.712	38.284		0.0848		103.179	73.321	1.407
82	5.853		178.000	94.488	17.000	92.846	0.712	38.295				103.162		1.407
83	11.184		340.000	94.488	17.000	92.853	0.712	38.262				103.114		1.407

Mean error in calculated inlet velocity at OFI, m/s = 0.384Standard deviation of the error in calculated inlet velocity at OFI, m/s = 0.242