

US Army Corps of Engineers Hydrologic Engineering Center

Water Quality Modeling of Reservoir System Operations Using HEC-5

September 1987

REP	ORT DO	CUMENTATIC	ON PAGE			Form Approved OMB No. 0704-0188
The public reporting burden for t existing data sources, gathering burden estimate or any other as Services and Communications I subject to any penalty for failing PLEASE DO NOT RETURN YC	his collection of and maintainin pect of this col Directorate (070 to comply with DUR FORM TO	of information is estimate og the data needed, and lection of information, ind 04-0188). Respondents a collection of information THE ABOVE ORGANIA	d to average 1 hour completing and rev cluding suggestions should be aware the on if it does not disp ZATION.	r per re iewing for rec at notv play a c	esponse, includ the collection of ducing this burd withstanding an currently valid C	ing the time for reviewing instructions, searching of information. Send comments regarding this len, to the Department of Defense, Executive y other provision of law, no person shall be DMB control number.
1. REPORT DATE (DD-MM-YYY	Y)	2. REPORT TYPE			3. DATES C	OVERED (From - To)
September 1987		Training Docume	nt			
4. TITLE AND SUBTITLE	of Decomo	in Constant an analia	a a Thain a	5a.	CONTRACT	NUMBER
Water Quality Modeling	of Reservo	ir System operation	ns Using			
HEC-5				50.	GRANTNUM	BER
				5c.	PROGRAM E	LEMENT NUMBER
6. AUTHOR(S)				5d.	PROJECT NU	IMBER
R. G. Willey				5e.	TASK NUMBE	ER
				5F.	WORK UNIT I	NUMBER
7. PERFORMING ORGANIZAT	ION NAME(S)	AND ADDRESS(ES)		-I	8. PERFOR	MING ORGANIZATION REPORT NUMBER
US Army Corps of Engin	neers				TD-24	
Institute for Water Resou	irces					
Hydrologic Engineering	Center (HE	C)				
609 Second Street						
Davis, CA 95616-4687						
9. SPONSORING/MONITORIN	G AGENCY N	AME(S) AND ADDRESS	S(ES)		10. SPONS	OR/ MONITOR'S ACRONYM(S)
					11. SPUNS	OR/ MONITOR S REPORT NUMBER(S)
 DISTRIBUTION / AVAILAE Approved for public rele SUPPLEMENTARY NOTE: 	ase; distrib	ution is unlimited.				
14. ABSTRACT This training document p study. The purpose of th collecting, assembly, and normally discussed in a t	orovides gui is training o l manipulat isers manua	dance on the appli- document is to fam ing water quality in al or even in lecture	cation of the Hi iliarize the first uput data. The es.	EC-5	computer p e user of HE ment conve	program to a typical water quality C-5 with the procedure to follow for ys many significant items not
15. SUBJECT TERMS						
water quality, reservoir,	system oper	rations, HEC-5, res	ervoir releases,	, proj	ects, reserve	oir system, control points, water
quantity, flood control, h conservative constituents	ydropower s, dissolved	, water supply, irrig oxygen, phytoplar	gation diversion	ns, wa tion i	ater tempera ntervals, wa	ture, conservative constituents, non- ter quality study, flow simulation
16. SECURITY CLASSIFICATI	ON OF:		17. LIMITATION		18. NUMBER	19a. NAME OF RESPONSIBLE PERSON
a. REPORT b. Al	BSTRACT	c. THIS PAGE	OF		OF	
U	U	U			PAGES 124	19b. TELEPHONE NUMBER
			00		147	Standard Form 200 (Day 9/00)

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39-18

Water Quality Modeling of Reservoir System Operations Using HEC-5

September 1987

US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil

TD-24

WATER QUALITY MODELING OF RESERVOIR SYSTEM OPERATIONS USING HEC-5

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TABLE OF CONTENTS	i
	LIST OF FIGURES	ii
I	INTRODUCTION	1
II	MATHEMATICAL MODEL	3
III	RESERVOIR SYSTEM DESCRIPTION	11
IV	APPLICATION PROCEDURE	13
V	SIMULATION RESULTS	18
VI	SUMMARY	20
VII	REFERENCES	21

<u>APPENDIX</u>

A	HEC-5 Input for Water Quality Modeling
В	Selected HEC-5 Printer Output for Water Quality Modeling
с	Selected Graphical Displays of Output

LIST OF FIGURES

NUMBER	TITLE	PAGE
1	Typical Reservoir System Schematic	2
2	Geometric Representation of a Stratified Reservoir and Mass Transport Mechanism	5
3	Geometric Representation of Stream and Mass Transport Mechanism	7
4	Sacramento Valley Reservoir System Schematic	12

CHAPTER I

INTRODUCTION

The U.S. Army Corps of Engineers is responsible for the operation of hundreds of multiple purpose reservoirs in addition to maintenance of hundreds of miles of non-reservoir projects (e.g., levees and navigation channels). Management of reservoir releases for water quality can be analyzed to determine the operation with any one of the numerously available reservoir computer programs [WRE 1969a, HEC 1972, U.S. Army 1977, HEC 1978, Loftis 1980]. With river water quality programs, the impact of specified reservoir releases can be evaluated at downstream points of interest [HEC 1978].

The problem with using single project models is the difficulty of coordinating releases among projects which impact on a single location. This is particularly obvious in Figure 1 where the operation of both reservoirs A and B impact on the amount and quality of water at City A (i.e., control point 3). As the system is expanded further downstream, the computations necessary to provide a best operation of reservoirs A through D for control point 7 obviously require a comprehensive system approach.

The "HEC-5, Simulation of Flood Control and Conservation Systems, Appendix on Water Quality Analysis" computer model [HEC 1986] has been developed specifically for evaluating the type of problem shown in Figure 1. The model is capable of evaluating a reservoir system of up to ten reservoirs and up to thirty control points. The model will determine a best system operation for water quantity and quality; evaluating operational concerns like flood control, hydropower, water supply, and irrigation diversions. Changing needs and natural inputs can also be accommodated.

The HEC-5 water quality routines can be used to determine the quality constituents available with the best system water quantity operation or alternately the best water quality operation. The model can analyze water temperature, up to three conservative and three non-conservative constituents, dissolved oxygen and phytoplankton. Optional computation intervals from hourly to monthly are available. Graphical post-processor capability can be interfaced through other available software.

This training document provides guidance on the application of the HEC-5 computer program to a typical water quality study. The purpose of this training document is to familiarize the first time user of HEC-5 with the procedure to follow for collecting, assembly, and manipulating water quality input data. The optional types of executions and the proper interpretation of results are also discussed at some length. The author conveys many significant items not normally discussed in a users manual or even in short course lectures. These items resulted from experience gained by completing several studies with this water quality model. Following the procedures in this document will help the reader apply HEC-5 to routinely encountered problems involving evaluation of water quality conditions in existing and/or proposed multipurpose reservoir systems.

The HEC-5 water quality model is new and therefore a research tool until it has been successfully applied to numerous practical problems. The HEC would appreciate your comments and observations which could be added to this report or to the users manual regarding experiences with the application of HEC-5. As desirable improvements are identified, modifications will be made.

Additional assistance in understanding HEC-5 is available by contacting Mr. Willey at (916) 551-1748 or (FTS) 460-1748.

TYPICAL RESERVOIR SYSTEM SCHEMATIC

CHAPTER II

MATHEMATICAL MODEL

The mathematical model, "HEC-5, Simulation of Flood Control and Conservation Systems, Appendix on Water Quality Analysis," has been used to analyze the Sacramento Valley [Willey 1985], Kanawha River Basin [Willey 1986], and the Monongahela River Basin [Willey 1987] Reservoir Systems. The computer program Users Manual [HEC 1986], and several technical papers [Duke 1984, Willey 1982, 1983, 1984, and 1987] adequately document the details of the model concepts and the input description, so only a brief overview is provided in this chapter.

The HEC-5 water quality computer program is composed of a flow simulation module (HEC-5A) and the water quality simulation module (HEC-5Q). They are an integrated package with feedback capability between the two modules. Each module, the gate selection routine and the flow alteration option are described below.

Flow Simulation Module

The flow simulation module was developed to assist in planning studies for evaluating proposed reservoirs in a system and to assist in sizing the flood control and conservation storage requirements for each project recommended for the system. The program can be used in studies made immediately after the occurrence of a flood to show the effects of existing and/or proposed reservoirs on flows and damages in the system. The program should also be useful in selecting the proper reservoir releases throughout the system during flood emergencies in order to minimize flooding as much as possible and yet empty the system as quickly as possible while maintaining a balance of flood control storage ("balanced pool") among the reservoirs.

The above purposes are accomplished by simulating the operation of a system of reservoirs of any configuration for short interval historical floods or for long duration nonflood periods or for combinations of the two. Specifically the program may be used to determine:

- a. Flood control and conservation storage requirements for each reservoir in the system.
- b. The influence of a system of reservoirs on the spatial and temporal distribution of runoff in a basin.
- c. The evaluation of operational criteria for both flood control and conservation (including hydropower) for a system of reservoirs.
- d. The expected annual flood damages, system costs, and system net benefits for flood damage reduction.
- e. The system of existing and proposed reservoirs or other alternatives that result in the maximum net flood control benefits for the system by making simulation runs for selected alternative systems.

Water Quality Simulation Module

The water quality simulation module was developed to simulate temperature, as well as three user-selected conservative and three user-selected non-conservative constituents. The model also allows dissolved oxygen to be simulated if the user selects either carbonaceous or nitrogeneous oxygen demanding constituents. An option for phytoplankton evaluation is also available.

The water quality simulation module accepts system flows generated by the flow simulation module and computes the distribution of all the water quality constituents in each of the reservoirs in the system and their associated downstream river reaches. The reservoirs may be in any arbitrary parallel and tandem configuration.

The water quality simulation module also selects the gate openings for reservoir selective-withdrawal structures to meet user-specified water quality objectives at downstream control points. If the objectives cannot be satisfied with the previously computed "balanced pool" flows, the model will compute a modified flow distribution necessary to better satisfy all down-stream objectives. With these capabilities, the planner may evaluate the effects of proposed reservoir-stream system modifications on water quality and determine how a reservoir intake structure should be operated to achieve desired water quality objectives within the system.

Each reservoir is assumed to be a control point, in keeping with the concepts used in the development of the flow simulation module. Additional control points may be placed in the stream system below the reservoirs at stream confluences and any other desirable locations.

Computational time steps from hourly to monthly are optional. The model is limited to simulations of one calendar year.

The reservoirs are represented by a series of onedimensional horizontal elements such as those shown in Figure 2. Each horizontal element is characterized by an area, thickness and volume. In the aggregate, the assemblage of layered volume elements is a geometric representation of the prototype reservoir. This one-dimensional representation has been shown to represent adequately water quality conditions in many deep, well stratified reservoirs by Eiker [US Army 1977], Baca [1977] and Water Resources Engineers [1968, 1969a, 1969b].

Each horizontal layer is assumed to be completely mixed with all isopleths parallel to the water surface both laterally and longitudinally. External inflows and withdrawals occur as sources or sinks within each layer and are instantaneously dispersed and homogeneously mixed throughout each element from the headwaters of the impoundment to the dam. It is not

GEOMETRIC REPRESENTATION OF A STRATIFIED RESERVOIR AND MASS TRANSPORT MECHANISM possible, therefore, to model longitudinal variations in water quality constituents. Simulation results are most representative of conditions in the main reservoir body.

Vertical advection is governed by the location of inflow to, and outflow from, the reservoir. Thus the computation of the zones of distribution and withdrawal for inflows and outflows are of considerable significance in operation of the model. The WES withdrawal method [Bohan 1973] is used for determining the allocation of outflow. The Debler inflow allocation method [Debler 1959] is used for the placement of inflows.

Vertical advection (physical movement of mass due to continuity balance) is the net interelement flow and is one of two transport mechanisms used in the module to transport water quality constituents between elements. Effective diffusion is the other transport mechanism. The effective diffusion is composed of molecular and turbulent diffusion and convective (physical movement of water due to density instability) mixing.

Wind and flow-induced turbulent diffusion and convective mixing are the dominant components of effective diffusion in the epilimnion of most reservoirs. In quiescent, well-stratified reservoirs, molecular diffusion may be a significant component in the metalimnion and hypolimnion. For deep, well-stratified reservoirs with significant inflows to or withdrawals from the hypolimnion, flow induced turbulence in the hypolimnion dominates. For weakly stratified reservoirs, wind induced or wind and flow induced turbulent diffusion will be the dominant component of the effective diffusion throughout the reservoir. One of two methods may be selected by the user to calculate effective diffusion coefficients. For shallow weakly stratified reservoirs, the wind controlled mixing [HEC 1978] method is appropriate, while the stability method [HEC 1978] is more appropriate for deeper well stratified reservoirs. Both of these methods have been shown in numerous applications to adequately represent the mixing phenomena for heat and dissolved water quality constituents when properly applied.

The stream system is represented conceptually as a linear network of segments or volume elements as shown in Figure 3. Each element is characterized by length, width, cross-sectional area, hydraulic radius, energy slope, Manning's n, and a flow and depth relationship. Flow rates at stream control points are calculated within the flow simulation module using any one of the several programmed hydrologic routing methods. Within the flow simulation module, incremental local flows (i.e., inflow between adjacent control points) are assumed to be located at the nearest control point.

Within the water quality simulation module, the incremental local flow may be divided into components and placed at different locations within the stream reach (i.e., that portion of the stream bounded by the two control points). A flow balance is

Figure 3

GEOMETRIC REPRESENTATION OF STREAM SYSTEM AND MASS TRANSPORT MECHANISM

used to determine the flow rate at element boundaries. Any flow imbalance (i.e., the difference in the flow at the upstream control point plus all tributary inflows and the flow at the downstream control point) is distributed uniformly to the flows at each element boundary. Once interelement flows are established, the depth, surface width, and cross sectional area are computed at each element boundary either by using the input flow-depth relationship or by assuming normal depth.

Gate Selection Routine

Once the desired reservoir release and the target water quality to meet downstream needs has been computed, the gate selection algorithm determines which ports should be open and what flow rate should pass through each open port in order to maximize a particular function of the downstream water quality target concentrations. Solution of this problem is accomplished by using mathematical optimization techniques. The objective function is related to meeting downstream target qualities subject to various hydraulic constraints on the individual ports.

The reservoir intake structure can have up to two wet wells, containing up to eight ports each, and a flood control outlet. It is assumed that releases through any of these ports (including the flood control outlet) leave the reservoir through a common pipe. At any given time, only one port in either wet well and the flood control outlet may be operated. Hence, the algorithm provides flows through three ports at most.

The HEC-5 model also provides for releases through an uncontrolled spillway. These releases are not a part of the gate selection algorithm, but the water quality of the spillway releases are considered by the gate selection algorithm.

The algorithm proceeds by considering a sequence of problems, each representing a different combination of open ports. For each combination, the optimal allocation of total flow to ports is determined. The combination of open ports with the highest water quality index defines the optimal operation strategy for the time period under consideration.

There are four different types of combinations of open ports. For one-port problems, all of the flow is taken from a single port and the water quality index is computed. For two-port problems, combinations of one port in each wet well and combinations of each port with the flood gate are considered. For three-port problems, combinations of one port in each wet well and the floodgate are considered. The total flow to be released downstream is specified externally to the gate selection routine, but if the flow alteration option is selected, then the flow can be treated as an additional decision variable and the flow for which the water quality index is maximized is also determined. For each combination of open ports, a sequence of flow allocation strategies is generated using a gradient method, a gradient projection method, or a Newton projection method as appropriate. The value of any flow allocation strategy is determined by evaluation of a water quality index subject to the hydraulic constraints of the system. The sequence converges to the optimal allocation strategy for the particular combination of open ports. These problems are solved very efficiently by using mathematical optimization techniques that take advantage of the problem structure, namely a quadratic objective function with linear constraints.

Flow Alteration Routine

The flow alteration routine is designed to change the reservoir releases, computed by the flow simulation module, to better satisfy the stream control point water quality objectives. Timing of intervening tributary inflows are considered. Second order effects, such as reaeration and external heating due to increased or decreased stream surface area, are not included.

The calculation procedure for the flow alteration option is as follows:

- 1. The relative mass of a water quality parameter being simulated that needs to be added to the flow at the control point (for those constituents below the target) or reduced in the flow at the control point (for those constituents above the target) is computed.
- 2. The average reservoir release concentration is computed for all reservoirs for which the constituent concentration in the releases is greater than the target concentration at the control point of interest (for those constituents below the target) or for which the constituent concentration in the releases is less than the target at the control point of interest (for those constituents above the target).
- 3. The total dilution flow requirement is then computed by dividing the result of step 1 by the result of step 2 to provide the total flow release needed to bring the constituent concentration at the control point of interest to the target.
- 4. The flow is then apportioned to the reservoirs capable of bringing the control point constituent concentration to the target in proportion to the flows originally computed for those reservoirs by the flow simulation module.

Thus the flow alteration requirement can be computed for each control point and for each constituent. The various computed flow rates are then combined by using the coefficients of a linear programming objective function and the deviation of the respective constituent concentrations from the target concentrations at each respective control point.

Once the flow augmentation requirement is determined, the flow simulation module is recalled and the computations for flow and water quality are repeated for the final results.

Summary

HEC-5 model is capable of simulating the water quality effects of the operation of a system of reservoirs. Each reservoir may be operated to satisfy a number of objectives, including flood control, low-flow, hydropower production, water supply and water quality control. The water quality portion of the model simulates temperature and eight water quality constituents including dissolved oxygen and phytoplankton. The model will determine the water quality needed from all reservoir releases to meet specified downstream water quality objectives and will determine the gate openings in each reservoir that will yield the appropriate reservoir release water quality. Should it be necessary, flows will be altered to ensure that downstream water quality objectives are met. The model selects the "best" solution for the system-wide reservoir operation.

CHAPTER III

RESERVOIR SYSTEM DESCRIPTION

The Sacramento Valley reservoir system consists of four major reservoirs as shown in Figure 4. Shasta and Keswick are tandem reservoirs in parallel with Oroville and Folsom Reservoirs. Numerous tributaries and irrigation diversions are involved.

Shasta and Keswick Reservoirs are located on the Sacramento River in northern California in the northern end of the Sacramento Valley about 240 river miles north of Sacramento. Keswick is a reregulation reservoir designed to even-out the daily hydropower releases from Shasta. Below Shasta and above Keswick, inter-basin water transfers enter the Sacramento River through Spring Creek. Along the Sacramento River, Cow Creek and Cottonwood Creek are major inflowing tributaries and the Anderson-Cottonwood, Tehama-Colusa, Corning and Glenn-Colusa Irrigation District Canals are major irrigation diversions.

Oroville Reservoir is located on the Feather River in the Sierra foothills about 95 river miles north of Sacramento. Major tributaries entering the Feather River include the Yuba and Bear Rivers. Major diversions are located immediately below Oroville Dam from the Thermalito Afterbay. The Feather River flows into the Sacramento River near Verona.

Folsom Reservoir is located on the American River in the Sierra foothills about 30 miles east of Sacramento. The American River below Folsom Reservoir is leveed with no major tributaries entering before its confluence with the Sacramento River at Sacramento (I Street).

The Sacramento River continues to flow south towards the San Francisco Bay via the Sacramento and San Joaquin Delta. This study's lower boundary is located near Hood about 20 miles south of Sacramento and just upstream of the Delta's maze of interconnected waterways.

Figure 4

SACRAMENTO VALLEY RESERVOIR SYSTEM SCHEMATIC

CHAPTER IV

APPLICATION PROCEDURE

The application of the HEC-5 to the Sacramento Valley reservoir system, described in Chapter III, or to any other system begins with data collection, assembly, and manipulation. Each of these tasks in addition to model execution is discussed below. Interpretation of results is discussed in Chapter V.

Data Collection

The HEC-5 model data requirements are similar to those of most comprehensive water quality models. The data to be collected are categorized into three types; time independent, required time dependent and optional time dependent.

The time independent data include: physical description of the reservoir (i.e., elevation vs. volume, surface area and discharge capacity; and vertical reservoir segmentation), physical description of the river (i.e., river mile vs. cross section and channel discharge capacity; and river reach segmentation), control point desired and required flows, model coefficients (i.e., flow routing; reservoir diffusion; physical, chemical and biological reactions rates) and initial conditions for the start of the simulation. The input data for the Sacramento Valley reservoir system is shown in Appendix A. The time independent data for the water quantity input are on the RL, RO, RS, RQ, RA, RE, R2, CP, ID and RT records. For the water quality input, the time independent data are on Ll, L2, LR, L3, L6, L7, L8, PL, L9, C1, C2, C5, C6, C7, SA, DK, CR, S1, S2, SR, S3, S4 and KR records.

The required time dependent data include: evaporation, wind speed, cloud cover, air temperature, dew point temperature, flow diversions, inflow quantity and quality for all reservoir and river tributaries, discharge quantity from reservoirs, and control point target water quality conditions. The time dependent data are on the R3, IN, QA and QD records for the water quantity input. The input for the water quality portion are on the EZ, ET, CT, I2 and I4 records.

The optional time dependent data include: reservoir storages; river flows at other than control points; and reservoir water quality profiles and river time series plots. These data are used as checks (using auxillary graphics programs) on the model output in contrast to the previously mentioned data which are required to make the model work. This data is referred to as calibration data.

Data Assembly

Sources for the data categorized above are numerous. In general, they include all water-related agencies at the federal, state, local and private levels. To name a few, the following should all be considered when searching for data: Corps of Engineers (COE) Bureau of Reclamation (BUR) Geological Survey (USGS) Environmental Protection Agency (EPA) state departments of natural resources state environmental protection agencies state colleges and universities city and county public works offices utility, water and flood control districts

Meteorological data (dry bulb temperature, dew point temperature, cloud cover and wind speed) are readily available from the U.S. Weather Service, local airports and universities. The primary data source for Corps of Engineers offices is the U.S. Air Force Environmental Technical Applications Center (OL-A USAFETAC) and for other offices is the NOAA's National Weather Service (NWS) office; both in Asheville, North Carolina. They should be contacted early in the data assembly task, and an order should be placed for the required meterological data. Normally it will take 30 to 60 days to receive the data after the request is made. This data service is free to the Corps of Engineers and is documented in Department of Army Pamphlet 115-1. It is recommended that data format CD 144 be requested from OL-A USAFETAC at (FTS) 672-0218 or NWS at (704) 259-0682.

Data Manipulation

For simplification, the meteorological data should be reformatted with the "Weather" computer program [HEC 1986] and then input to the "Heat Exchange" computer program [U.S. Army 1977], available from HEC, which provides output in the form necessary for the HEC-5 program (i.e., ET record images). If HEC-5 computation intervals shorter than daily are going to be used, the use of the "Heat Exchange" program should be substituted with a similar utility program.

The cross-sectional data may be already available in the proper format if previous flood plain or flood damage analysis were studied using the HEC-2 program. Because HEC-2 is a widely used water surface profile program, the author has found the cross-sectional data already available in the proper format on many past water quality studies. For simplification, the HEC-2 type data should be input to the "GEDA" computer program [HEC 1981], available from the HEC, which provides output in the form necessary for the HEC-5Q program (i.e., S3 card images).

The meteorological and cross-sectional data account for about 60% of the water quality portion of the data to be prepared on a typical study.

Tributary inflows, diversions and reservoir discharges may be readily available from WATSTORE and STORET data systems. WATSTORE is managed by the USGS and contains streamflow data. STORET is managed by the EPA and contains water quality data. These computer data systems can often provide the necessary inflow and reservoir discharge quantity and quality data. Modification of output format to the required HEC-5 input format for the IN, QA, QD and I4 cards is trivial. Past experience has shown that the flow data from WATSTORE is often not available at the same location as water quality data from STORET. Therefore judgement must be used to determine its usability by direct transfer of location or appropriate adjustment. The two types of data must be compatible for the computer program to calculate the appropriate constituent load time series. This type of data is about 20% of the water quality portion of the input data.

The remaining 20% of the typical data set is located by searching through COE reservoir regulation manuals, searching through COE files and making numerous judgement decisions regarding a thorough knowledge of the study objectives, the drainage area being studied and the concepts employed by the HEC-5 model.

Model Execution

The model can be used in several different ways. The cheapest, fastest execution, also requiring the least data preparation, is a steady state analysis. The input, calculation and output intervals are monthly. These may be used for screening monthly data for multiple years to find a critical period (poor water quality condition) for more detailed analysis. This method will only find the most critical period of at least monthly duration and not necessarily critical periods of shorter duration.

The model can be used to study temperature only or temperature and any combination of up to three conservative parameters (i.e., chlorides, total dissolved solids - TDS, alkalinity, specific conductance), up to three nonconservative parameters (i.e., coliform, carbonaceous biochemical oxygen demand - CBOD, ammonia) and dissolved oxygen (DO). If the phytoplankton option is requested, the parameters in the model must include at least temperature, TDS, nitrate, phosphate, phytoplankton, CBOD, ammonia, and DO. The more parameters simulated, the more computation and data preparation time involved. The phytoplankton option is particularly time consuming since all the parameter calculations possible are being performed with this option.

The model can be used for existing and/or proposed reservoirs. If an existing condition is being simulated, usually the objective is to reproduce historical events through model calibration. The calibration option can take about 50% less computer time because the time-consuming linear programming algorithms are not used.

Calibration should begin by reproducing observed temperature profiles in the reservoirs and stream channels. The reservoir diffusion coefficients, A1 and GSWH, provide the best initial adjustments. The second step in reservoir calibration involves adjustments to the three factors affecting light penetration: secchi disk; solar radiation absorbed near surface, XQPCT; and depth associated with XQPCT amount of solar radiation. The above five variables are interrelated and will need to be adjusted simultaneously. Although many other variables affect the thermal and water quality constituent calibration of reservoirs, it is not recommended to adjust them unless you have more data than normal for reproducing observed profiles. Reservoir calibration decisions may include the user's choice of the input weather station.

The calibration of the river profiles may also involve the users choice of weather stations to index the meteorology affecting the river. Unless more than normal data are available, it is not recommended to adjust any model variables.

Once the model has been calibrated, the objective may be to modify an existing reservoir operation pattern or to evaluate the impact of proposed new reservoirs or channel modifications. This analysis requires the use of the linear programming algorithm and the increase of computer time is significant.

The simulation mode discussed above can be used either to evaluate the best water quality that can be provided throughout the system for given reservoir discharges (obtained either external to the simulation or determined by the HEC-5 quantity part of the model) or to evaluate the best water quality operation without preconceived discharge quantities. The former operation is referred to as a balanced pool operation and the latter as a flow augmentation operation.

The balanced pool operation is the standard HEC-5 analysis for flow. When using the balanced pool operation, the water quality portion of the program simply evaluates the best vertical level for withdrawal at each reservoir (assuming multiple level intakes are available) to meet all downstream water quality targets for the given reservoir discharge.

The flow augmentation operation allows the model to relax the balanced pool concept and to decide how much flow should come from which reservoir and at which vertical level in order to meet downstream water quality targets. Sometimes downstream water quality improvements require significantly increased discharge rates to obtain only small improvements in water quality. This flow augmentation operation is the most-costly execution and not always a practical alternative for real world regulation given power, water conservation and flood control storage considerations.

For this demonstration application, the input data shown in Appendix A was executed using the calibration option. Application of this option allows the user to define the exact level of the intake structure operated and the exact quantity of discharge from each dam. This is the normal method of model application when calibrating the model to observed historical data. This application was executed for water temperature, specific conductance, alkalinity, CBOD, ammonia, and dissolved oxygen because this was the data available. Actually, all these types of data are very limited in availability on most tributaries but some of them (e.g., temperature, dissolved oxygen and specific conductance) are more readily available as in-channel data. The in-channel data are the optional time dependent data used for calibration.

Selected portions of the computer output are shown in Appendix B. Graphical displays of the results are shown in Appendix C and are discussed in Chapter V.

CHAPTER V

SIMULATION RESULTS

The Sacramento Valley reservoir system operation described in Chapter III was simulated using HEC-5 and produced results which were compared to water quantity and quality data in the four reservoirs and at all downstream control points. The data for comparison purposes consisted of discharge rates at most control points as well as water temperature at many of the same locations. Other water quality parameters are less available but are compared where they are available.

The model simulation for the Sacramento Valley system used temperature, specific conductance (sometimes called electrical conductivity), alkalinity, carbonaceous biochemical oxygen demand (CBOD), ammonia (NH3) and dissolved oxygen (DO). These specific parameters were chosen based on the availability of at least limited data except for CBOD which was estimated and adjusted by calibration to reproduce DO.

The Sacramento Valley reservoir system results are shown in Appendix B in an abbreviated form. The computer output begins with an echo of the input data. These output should be examined carefully to insure that the program is getting the data that the user expects the program to execute. This step of interpretation of results is important and well worth the required time.

The remainder of the computer output are the day-by-day results of water quality profiles in the reservoirs and along the stream network. The output is quite voluminous and only selected portions have been included. Because it is so voluminous, it is also difficult to interpret in tabular form.

The graphical display of these results is included as Appendix C for the reservoirs and at selected locations along the stream network. While this graphical capability is not a part of HEC-5, an option exists for the model to write the results to an HEC data storage system called DSS [HEC 1985]. An HEC graphics program called DSPLAY (described in the DSS manual) can read the results from DSS and produce plots as shown. These plots satisfactorily demonstrate the capability of HEC-5 to reasonably reproduce observed reservoir and stream profiles on large systems.

The legends at the bottom of the reservoir water quality plots, pages C1-C16, define simulated and observed data for various dates. Shasta, Oroville and Folsom Reservoirs have sufficient observed temperature data to be useful for calibration purposes. Sufficient observed data for the other parameters were not available except in Folsom Reservoir as shown. Considering the model limitation of having only one weather station for the entire system (subsequently modified to use parameter statements), it is the author's opinion that the reproduction is quite good. Perhaps some further refinement could be achieved with additional trials, but the acceptability of the model can be demonstrated with these results. The Oroville Reservoir observed data anomaly in June (page C6) cannot be explained with the available input, particularly when the much cooler observed hypolimnion temperatures of May and July are noted.

The legend at the bottom of the time series stream plots defines the various observed and simulated water quality parameters for the study period. As with the reservoir plots, only those locations which have sufficient observed data to be used for calibration purposes are shown. Unlike the simulated data, the observed data points are often more than one-day apart. Extreme caution should be applied to any interpolation between observed data points.

In general, the calibration of the model is quite good along the Sacramento River for all the observed parameters downstream to Hamilton City. Butte City and Colusa temperatures (pages C24 and C26 respectively) show that significant warming of this reach of the Sacramento River takes place at least during the Spring (April and May 1979). This temperature consideration, in addition to the lack of sufficient simulated quantity of flow at Butte City and Colusa (pages C23 and C25 respectively) suggests that the undefined return flows on the Sacramento River between Hamilton City to Knights Landing are sufficiently large to cause significant errors. Other parameter reproductions are also poor; apparently due to undefined return flows.

The Feather River below Oroville and the American River below Folsom lack sufficient water quality data to provide adequate information for calibration purposes. The reproduction of observed flow is shown in pages C29 and C30.

Careful interpretation and evaluation of the Sacramento River results lead the author to encourage the continued application of this model to help develop understanding of the workings and operation of any stream system.

CHAPTER VI

SUMMARY

HEC-5 can be used for comprehensive water quality studies involving complex river network and reservoir systems. The program is used to compute the best operation for a reservoir system and determine either the water quality condition resulting from the best water quantity operation (balanced pool method) or the best water quality operation without maintaining balanced reservoir conservation pools for the system (flow alteration method).

The HEC-5 model uses a linear optimization scheme to determine the target water quality at the dam to best meet all user weighted downstream targets. Then a non-linear scheme is used with user weights to determine how the intake structure will be operated.

The Sacramento River results and results of the two additional applications referenced in Chapter II have each provided model improvements and added confidence in the model validation. While it is true that large comprehensive data sets have not been used to validate the model, the author believes that the variety of years modeled and the variety of locations studied have provided sufficient experience to the Corps of Engineers to warrant the continued use and application of the HEC-5 water quality model.

It is the conclusion of this study that HEC-5 is a viable tool for evaluating reservoir systems operation for water quality analysis.

CHAPTER VII

REFERENCES

Baca, R.G., A.F. Gasperino, A. Branstetter and M.S. Annette, 1977, "Water Quality Models for Municipal Water Supply Reservoirs," a report prepared for the Engineering and Water Supply Department, Adelaide, South Australia.

Bohan, J.P. and J.L. Grace, Jr., 1973, "Selective Withdrawal from Man-made Lakes; Hydraulic Laboratory Investigation," Technical Report H-73-4, U.S. Army Engineer Waterways Experiement Station, CE, Vicksburg, MS.

Debler, W.R., 1959, "Stratified Flow into a Line Sink," ASCE Journal of Engineering Mechanics Division, Vol. 85, EM3.

Duke, James H., Donald J. Smith and R. G. Willey, 1985, "Reservoir System Analysis for Water Quality," Technical Paper No. 99, Hydrologic Engineering Center.

Hydrologic Engineering Center, 1972, "Reservoir Temperature Stratification", Computer Program Description.

Hydrologic Engineering Center, 1978, "Water Quality for River-Reservoir Systems," Computer Program Description.

Hydrologic Engineering Center, 1981, "Geometric Elements from Cross Section Coordinates" (GEDA), Computer Program Description.

Hydrologic Engineering Center, 1985, "HECDSS User's Guide and Utility Program Manuals.

Hydrologic Engineering Center, 1986, "Weather," Computer Program Description.

Hydrologic Engineering Center, 1986, "HEC-5, Simulation of Flood Control and Conservation Systems, Appendix on Water Quality Analysis," Draft Computer Program Users Manual.

Kaplan, E., 1980, "Reservoir Optimization for Water Quality Control," a PhD Dissertation, University of Pennsylvania.

Loftis, B., 1980, "WESTEX - A Reservoir Heat Budget Model," Draft Computer Program Description, Waterways Experiment Station.

U.S. Army Corps of Engineers, Baltimore District, 1977, "Thermal Simulation of Lakes," Computer Program Description.

Water Resources Engineers, 1968, "Prediction of Thermal Energy Distribution in Streams and Reservoirs," report to Department of Fish and Game, State of California.

Water Resources Engineers, 1969a, "Mathematical Models for the Prediction of Thermal Energy Changes in Impoundments," report to the Environmental Protection Agency. Water Resources Engineers, 1969b "The Thermal Simulation of Applegate Reservoir to Evaluate the Effect of Outlet Placement and Discharge on Downstream Temperature," report to Corps of Engineers, Portland District.

Willey, R.G., 1982, "River and Reservoir Systems Water Quality Modeling Capability," Technical Paper No. 83, Hydrologic Engineering Center.

Willey, R.G., 1983, "Reservoir System Regulation for Water Quality Control," Technical Paper No. 88, Hydrologic Engineering Center.

Willey, R. G., 1984, "Computer Models for Evaluating the Effects of Water Resource Projects on Streamflow and Water Quality", Hydrologic Engineering Center, Unpublished Draft.

Willey, R. G., D. J. Smith and J. H. Duke, 1985, "Modeling Water Resource Systems for Water Quality, Technical Paper No. 104, Hydrologic Engineering Center.

Willey, R. G., 1985, "Water Quality Simulation of Reservoir System Operations in the Sacramento Valley Using HEC-5Q," Training Document No. 24, Hydrologic Engineering Center.

Willey, R. G., 1986, "Kanawha River Basin Water Quality Modeling," Special Projects Report No. 86-5, Hydrologic Engineering Center.

Willey, R. G., 1987, "Monongahela River Basin Water Quality Modeling," Project Report 87-1, Hydrologic Engineering Center.

Willey, R. G., 1987, "Modeling and Managing Water Resource Systems for Water Quality, Technical Paper No. 113, Hydrologic Engineering Center.

APPENDIX A

HEC-5 Input for Sacramento River System Water Quality Modeling

T1		H	HEC-5 IN	PUT FOR							
Т2	2 SHASTA, OROVILLE AND FOLSOM										
Т3	RESERVOIR SYSTEM TEST										
J1	0	1	5	3	4	2	0	0			
J2	0	1	0	0	0	0	0				
J3	12	0	0	0	0	1	0	0			
J9		0	0	1							
RL	1	4137800	587000	1000000	3252100	4552200	4552200				
RL	1	1	-1	0	587000						
RL	2	1	-1	0	1000000						
RL	3	1	0	0	9999	9999	9999	4370000	4552200	4552200	
RL				-	4552200	4552200	4552200	4552200	3892000	9999	
RL	4	1	-1	0	4552200						
RT.	5	1	-1	Ő	4552200						
RO	14	2	3	ů L	5	6	7	8	9	10	
RO	11	12	19	22	23		,	Ũ	,	10	
RC	_18	10	818	1248	3275	3320	3436	355/	3676	3801	
DC	2028	3080	4059	4103	/330	4470	/613	6750	4008	-200T	
	18	5500	14000	33700	71500	72000	73600	74000	76400	77600	
νQ	70000	79700	85000	100000	130000	170000	220000	267900	/0400	77800	
πų	10	79700	7500	100000	130000	170000	220000	267600	400000	25200	
DA DA	25000	26100	26400	27100	22700	22000	23400	24000	24700	25200	
RA	2000	20100	26400	2/100	27700	28500	28900	29600	30200	1020	
KE DF	1025	1027	040 1040	00/ 10/ F	1008	1010	1015	1020	1025	1030	
KE DO	1035	1037	1040	1045	1050	1022	1060	1065	1070		
KZ D2	7500	2000	00 00	0.0	240	10 / 1	11 00	0 00	0 10		
К3 р2	99.99	99.99	99.99	.09	6.02	10.41	11.28	8.93	8.12	-4.49	
K3	99.99	99.99	1 5 0 0	1000							
GP	1	79000	1500	1000							
TD	SHASTA	303.8									
RT	Ţ	2									
CP	2	/900	1500	1000							
IDS	SPRING	CR 300									
RT	2	3									
RL	3	22677	2000	5000	22000	22000	30000				
RO											
RS	18	10	11172	14705	25237	25298	25457	25626	25807	26001	
RS	26207	26426	26657	26901	27157	27426	27707	28003	28316		
RQ	18	0	15000	30000	110000	111000	120000	130000	140000	150000	
RQ1	L60000	170000	180000	190000	200000	210000	220000	230000	248000		
RA	18	50	200	250	300	310	325	350	375	400	
RA	425	450	475	500	525	550	575	610	640		
RE	18	437.5	526.8	542.5	580.8	581.0	581.5	582.0	582.5	583.0	
RE	583.5	584.0	584.5	585.0	585.5	586.0	586.5	587.0	587.5		
R2	7500	2000			240						
R3	99.99	99.99	99.99	.09	6.02	10.41	11.28	8.93	8.12	-4.49	
R3	99.99	99.99									
CP	3	79000	3500	3000							
IDK	XESWICK	294.6									
RT	3	4	1.2	.1	24						
CP	4	80000	4000	3500							
IDA	CID-CO	W 280.1									
RT	4	5	1.2	.1	24						
DR	4						- 5				
CP	5	80000	4000	3500			. –				

ID	COTTON	VD 273.2								
RT	5	6								
CP	6	100000	4000	3500						
ID	BEND BF	260.2								
RТ	6	7	1.2	. 1	24					
CP	7	100000	4000	3500	27					
		100000	4000							
TD.		MAL 243	1 0	1	0/					
RT	/	8	1.2	. 1	24		-			
DR	7						- 5			
CP	8	100000	4000	3500						
ID	GCID CA	NAL 206								
RT	8	9	1.2	.1	24					
DR	8						- 5			
CP	9	125000	4000	3500						
TD	HAM CTT	TY 199 3								
DT	0	10								
CD	10	120000	4000	2500						
		130000	4000	3300						
	SUITE (1 108.3								
RT	10	11								
СР	11	135000	4000	3500						
IDO	COLUSA	143.4								
RT	11	12								
CP	12	140000	4000	3500						
IDO	GRIMES	117.7								
RT	12	19	1.2	.1	24					
RL.	13	3059593	640000	852200	2788000	3538000	3814000			
RT.	1	13	-1 0		640000					
DI	2	13	-1 0		852200					
DI	2	12	-1.0	0	0000	0000	0000	2001000	2201000	3537000
<u>п</u> τ	J	10	U	0	2527000	2527000	2527000	2250500	21(2000	3337000
	,	10	1 0		3537000	3337000	3337000	3330300	2102000	9999
RL	4	13	-1.0		3538000					
RL	5	13	-1.0		3814000					
RO	8	14	15	16	17	18	19	22	23	
RS	-15	1	10	32	75	148	261	419	629	901
RS	1244	1666	2181	2801	3544	3791				
RQ	15	0	0	0	0	0	0	0	0	4000
RQ	8000	8000	8000	8000	8000	590000				
RA	15	70	300	600	1100	1830	2700	3600	4800	6100
RA	7600	9300	11300	13500	16200	19000				
RE	15	250	300	350	400	450	500	550	600	650
RE	700	750	800	850	900	923	500	550	000	000
D)	5000	2500	000	0.50	120	723				
Π2 D2	0000	2,500	00 00	25	5 00	0 02	0 56	7 77	7 70	2 02
к.) р)	33.33	99.99	33.33	. 55	5.00	0.02	0.00	/.//	1.12	-2.05
KJ CD	99.99	99.99	1 - 0	100						
GP	13	180000	150	100						
TIM										
TDO	ROV DA	M /5.4								
RT	ROV DA	M /5.4 14								
RT CP	0ROV DA 13 14	M /5.4 14 180000	150	100						
RT CP IDT	DROV DA 13 14 D POOL	M 75.4 14 180000 71.8	150	100						
RT CP IDT RT	0ROV DA 13 14 D POOL 14	M 75.4 14 180000 71.8 15	150 1.2	100 .1	24					
RT CP IDT RT DR	0ROV DA 13 14 D POOL 14 14	M 75.4 14 180000 71.8 15	150 1.2	100 .1	24		- 5			
RT CP IDT RT DR CP	000 DA 13 14 14 14 14 14 15	M 75.4 14 180000 71.8 15 180000	150 1.2 150	100 .1 100	24		- 5			
RT CP IDT RT DR CP IDF	ROV DA 13 14 D POOL 14 14 15 EATHER	M 75.4 14 180000 71.8 15 180000 R 58.8	150 1.2 150	100 .1 100	24		- 5			
RT CP IDT RT DR CP IDF RT	ROV DA 13 14 D POOL 14 14 15 EATHER 15	M 75.4 14 180000 71.8 15 180000 R 58.8	150 1.2 150	100 .1 100	24		- 5			
RT CP IDT RT DR CP IDF RT CP	000 DA 13 14 15 14 14 14 15 15 16	M 75.4 14 180000 71.8 15 180000 R 58.8 16 180000	150 1.2 150	100 .1 100	24		- 5			

ID	GRIDLEY	45.6								
RT	16	17	1.2	.1	24					
CP	17	300000	2300	2000						
ID	SHANGHI	26.2								
RT	17	18	1.2	.1	24					
CP	18	320000	2300	2000						
TD	NICOLAU	S 8.1								
RT	18	19	1.2	.1	24					
CP	19	435000	6300	5500						
TD	VERONA	80.2	0500	5500						
דע	10	20.2	1 2	1	24					
DT	20	832100	1000	00000	610000	1010000	1120000			
	1	002100	1 0	00006	1000	1010000	1120000			
KL DI	· 1	20	-1.0	0	1000					
KL	2	20	-1.0	0	90000				1000000	1000000
RL	3	20	0	0	9999	9999	9999	840000	1009000	1009000
RL					1009000	1009000	1009000	1009000	610000	9999
RL	4	20	-1.0	0	1010000					
RL	5	20	-1.0	0	1120000					
RO	3	21	22	23						
RS	-12	1	8	24	49	89	152	251	398	535
RS	835	1115	1176							
RQ	12	4360	7640	8000	8000	8000	8000	8000	8000	8000
RO	257960	599580	663940							
RA	12	90	510	740	1250	1950	3120	4780	7020	8200
RA	10520	11930	12200	,	2000	2700	0120	.,	, • 2 2 •	0200
DF	10320	225	250	275	300	325	350	375	400	418
DF	450	475	480	215	500	.52.5	550	575	400	410
RE DO	7500	5000	400		70					
KZ D2	7500	5000	00 00	0.5	/2	11 0	10 (0.0	0 1	1 0
R3	99.99	99.99	99.99	2.5	8.2	11.2	10.4	9.8	8.1	1.0
R3	99.99	99.99								
CP	20	115000	1300	1000						
ID	FOLSOM 2	28.5								
RT	20	21	1.2	.1	24					
DR	20						1			
QD	12	9999	9999	9999	62	104	134	136	129	122
QD	72	9999	9999							
CP	21	115000	1300	1000						
ID	FAIR OAL	KS 21.5								
RT	21	22	1.2	.1	24					
CP	22	435000	7600	6500						
TD	בב רקקקיים ו		,	0500						
тр. рт	2 22	22.5	1 2	1	24					
CD	22	425000	7600	6500	24					
UP	23	433000	7600	0000						
TDI	1000 Jo.	, ,								
RT	23	0								
ED	•									
BF	0	214		07	9040100	210	24			
ZW	A=HEC50) F=SIM								
IN	1	1APR79	8520	7810	7910	7920	8740	9170	7510	7130
IN	6740	7460	6500	6930	6580	6950	6930	9080	8170	7200
IN	6750	7170	7570	8150	9290	9180	8450	7270	8130	7680
IN	8320	8840	10210	9580	7980	7920	12230	13210	13690	12460
IN	9940	10560	9670	8360	9010	9370	9490	7650	8300	8050
IN	7190	7460	7770	7530	6260	7740	7060	6370	4400	4450

IN	4930	4740	4970	4590	4370	2660	4750	6490	3680	4030
IN	3970	2280	3420	5600	4870	3940	4070	2950	1490	2710
IN	3890	4450	4500	4870	5820	890	1810	4630	3710	4210
IN	2880	3760	1750	2380	3610	4440	3580	3690	3760	1590
IN	2790	3570	4390	4290	5010	3110	2340	1930	3820	3740
IN	5120	3680	2530	2110	3060	4080	2920	3590	4490	4370
IN	1830	1850	3430	3970	4090	2780	3460	1900	2530	2830
IN	3340	3590	4310	4050	1490	1540	3450	3360	3940	3480
IN	4190	1290	1760	3480	4770	3290	4020	3060	1610	2080
IN	2800	3430	4460	4150	4400	3010	2920	1290	3750	4630
IN	4320	3390	1420	2460	3260	4930	3780	3500	3820	3010
	2290	1880	3/20	3820	3540	4520	3090	3040	2860	3290
	3120	3660	2910	2720	3010	41/0	2490	3060	2970	3480
	2300	3300	3170	3/40	42/0	3250	3400	3180	3550	4690
	5200	6030	5480	4200	1990	1650	3680	4680	9120	18220
	5970	2670	2310	5080	3320	6/10	(0 0		(05	
	2	LAPR/9	/18	517	55/	595	480	559	495	364
	366	315	230	235	0	0	0	2/9	0	0
	5/0	0 (0 E	(2)	215	0	0	0	0	0	492
	506	480	632	0	0	0	0	0	215	/83
LN	964	433	515	236		314	313	352	424	429
LN TN	/4Z	724	740	8/3	/90	802	/30	989	914	/96
TN	550	755	604	/ 30	20/	202	201	742	601 (20	686
TN	617	0// 560	023 561	505	652	202	550	293	030	228
TN	570	560	201	202	000	2390	260	805	222	227
TN	2700	2760	2950	2220	2550	2000	2000	2300	2340	2830
TN	2790	2700	2000	2710	2010	2100	1000	1650	2520	2000
TN	1650	1620	1580	1600	2390	2310	2530	2610	2500	2250
TN	2590	2600	2610	2660	2470	2400	2620	2010	2590	2330
TN	2740	2000	2840	2790	2000	2880	2790	2830	2570	2740
TN	2520	2450	2620	2620	2580	2710	2700	2680	2700	1/60
TN	1560	1480	1570	1570	1670	1640	1630	1540	1330	1550
TN	1550	1540	1650	1490	1500	1580	1490	1570	1480	1480
TN	1480	1500	1530	1500	1300	418	433	430	432	430
TN	505	428	374	376	419	416	417	484	460	456
TN	623	1610	1640	1660	2360	2280	2300	2280	2290	2480
IN	2530	2280	2200	2290	2290	2290	2000	2200	2270	2100
IN	4	1APR79	609	551	509	478	467	491	509	462
IN	461	451	432	418	416	439	438	502	800	679
IN	510	462	437	443	585	1610	868	712	1000	745
IN	655	610	1070	889	733	695	1540	1530	1510	1200
IN	991	821	719	657	618	611	586	577	539	505
IN	496	478	465	456	437	392	367	349	317	296
IN	269	246	223	205	194	188	182	154	142	126
IN	114	113	107	101	87	76	71	72	76	80
IN	83	84	78	78	73	69	63	60	57	54
IN	47	42	37	38	37	37	44	47	47	48
IN	46	40	34	36	35	32	27	27	19	20
IN	21	22	23	19	19	18	20	20	18	19
IN	23	18	17	13	12	10	11	11	12	8
IN	9.1	12	10	9.7	11	12	11	11	18	14
IN	13	13	16	20	23	21	25	22	17	19
IN	10	17	54	95	111	73	68	63	55	52
IN	48	32	27	26	25	23	17	16	15	12

Most of the Time Series Inflow (IN), Specified Discharge (QA), Natural Flow (NQ), and Division (QD) Records have been deleted from this listing.

QD	14	1APR79	499	498	479	467	467	468	467	467
QD	580	772	919	992	1095	1244	1281	1564	1750	1781
QD	1917	2079	2265	2463	2484	2394	2377	2287	2212	2189
QD	2189	2204	2186	2237	2408	2690	2962	3072	3223	3423
QD	3434	3550	3661	3658	3665	3704	3658	3594	3519	3472
QD	3379	3321	3230	3131	3086	3019	2929	2876	2864	2828
QD	2821	2844	2840	2860	2895	2928	3008	3082	3124	3125
QD	3158	3192	3210	3292	3280	3291	3312	3310	3357	3356
QD	3359	3360	3359	3361	3355	3369	3366	3377	3396	3403
QD	3414	3399	3367	3345	3339	3283	3224	3220	3203	3198
QD	3224	3222	3220	3208	3221	3245	3262	3271	3304	3318
QD	3352	3357	3375	3346	3320	3291	3289	3277	3301	3289
QD	3272	3256	3245	3248	3226	3215	3211	3198	3203	3189
QD	3171	3178	3159	3124	3122	3132	3097	3055	3054	3077
QD	3053	2988	2972	2968	2967	2929	2884	2830	2780	2767
QD	2745	2712	2681	2610	2498	2391	2384	2352	2257	2193
QD	2113	2010	1940	1895	1827	1713	1580	1518	1499	1445
QD	1423	1345	1273	1206	1179	1161	1146	1140	1123	1035
QD	966	967	972	954	957	962	954	974	1028	1070
QD	1065	1066	1043	1024	1023	1019	1020	1024	1019	1024
QD	1017	1017	1016	1021	1021	1022	1014	1001	999	870
QD	799	694	515	517	516	610				
NOL	IST									
NOL	IST									

EJ

•

TI	WAT	ER QUAL	ITY DATA	A FOR	
TI	SHASTA	, OROVI	LLE AND	FOLSOM	
TI	RES	ERVOIR	SYSTEM 7	TEST	
JA	790401	791027	23	4	С
EZ	-1				
ET	91	58.3	121.6	2032.2	11.0
ET	92	60.5	118.1	2083.4	10.0
ET	93	62.9	91.8	1618.1	7.0
ET	94	72.9	67.5	2081.8	4.0
ET	95	64.4	118.5	2060.8	9.0
ET	96	58.1	79.0	1016.9	6.0
ET	97	65.3	107 1	2142 5	8.0
ET	98	58 5	141 7	1486 5	12 0
ET	99	58.8	111 6	1858 7	10 0
ET.	100	56.0	125 3	2007 7	12 0
DI FT	100	65 3	0/ 0	1956 2	12.0
ET ET	101	63.5	94.9 116 0	1020.2	7.0
Б1 БТ	102	65.4	110.0	1004.0	9.0
ET ET	105	0/.0	98.3	2229.5	7.0
E1 FT	104	68.5	99,Z	2196.4	7.0
	105	65.6	96.8	1551.0	7.0
E1 FM	106	57.4	140.2	1339.5	12.0
ET	107	60.2	88.5	1580.8	7.0
ET	108	64.1	/8.2	2203.9	6.0
ET	109	67.2	68.4	2302.6	5.0
ET	110	58.7	74.8	1121.7	6.0
ET	111	65.3	80.3	1824.4	6.0
ET	112	59.3	121.8	1383.7	10.0
ET	113	60.6	123.5	1824.4	10.0
ET	114	65.0	81.3	1847.1	6.0
ET	115	68.4	62.9	1407.7	4.0
ET	116	62.2	87.5	829.5	6.0
ET	117	71.3	79.6	2014.9	5.0
ET	118	68.4	87.9	2032.7	6.0
ET	119	63.7	84.3	1153.3	6.0
ET	120	63.2	128.1	1882.5	10.0
ET	121	65.6	85.3	1682.0	6.0
ET	122	72.4	105.7	2449.9	7.0
ET	123	64.9	153.6	2335.7	12.0
ET	124	59.5	131.5	1184.1	11.0
ET	125	59.6	151.3	1718.9	13.0
ET	126	59.0	118.3	1481.1	10.0
ET	127	56.6	124.4	1489.1	11.0
ET	128	63.2	106.7	2558.3	9.0
ET	129	63.1	126.9	2566.9	11.0
ET	130	70.8	94.0	2575.5	7.0
ET	131	76.4	76.3	2583 8	5 0
ET	132	87.7	68 0	2506 3	3.0
ET	133	89.0	69 1	2516 4	3.0
 ET	134	82 2	96.2	2519 5	5 0
ET	135	67 5	180 6	2540 R	13 0
 ET	136	77 5	88 0	2415 O	5.0
 ET	137	80.9	92 R	2410.0	5.0
ET	128	77 5	132.0	2557.5	2.0 8 A
er FT	130	72 2	156 0	2505.2	10.0
	T 7 3	13.3	T.00.7	2000.2	10.0

0
Most of the Weather Records (ET) have been deleted from this listing.

ET	273	74.0	83.6	1659.7	5.0
ET	274	72.4	109.7	1639.5	7.0
ET	275	69.4	134.1	1614.9	9.0
ET	276	76.5	44.5	770.3	2.0
ET	277	68.9	118.0	1586.8	8.0
ET	278	70.4	94.0	1539.6	6.0
ET	279	65.2	100.9	749.5	7.0
ET	280	64.5	135.0	1511.2	10.0
ET	281	63.7	76.0	900.4	5.0
ET	282	75.4	59.7	1494.0	3.0
ET	283	71.1	81.6	1343.6	5.0
ET	284	66.7	115.0	1329.5	8.0
ET	285	64.7	76.1	866.6	5.0
ET	286	66.6	107.5	689.2	7.0
ET	287	66.4	108.4	680.2	7.0
ET	288	69.0	97.0	966.7	6.0
ET	289	68.4	105.5	1393.1	7.0
ET	290	66.9	75.9	1254.9	5.0
ET	291	57.3	121.5	495.5	10.0
ET	292	59.2	165.7	483.0	13.0
ET	293	57.2	101.1	1051.9	8.0
ET	294	60.0	58.1	1271.8	4.0
ET	295	58.9	79.1	921.8	6.0
ET	296	60.4	108.3	628.1	8.0
ET	297	59.0	104.8	624.7	8.0
ET	298	58.5	116.4	616.5	9.0
ET	299	61.8	72.1	1231.0	5.0
ET	300	67.2	39.4	1257.3	2.0
ET	301	58.1	96.1	1256.1	8.0
ET	302	51.7	156.4	1257.0	16.0
ET	303	51.1	70.0	732.9	6.0
ET	-304	58.5	66.7	1199.3	5.0

,

QC TQ TO	SPEC] TOTAI	1 IFIC COND L ALKALIN	1 UCTANCE ITY	0	0	1	1	1		
TQ TQ	CARBO	NACEOUS	BOD							
ΤQ	DISSC	LVED OXY	GEN							
L1		30	1							
L2	1	10	0	5	.6	1.5	1			
LR	1	100000								
L3		.01	1.0-6	.3-4	0	7				
L6	330	186000	1037							
L7	18	14000	815							
L8	0	50	850	1800	3350	3400	3500	3600	3700	3800
L8		3900	3950	4000	4500	4600	4700	4800	4900	5000
PL	10	100	0	-2						
PL	5	100	0	1						
PL	3	100	0	1						
PL DT	1	100	0	-2						
ГL DT	5	100	2 2	-10	1	005				
тц	5	5 7	5.Z	/	. L Q 5	005	0 0	0 1	0.2	0 /
T.9	U	95	9.6	97	0.J 0.7	0.7	0.9 0 g	9.1 Q Q	9.5	9.4
C1		130	130	130	130	130	130	130	130	130
C1		130	130	130	130	130	130	130	130	130
C2		45	45	45	45	45	45	45	45	45
C2		45	45	45	45	45	45	45	45	45
C5		.1	.1	.1	.1	.1	.1	.1	.1	.1
C5		.1	.1	.1	.1	.1	.1	.1	.1	.1
C6		.002	.002	.002	.002	.002	.002	.002	.002	.002
C6		.002	.002	.002	.002	.002	.002	.002	.002	.002
C7		5	5	5	5	5	5	5	5	5
C7		5	5	5	5	5	5	5	5	5
SA		100	100	100	100	100	100	100	100	100
SA		100	100	100	100	100	100	100	100	100
DK	0	0	.1	.05	1.463	4.57				
L2	3	10	47500	3	.6	1	1			
LK T2		01	106	2 /	0	7				
цэ т 6	200	248000	560	.5-4	0	/				
17	1173	15000	514							
1.8	0	40	450	500	600	610	640	670	700	730
L8	Ŭ	760	790	820	850	880	910	940	970	1000
PL	10	100	0	-2	050	000	510	740	570	1000
PL	5	100	Õ	1						
PL	3	100	0	1						
PL	1	100	0	- 2						
PL	3	100	0	-10						
PL	5	100	3.2	7	.1	005				
L9		9	9	9	9	9	9	9	9	9
L9		9	9	9	9	9	9	9	9	9
C1		130	130	130	130	130	130	130	130	130
C1		130	130	130	130	130	130	130	130	130
C2		45	45	45	45	45	45	45	45	45
CZ CE		45	45	45	45	45	45	45	45	45
		.⊥	. L 1	. 1	. 1	. 1	. 1	.⊥	.1	.1
UD		.⊥	.⊥	.1	.⊥	.1	.1	. 1	. L	.⊥

C6		.002	.002	.002	.002	.002	.002	.002	.002	.002
C7		.002	.002	.002	.002	.002	.002	.002	.002	.002
C7		5	5	5	5	5	5	5	5	5
SA		100	100	100	100	100	100	100	100	100
SA		100	100	100	100	100	100	100	100	100
DK		0	.1	.05	1.463	4.57				
L2	13	14	0	10	.4	1				
LR	2	30000								
L3		0.01	1.0-6	.3-4	0	7				
L6	180	350000	901							
L7	10	4000	652	720	788	856				
L7	10	4000	669	737	805	873				
L8		200	400	600	800	1000	1200	1400	1600	1800
L8		2000	2300	2600	3000	3300	3500			
PL	10	100	0	- 2						
PL	5	100	0	1						
PL	3	100	0	1						
PL	1	100	0	-2						
PL	3	100	0	- 10	1	005				
PL TO	5		3.2	/	.1	005	6 67	6 67	6 67	6 67
L9 то		6.6/ 7.70	0.0/	0.0/	0.0/	0.0/ 10 0	0.0/	6.0/	0.0/	0.0/
L9 с1		/./8	9.44	12.8	10.0	12.0	12.0	60	62	62
		62	0Z	62 62	62 62	62 62	0Z 62	02	02	02
C2		62	6Z 40	6Z 40	6Z 40	0Z 40	62 40	40	40	40
0Z C2		40	40	40	40	40	40	40	40	40
02 C5		40	40	40	40	40	40	٥	0	0
C5		0	0	0	0	0	0	Ŭ	Ŭ	U
C6		0	0	Ő	0 0	Ő	Ő	0	0	0
C6		õ	0	Ő	Ő	Ő	õ	Ũ	v	· ·
C7		5	1	1.5	2	2.5	3	3.5	4	5
C7		6	- 7	8	9	10	10			_
SA		100	100	100	100	100	100	100	100	100
SA		100	100	100	100	100	100			
DK		0	.1	.05	1.463	4.57				
L2	20	7	0	12	.4	2				
LR	3	26400								
L3		.01	1.0-6	14	0	7				
L6	336	567000	418							
L7	10.4	8000	307							
L8		100	500	1000	2000	3000	4000	5000	6000	7000
L8		8000	9000	10000	11000					
PL	10	100	0	-2						
PL	5	100	0	1						
PL	3	100	0	1						
PL	1	100	0	-2						
PL	3	100	0	- 10	-	005				
PL TO	5	100	3.2	/	.1	005	0.0	10	10 7	10 0
LУ то		8 10 0	8 1 2 2	8.5 12 2	8.5 12 2	9	9.3	TO	12./	13.3
LУ С1		13.3	13.3 70	13.3	13.3 70	70	70	70	70	70
		/U 70	70	70	70	70	70	70	70	70
C2		70 20	20	20	20	20	20	20	20	20
C2		20 20	20	20	20	20	20	20	20	20
02		20	20	20	20					

C5		0	0	0	0	0	0	0	0	0
C5		Ő	Ő	Ő	Ő	· ·	· ·	•	Ŭ	Ŭ
C6		. 02	. 02	. 02	. 02	02	02	02	02	02
C6		02	02	.02	02		.02	.02	.02	.02
C7		10 5	10 5	10 7	10 7	10 7	10 6	11 1	11 4	11 3
C7		11 3	11 3	11 3	11 3	10.7	10.0	****	±±.+	11.5
ςΔ		100	100	100	100	100	100	100	100	100
GV GV		100	100	100	100	100	100	100	100	100
אס		100	1	100	1 463	4 57				
		1 047	1 047	1 0/7	1 0150	4.57				
CI CI		1.047	1.047	1.047	1.0139	21				
6J	1	303 80	1	200 00	1 00	200 0	4			
32 C)	T	505.80	Z	500.00	1.90	500.0	4			
52	2	20/ 50		075 04		000 1	E			
52) (294.00	4	275.94	4.00	200.1	5			
52	4	275.94	5	2/1.20	2.33	273.2	0			
52	2	2/1.28	0 -7	261.96	4.66	2/1.2	/			
52	6	261.96	/	243.32	4.66	005 1	0			
SZ	/	243.32	8	206.04	4.66	225.1	8			
S2	8	206.04	9	196.72	4.66					
S2	9	196.72	10	168.76	4.66					
S2	10	168.76	11	140.80	4.66					
S2	11	140.80	12	117.50	4.66					
S2	12	117.50	19	80.22	4.66					
S2	13	75.38	14	71.82	1.78	75.00	9			
S2	14	71.82	15	58.84	3.245	58.84	9			
S2	15	58.84	16	45.56	3.32					
S2	16	45.56	17	26.25	2.41375	29.65	10			
S2	17	26.25	18	8.76	4.3725	12.30	11			
S2	18	8.76	19	0.0	4.38					
S2	19	80.22	22	59.64	4.116					
S2	20	28.53	21	20.93	2.533					
S2	21	20.93	22	0.0	4.186					
S2	22	59.64	23	38.28	2.67					
SR	-1	23	1	2						
S3	1	303.800	478.00	0.	0.00	0.	0.0518			
S3	1	303.800	479.00	116.	0.92	121.	0.0518			
S3	1	303.800	480.00	243.	1.43	133.	0.0518			
S3	1	303.800	481.00	382.	1.86	145.	0.0518			
S3	1	303.800	482.00	534.	2.24	154.	0.0518			
S3	1	303.800	483.00	693.	2.58	165.	0.0518			
S3	1	303.800	484.00	864.	2.88	176.	0.0518			
S3	1	303.800	485.00	1042.	3.18	182.	0.0518			
S 3	1	303.800	486.00	1227.	3.46	187.	0.0518			
S3	1	303.800	487.00	1416.	3.72	191.	0.0518			
S3	1	303.800	489.00	1807.	4.21	200.	0.0518			
S3	1	303.800	491.00	2215.	4.65	208.	0.0518			
S3	1	303.800	493.00	2642	5.05	219	0.0516			
s3	1	303.800	495.00	3095.	5.38	234	0.0512			
s3	1	303.800	497.00	3584.	5.64	256	0.0503			
S3	1	303.800	499.00	4116	5.91	277	0 0497			
s3	1	303.800	501 00	4699	5 99	310	0.0478			
S3	1	303,800	503 00	5366	5 83	361	0 0447			
S3	1	303,800	506 00	6585	5 84	444	0.0431			
s3	1	303,800	509 00	8019	6 02	517	0.0430			
S3	1	303.800	512.00	9695	6.25	593.	0.0432			

Most of the Cross Section Geometry (S3) records have been deleted from this listing.

S3	23	38.280	-27.20	0.	0.00	0.	0.0350			
S 3	23	38.280	-26.20	37.	0.70	62.	0.0350			
S 3	23	38.280	-25.20	107.	1.21	78.	0.0350			
S3	23	38.280	-24.20	197.	1.46	108.	0.0350			
S3	23	38.280	-23.20	329.	1.67	151.	0.0350			
S3	23	38.280	-22.20	500.	1.93	187.	0.0350			
S3	23	38.280	-21.20	699.	2.24	210.	0.0350			
S3	23	38.280	-20.20	921.	2.49	236.	0.0350			
S3	23	38.280	-19.20	1173.	2.68	276.	0.0350			
S 3	23	38.280	-18.20	1457.	2.95	293.	0.0350			
S 3	23	38.280	-16.20	2100.	3.29	352.	0.0350			
S 3	23	38.280	-14.20	2818.	3.89	365.	0.0350			
S3	23	38.280	-12.20	3559.	4.43	377.	0.0350			
S 3	23	38.280	-10.20	4323.	4.95	386.	0.0350			
S3	23	38.280	-8.20	5110.	5.40	399.	0.0350			
S3	23	38.280	-6.20	5919.	5.84	410.	0.0350			
S3	23	38.280	-4.20	6749.	6.26	420.	0.0350			
S3	23	38.280	-2.20	7601.	6.66	431.	0.0350			
S3	23	38.280	0.80	8919.	7.22	447.	0.0350			
S3	23	38.280	3.80	10285.	7.75	463.	0.0350			
S3	23	38.280	6.80	11695.	8.26	477.	0.0350			
S4		488.00	484.00	474.00	470.82	448.33	412.26	380.34	361.08	349.15
S4		326.12	304.00	288.02	265.60	252.15	245.73	234.40	212.83	196.14
S4		186.62	173.24	154.59	149.59	144.68	131.72	114.81	107.99	100.84
S 4		90.88	82.48	75.01	64.09	57.11	49.00	41.94	39.89	35.20
S4		32.80	30.70	26.86	22.49	20.97	20.92	18.02	13.21	10.86
S 4		6.00	5.00	4.00	3.00	225	207	207	150	126.4
S 4		105	94	80	72	61	60	57	54	48
S4		45	44	37	36	35	34	33	27	19
S4		11	4	3.0	1.5	1.0	0.5	117	109	96
S 4		85	65	42	30	20	10	0	-1	-2
S4		- 3	-4	- 5	-6	-7				

	1	-	0.5	1 1 6 0	/
KR	.1	.1	.05	1.463	4.57
KR	.1	.1	.05	1.463	4.57
KR	.1	.1	.05	1.463	4.57
KR	.1	.1	.05	1.463	4.57
KR	.1	.1	.05	1.463	4.57
KR	.1	.1	.05	1.463	4.57
KR	1	1	05	1 463	4 57
KB	.1	1	.05	1 463	4.57
VD	.1	•	.05	1 463	4.57
	• 1	• 1	.05	1.403	4.57
KR	. 1	.1	.05	1.463	4.57
KR	.1	.1	.05	1.463	4.5/
KR	.1	.1	.05	1.463	4.57
KR	.1	.1	.05	1.463	4.57
KR	.1	.1	.05	1.463	4.57
KR	.1	.1	.05	1.463	4.57
KR.	.1	.1	.05	1.463	4.57
KR	.1	.1	.05	1.463	4.57
KB	1	1	05	1 463	4 57
KB	.1	.1	.05	1 463	4.57
VD	• - 1	.⊥ 1	.05	1,405	4.57
	.1	.1	.05	1,405	4.J/
KK OT	.1	.1	.05	1.405	4.57
GT	1 /90401	12	1	0	
GT	- /91031	12	L	0	
CT	/90401	130	1	0	
CT	-791031	130	1	0	
СТ	790401	60	1	0	
CT	-791031	60	1	0	
СТ	790401	5	1	0	
СТ	-791031	5	1	0	
CT	790401	.1	1	0	
СТ	-791031	.1	1	0	
СТ	790401	5	ō	1	
СТ	-791031	5	Ő	1	
CT	2 700/01	10	1	1 O	
	Z /90401	12	1	0	
01	-/91031	12	1	0	
UT	790401	130	1	0	
CT	- /91031	130	1	0	
CT	790401	60	1	0	
CT	-791031	60	1	0	
CT	790401	5	1	0	
CT	-791031	5	1	0	
CT	790401	.1	1	0	
CT	-791031	.1	1	0	
СТ	790401	5	0	1	
СТ	-791031	5	Õ	- 1	
СТ	3 790401	12	ĩ	Ō	
CT	-791031	12	1	Ő	
	700/01	120	1	0	
CT CT	790401	130	1	0	
01	-/91031	120	1	0	
UT am	790401	60	T T	0	
CT	-/91031	60	1	0	
CT	790401	5	1	0	
CT	-791031	5	1	0	
CT	790401	.1	1	0	
CT	-791031	.1	1	0	

Most of the Control Point Target records (CT) have been deleted from this listing.

,

СТ	23 790401	14	. 1	0				
СТ	790516	19	1	0				
СТ	790614	21.5	1	0				
СТ	790726	22.5	1	0				
CT	790823	21.0	1	0				
СТ	790913	21.5	1	0				
CT	-791031	19.0	1	0				
CT	790401	150	1	0				
CT	790515	130	1	0				
CT	790612	148	1	Ő				
CT	790726	130	1	Ő				
СТ	790823	150	1	Ő				
CT	790913	180	1	0				
CT	-701031	107	1	0				
CT	790/01	190	1	0				
CT	790401	04 7.3	1	0				
CT	790515	4J 51	1	0				
CT CT	790012	21	1	0 ò				
	790720	40	1	0				
	790823	69 70	1	0				
GT	790913	72	L 1	0				
CT	- /91031	/2	1	0				
CT	/90401	20	1	0				
СТ	-791031	20	1	0				
CT	790401	5	1	0				
CT	-791031	5	1	0				
CT	790401	10	0	1				
СТ	790726	7.8	0	1				
CT	-791031	7.8	0	1				
11	790401	791031						
12		0	INFLOW = T	TOTAL L	OCAL FLOW			
14	790401	-1	49103 1	-1	-1			
12	1	0	SHASTA INF	FLOW				
14	790401	-15	490707	-12	791031	- 5	-1	
12		0	SHASTA INF	FLOW EC				
14	790401	120	790529	120	790716	140	791011	120
14	791031	120	-1					
T2		0	SHASTA TNE	TOU AT	KALINTTY			
T4	790401	55	790502	55	790529	45	790716	50
TA	790911	64	791031	64	-1	45	//0/10	50
T2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	04	CHACTA INF		л - т			
т2 т4	790/01	15	701031	от мот. 8	-1			
14 T2	770401	1.5	CHACTA ING		3 - Т			
12 T/	700/01	0	700716		700010	03	701031	0
14 T/	790401	U	/90/10	.02	790919	.05	/91031	0
14 T0	- L 1	^	CUACTA THE					
т. Т.	-L 700/01	100	JUTADIA INF	100	1			
14 T0	790401	100	19103T		-1			
12	700/01	0	INFLOW = T	UTAL L	UCAL FLOW			
14	/90401	-1	491031	-1	-1			

12		0	OROVILLE INFLOW
I4	790401	12.8	790701 14.0 790718 18.3 790801 12.0
I4	790901	10.0	791001 7.22 791031 4.44 -1
12		0	OROVILLE INFLOW EC
14	790401	62	790718 60 791031 60 -1
12		0	OROVILLE INFLOW ALKALINITY
14	790401	150	791031 150 -1
12		0	OROVILLE INFLOW BOD
14	790401	5	791031 5 -1
12		0	OROVILLE INFLOW AMMONIA
14	790401	.01	790718 0 791031 0 -1
12		0	OROVILLE INFLOW DISOLVED OXYGEN
14	790401	10.4	790718 8.5 791031 8.5 -1
12		0	INFLOW = TOTAL LOCAL FLOW
I4	790401	-1	491031 -1 -1
12		0	FOLSOM INFLOW
14	790401	8.0	790530 14.0 790727 14.0 791022 15.0
14	-1		
12	-	0	FOLSOM INFLOW EC
14	790401	74	790516 71 790614 76 790718 74
T4	790807	67	790911 62 791031 61 -1
T2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	FOLSOM INFLOW ALKALINITY
T4	790401	20	790530 13 790727 19 791031 19
т4	-1	20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
T2	-	0	FOLSOM INFLOW BOD
т <u>-</u>	790401	5	791031 5 -1
T2	/////	0	FOLSOM INFLOW AMMONIA
т4	790401	01	790530 09 790718 02 790727 0
т4	790807	01	791031 01 -1
T2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	FOLSOM INFLOW DO
T4	790401	10 7	790516 9 4 790530 10 6 790614 9 1
T4	790718	95	790727 10 790807 7 9 790911 8 6
T4	791031	10 6	-1
T2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10.0	TNFLOW = TOTAL LOCAL FLOW
T4	790401	-1	491031 -1 -1
T2	1	0	SPRING CR INFLOW
т4	790401	- 5	790707 -2 791031 -7 -1
T2	750401	0	SPRING CR FC
т <u>д</u>	790401	200	791031 200 -1
T2	//0401	200	SPRING CR ALKALINITY
та	790401	55	791031 55 -1
14 12	750401	0	SPRING CR ROD
τ <u>μ</u>	790/01	0	791031 0 -1
14 T2	//0401	0	SPRING CP NH3
т <u>~</u> т/	790/01	00	791031 00 -1
14 12	-1	.00	
12 T/	700/01	125	701021 125 1
14 T0	790401	125	
12 TA	700/01	1	101021 1 1
14 10	/90401	-1	
12 T/	L 700401	0	OUW OR. LIVELOW 700707 9 701021 7 1
14 10	/90401	0	
12 7/	700/01	200	701021 200 1
±4 ∓0	/90401	200	
12 7/	700/01	100	JUW UK. ALKALINIIY
14	79040I	TOO	12TO2T TOO -T

12		0) COW CR. BOD	
14	790401	0) 791031 0 -1	
12		0) COW CR. NH3	
14	790401	. 00) 791031 .00 -1	
12	-1	0) COW CR. DO	
14	790401	135	5 791031 135 -1	
T2	,,,,,,,) $INFLOW = TOTAL LOCAL FLOW$	
т4	790401	-1	491031 -1 -1	
T2	1	0) COTTONWOOD CR INFLOW	
T4	790401	Ő	790707 -2 791031 -7 -1	
T2	//0401	ů 0) COTTONWOOD CR FC	
12 T/i	790/.01	200	791031 200 -1	
т .	//0401	200	COTTONLOOD CP ALVALINITY	
12 T/i	790/01	100	701031 100 -1	
14 T2	/ / / / / / /	100	$ \begin{array}{c} 771031 \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ $ \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \\	
12 T/	700/01	0	701031 0 1	
14 T2	790401	0	-1	
т <i>и</i>	700/01	0	701021 00 1	
14 TO	/90401	.00	-1	
1Z T/.	700/01	125	701021 125 1	
14 TO	790401	122		
12 T/	700/01	1	101021 1 1 1	
14	/90401	-1		
12	L 700/01	0	BATTLE CR. INFLOW	
14	/90401	0	/90/0/ -2 /91031 -/ -1	
12	700/01	0	BATTLE CR. EC	
14	/90401	200	/91031 200 -1	
12	700/01	0	BATTLE CR. ALKALINITY	
14	/90401	100	/91031 100 -1	
12	700/01	0	BATTLE CR. BOD	
14	/90401	0	/91031 0 -1	
12	700/01	0	BATTLE CR. NH3	
14	/90401	.00	/91031 .00 -1	
12	-1-	0	BATTLE CR. DO	
14	/90401	135	791031 135 -1	
12		0	INFLOW = TOTAL LOCAL FLOW	
14	790401	-1	491031 -1 -1	
12	1	0	THOMES CR. INFLOW	
14	790401	5	790625 9 791031 5 -1	
12		0	THOMES CR. EC	
14	790401	350	791031 350 -1	
12		0	THOMES CR. ALKALINITY	
14	790401	350	791031 350 -1	
12		0	THOMES CR. BOD	
14	790401	10	790601 20 791001 20 791031	10
14	-1			
12		0	THOMES CR. NH3	
14	790401	.05	791031 .05 -1	
12	-1	0	THOMES CR. DO	
14	790401	135	791031 135 -1	
12		0	INFLOW = TOTAL LOCAL FLOW	
I4	790401	-1	491031 -1 -1	
12		0	BYPASSED FEATHER RIVER	
14	790401	13.9	790418 14.4 790516 17.8 790718	15.6
I4	790815	15.6	790919 12.2 791031 12.2 -1	

12		0	BYPASSED	FEATHER	RIVER EC			
14	790401	68	790418	68	790516	64	790718	65
14	790815	65	791031	51	-1			
12		0	BYPASSED [FEATHER	RIVER ALL	KALINIT	Y	
14	790401	40	791031	50	-1			
12		0	BYPASSED [FEATHER	RIVER BOI)		
I4	790401	. 5	791031	.5	-1			
12		0	BYPASSED 3	FEATHER	RIVER AMM	10NIA		
14	790401	.03	790516	.01	790718	0	791031	0
14	-1							
12		0	BYPASSED 1	FEATHER	RIVER DIS	SSOLVED	OXYGEN	
14	790401	10	790418	10	790516	9.2	790718	8.6
I4	790815	7.6	790919	6.2	791031	6.2	-1	
12		0	INFLOW = 2	TOTAL LO	CAL FLOW			
14	790401	-1	491031	-1	-1			
12		0	YUBA RIVE	R				
14	790401	11.0	790424	13.5	790524	15.5	790621	18.0
14	790726	16.5	790823	11.5	790920	15.5	791031	15.5
14	-1				,			
T2	-	0	YUBA RIVE	R EC				
T4	790401	87	790424	92	790523	72	790621	78
т4	790726	74	790823	76	790920	76	791031	76
T4	-1	74	//0023	/0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 0
14 12	Ŧ	0	VIIBA RIVER	ο Δτκατη	NTTV			
т <u>л</u>	790/01	3/1	790/2/	36	790523	29	790621	31
14 T/i	790726	21	790823	21	700020	22	791031	32
14 T/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	51	790025	51	/)0)20	52	//1051	52
14 T2	-1	٥	VIIRA DIVE					
12 T/	700/01	10	701031	10	_ 1			
14 T0	750401	10.	VIEA DIVE		.v _T			
12 T/	790/01	01	700/2/		700523	02	790621	00
14 T/	790401	.01	790424	.00	790923	.02	701031	.00
14 T/.	190720	.00	790020	.02	790921	.00	/91031	.00
14 TO	-1	0		0.00				
т. т.	700/01	11 0	10DA KIVER		700522	10.0	700621	0 5
14 TA	790401	11.0	790424	10.0	790323	10.0	701021	9.5
14 TA	/90/20	9.9	/90823	9.9	790920	10.5	/91031	10.5
14	-1	0						
	700/01	1	INFLOW = 1		ICAL FLOW			
14	790401	-1	491031	-1	- 1			
12	700/01	10	BEAR RIVER	۲ ۲ (۲	700500	01 0	700(01	0/ 0
14	790401	13.5	790424	14.5	790523	21.0	790621	24.0
14	/90/26	25.5	790823	25.5	790920	19.0	/91031	19.0
14	-1	•						
12		0	BEAR RIVER	EC C				
14	/90401	91	790424	89	790523	82	/90621	210
14	790726	174	790823	199	790920	190	791031	190
14	-1	-						
12		0	BEAR RIVER	R ALKALI	NITY			
14	790401	30	790424	28	790523	26	/90621	67
14	790726	63	790823	75	790920	74	791031	74
14	-1							
12		0	BEAR RIVER	BOD	-			
14	790401	10.	791031	10.	-1			
12		0	BEAR RIVER	AMMONI	A			
I4	790401	.35	791031	.35	-1			

12			0	BEAR RIVER	DO				
I4		790401	11.0	790424	9.7	790523	8.3	790621	8.8
I4		790823	9.9	790920	8.4	791031	8.4	-1	
G179	90401	791031							
G2	1	790401	791031	0	0	1	1		
G2	3	790401	791031	0	0	1	1		
G2	13	790401	791 031	0	0	1	4	1	4
G2	20	790401	-791031	0	0	1	1		
ER									

APPENDIX B

Selected Computer Output for Sacramento River System Water Quality Modeling

	210 91 (79/ 4/ 1) 300 (79/10/27) 23 62 62 62 62 63 65 65 67	VINS SPS VINS SPS SPS SPS SPS SPS SPS SPS SPS
DR L SOM T		SHORT .W 2032.20 2033.40 1618.10 2031.80 2033.40 1016.90 2060.80 1106.90 1106.90 1106.90 12142.50 1856.40 1856.40 1856.40 1551.00 1551.00 1551.00 1550.80 22229.50 1552.60 1121.70 1121.70 1121.70 1153.30 1153.30 1153.30 1153.30 1153.30 2012.50 200.50 2012.50 200.50 200.50 200.50 200.50 200.50 200.50 200.50 200
ITY DATA FO LLE AND FOI SYSTEM TES	S METRIC=1)	Mary HEAT.EXC 121.60 121.60 121.60 121.60 121.60 167.50 121.60 122.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 10
WATER QUAL NSTA, OROVII RESERVOIR 3	ATION SIMULATION SIMULATION ITROL POINT EERVOIRS TURE UNITS NUMBER 2 NUMBER 4 NUMBER 6 NUMBER 6 NUMBER 7	L DATA Eat L DATA Eat L DATA 55.55 5
SHA	F SIMUL AY OF OF COR OF COR OF RES OF COR OF RES INITS (FEMPERA FILE FILE FILE FILE FILE FILE	ZZOOGICA
	DAYS O FIRST FINAL NUMBER NUMBER NUMBER INPUT (MATER SCRATCI SCRATCI SCRATCI SCRATCI SCRATCI	METEORI 19724 92/24 92/24 92/24 95/24 95/24 95/24 100/24 100/24 111/22 11/22 11/22 11/22 11/22 11/22 11/22 11/22 11/22 11

ZONE EQT.TEMP HEAT.EXC SHORT.WV WIND.SPD

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
866.60 689.20 680.20 680.20 766.70 754.90 1254.90 1254.70 628.10 7221.80 624.70 624.70 624.70 626.10 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1257.30 1
76.10 107.50 97.00 105.50 105.50 105.50 105.50 104.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.80 106.50 106.80 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 106.50 100000000000000000000000000000000000
64.70 66.60 69.60 69.60 69.60 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20 57.20
285/24 286/24 288/24 288/24 288/24 299/24 296/24 296/24 300/24 303/24 303/24

IN ADDITION TO TEMPERATURE, THE FOLLOWING CONSTITUENTS ARE BEING SIMULATED. ( EXCEPT AS NOTED )

SPECIFIC CONDUCTANCE TOTAL ALKALINITY CARBONACEOUS BOD AMMONIA AS N DISSOLVED OXYGEN ***** INDICATES QUALITY DATA WILL BE READ BUT NOT SIMULATED

#### RESERVOIR RELATED DATA

FERVAL, DAYS FER PRINTOUT INTERVAL		
ferval, days fer printout 1	NTERVAL	
	TERVAL, DAYS YER PRINTOUT I	

30

#### RESERVOIR NUMBER

----

CONTROL POINT I.D.	-
LAYER THICKNESS, FT	10.0
MAXIMUM WATER SURFACE ELEVATION, FT	1070.0
BOTTOM ELEVATION, FT	630.0
STARTING RESERVOIR VOLUME, ACFT	4137800.
SECCHI DISK DEPTH, FT	5.0
DEPTH OF INITIAL SOLAR ENERGY ABSORPTION, FT	1.50
FRACTION OF SOLAR ENERGY ABSORBED	0.60
METEOROLOGICAL DATA ZONE	-
INFLOW I.D. EFFECTIVE RES. LENGTH, FT	
1 100000.	
WATER COLUMN MINIMUM STABILITY, KG/M3/M	0.10E-01
WATER COLUMN CRITICAL STABILITY (GSWH), KG/M3/M	0.10E-05
MAXIMUM ALLOWABLE DISPERSION (A1), M2/SEC	0.30E-04
COEFFICIENT RELATING GRADIENT TO DISPERSION (A3)	-0.70E+00

#### OUTLET CHARACTERISTICS

FI		
ELEVATION,	1037.00	815.00
ELEMENT	41	19
MAXIMUM FLOW, CFS	186000.00	14000.00
VIRTUAL WIDTH, FT	330.00	1 18.00
	SPILLWAY	Wet Well

### GATE SELECTION SUBOPTIMIZATION FUNCTION

		-5.00E-03
		1.00E-01
COEFFICIENTS	-2.00E+00 -1.00E-01 -1.00E-01 -2.00E+00 -1.00E+01	-7.006-01
AL FUNCTION	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	3.20E+00
I MONY JOA	1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02	1.00E+02
WEIGHTING	1.00E+01 5.00E+00 3.00E+00 1.00E+00 3.00E+00	5.00E+00
CONSTI TUENT	- 0 M 0 -	Ø

# RESERVOIR GEOMETRY AND INITIAL TEMPERATURE

### INITIAL RESERVOIR WATER QUALITY DATA

MENT	۔ ا	CONS.1	CONS.2	CONS.3	NONCONS.1	NONCONS.2	NONCONS.3	OXYGEN	OZ SOURCE/SINK
63(	0.0	130.00	45.00	0.0	0.0	0.10	0.00	5.0	100.00
2	0.0	130.00	45.00	0.00	0.00	0.10	0,00	5.0	100.00
65(	0.0	130.00	45.00	00.0	0.00	0.10	0.0	2.0	100.00
38	0.0	130.00	45.00	0.00	00.0	0.10	0.00	0.2	100-001
67(	0.0	130.00	45.00	00.0	0.00	0.10	0.0	5.0	100.00
88	0.0	130.00	45.00	0.00	00.0	0.10	0.00	5.0	100.00
<b>6</b> 9	0.0	130.00	45.00	00-00	0.00	0.10	0.0	5.0	100.00
ĕ	0.0	130.00	45.00	00"0	0.00	0.10	0.00	5.0	100.00
3	0	130.00	45.00	00-00	0.00	0.10	0.00	5.0	100.00
22	0.0	130.00	45.00	0.00	0.00	0.10	0.00	5.0	100.00
Ř	0.0	130.00	45.00	00.0	0.00	0.10	0.00	5.0	100.00
240	0.0	130.00	45.00	0.0	0.00	0.10	0.00	5.0	100.00
Ř	0.0	130.00	45.00	0.00	0.00	0.10	0.0	5.0	100.00
192	0	130.00	45.00	0.00	00.00	0.10	0.00	5.0	100.00
ぼ	0.0	130.00	45.00	00.0	0.00	0.10	0.00	5.0	100.001
280	0.0	130.00	45.00	00"0	00.0	0.10	0.00	5.0	100.001
<u>8</u> 2	0.0	130.00	45.00	00.00	0.00	0.10	0.00	2.0	100.00
8000	0"0	130.00	45.00	00.0	00.0	0.10	0.00	5.0	100-00
9 810	0.0	130.00	45.00	0.00	0.00	0.10	00"0	5.0	100.00
820	0.0	130.00	45.00	00.0	00.0	0.10	0.00	5.0	100.00
830	0.0	130.00	45.00	00.0	0.00	0.10	0.0	5.0	100.00
2	0.0	130.00	45.00	0.00	0.00	0.10	0.0	5.0	100.00
850	0	130.00	45.00	00-00	0.00	0.10	0.00	5.0	100.00
8	0.0	130.00	45.00	0.00	0.00	0.10	0.0	5.0	100.00
278	0.0	130.00	45.00	0.00	0.00	0.10	0.0	5.0	100.00
	0.0	130.00	45.00	00.0	0.00	0.10	0.0	5.0	100.00
58		130.00	45.00	0.00	0.00	0.10	0.00	5.0	100.00
ğ	0.0	130.00	45.00	00-00	0.00	0.10	0.00	5.0	100.00
910		130.00	45.00	0.00	0.00	0.10	0.0	5.0	100.00
220		130.00	45.00	0.00	0.00	0.10	0.0	5.0	100.00
756		150.00	45.00	00.0	0.0	0.10	0.00	5.0	100.00
22		130.00	45.00	0.00	0.00	0.10	0.0	5.0	100.00
5		130.00	45.00	0.00	0.00	0.10	0.00	5.0	100.00
8		130.00	45.00	0.00	0.00	0.10	0.0	5.0	100.00
76		130.00	45.00	0.00	0.00	0.10	0.00	5.0	100.00
80	0.0	130.00	45.00	00.0	00-00	0.10	0.00	5.0	100.00
8	0	130.00	45.00	00.0	0.0	0.10	0.00	5.0	100.00
1000	0.0	130.00	45.00	00.0	0.0	0.10	0.00	5.0	100.00
1010	0	130.00	45.00	00-00	0.00	0.10	0.0	5.0	100.00
1020	0.0	130.00	45.00	00-00	0.00	0.10	0.00	5.0	100.00
1030	0.0	130.00	45.00	00.0	0.00	0.10	0.0	5.0	100.00
1040	0	130.00	45.00	00-00	00"0	0.10	0.00	5.0	100.00
1050	0.0	130.00	45.00	00.0	0.00	0.10	0.00	5.0	100.00
1060	0.0	130.00	45.00	00.0	0.00	0.10	0.00	5.0	100.00
1070	0	130.00	45.00	00.0	00.0	0.10	0.00	5.0	100.00

SPECIFIC CONDUCTANCE	TOTAL ALKALINITY	NOT BEING SIMULATED	NOT BEING SIMULATED	CARBONACEOUS BOD	AMMONIA AS N	DISSOLVED OXYGEN
IS	IS	IS	IS	IS	IS	IS
-	2	м	4	ŝ	Ŷ	~
8	Ň.	Š.	Š.	ŝ	S.	М
CONSTITUENT	<b>CONSTITUENT</b>	<b>CONSTITUENT</b>	CONSTITUENT	<b>CONSTITUENT</b>	CONSTITUENT	CONSTITUENT

DECAY RATES AND CONVERSION FACTORS ARE

0.0000	0.1000	0.0500	1.4630	4.5700
. 4 DECAY RATE =	. 5 DECAY RATE =	. 6 DECAY RATE =	. 5 CONVERSION FACTOR =	. 6 CONVERSION FACTOR =
CONSTITUENT NO.	CONSTITUENT NO.	CONSTITUENT NO.	CONSTITUENT NO.	CONSTITUENT NO.

RESERVOIR NUMBER

2

CONTROL POINT I.D.	м
LAYER THICKNESS, FT	10.0
MAXIMUM WATER SURFACE ELEVATION, FT	587.5
BOTTOM ELEVATION, FT	437.5
STARTING RESERVOIR VOLUME, ACFT	22677.
SECCHI DISK DEPTH, FT	3.0
DEPTH OF INITIAL SOLAR ENERGY ABSORPTION, FT	1.00
FRACTION OF SOLAR ENERGY ABSORBED	0.60
METEOROLOGICAL DATA ZONE	,
(U/S STREAM SEC.) 47500.	-
WATER COLUMN MINIMUM STABILITY, KG/M3/M	0.10E-01
WATER COLUMN CRITICAL STABILITY (GSWH), KG/M3/M	0.10E-05
MAXIMUM ALLOWABLE DISPERSION (A1), M2/SEC	0.30E-04
COEFFICIENT RELATING GRADIENT TO DISPERSION (A3)	-0.70E+00

#### OUTLET CHARACTERISTICS

	MAXIMUM FLOW, CFS	ELEMENT	ELEVATION,	Ħ
200.00	248000.00	12	560.00	
1173.00	15000.00	Ø	514.00	

## GATE SELECTION SUBOPTIMIZATION FUNCTION

	-5.00E-03
	1.00E-01
COEFFICIENTS	-2.00E+00 -1.00E-01 -1.00E-01 -2.00E+00 -1.00E+01 -7.00E-01
AL FUNCTION	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.20E+00
I MONY JOA	1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
WEIGHTING	1.00E+01 5.00E+00 3.00E+00 1.00E+00 3.00E+00 5.00E+00
CONSTITUENT	- N M V N 8

# RESERVOIR GEOMETRY AND INITIAL TEMPERATURE

TEMPERATURE	9.00	6.00	9.00	00.6	9.00	9.00	9.00	9.00	9.00	9.00	6.00	9.00	9.00	6.00	6.00	00.6
WIDTH	40.	86.	132.	178.	224.	270.	315.	361.	407.	452.	484.	513.	539.	565.	591.	1000.
ELEMENT VOL	594.	752.	920.	1088.	1256.	1424.	1592.	1760.	1933.	2182.	2454.	2631.	2761.	2891.	4648.	4648.
VOLUME		594.	1346.	2266.	3354.	4610.	6033.	7625.	9385.	11318.	13499.	15953.	18584.	21345.	24236.	28883.
AREA ACRE	50.	67.	8. 8	100.	117.	134.	151.	168.	184.	202.	234.	257.	270.	283.	296.	634.
ELEVATION FT	437.5	447.5	457.5	467.5	477.5	487.5	497.5	507.5	517.5	527.5	537.5	547.5	557.5	567.5	577.5	587.5
ELEMENT	•	2	m	4	Ś	6	~	8	0	6	11	12	13	14	5	16

INITIAL RESERVOIR WATER QUALITY DATA

I OZ SOURCE/SINK	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
OXYGEN	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
NONCONS .3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00
NONCONS.2	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NONCONS. 1	0.00	0.00	0.00	00.0	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	00.0	0.00	00.0	00.0
CONS.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00
CONS.2	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00
CONS.1	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00
ELEV	437.5	447.5	457.5	467.5	477.5	487.5	497.5	507.5	517.5	527.5	537.5	547.5	557.5	567.5	577.5	587.5
ELEMENT	-	2	m	4	Ś	\$	~	ω	6	9	=	12	tī	14	15	16

в8

SPECIFIC CONDUCTANCE	TOTAL ALKALINITY	NOT BEING SIMULATED	NOT BEING SIMULATED	CARBONACEOUS BOD	AMMONIA AS N	DISSOLVED OXYGEN
IS	IS	SI	SI	SI	IS	IS
-	2	m	4	ŝ	\$	~
Ño.	NO.	Š.	Š.	Š.	Š.	Š.
<b>CONSTITUENT</b>	CONSTITUENT	CONSTITUENT	CONSTITUENT	CONSTI TUENT	CONSTITUENT	CONSTI TUENT

DECAY RATES AND CONVERSION FACTORS ARE

0.000	0.1000	0.0500	1.4630	4.5700
11	H	14	FACTOR =	FACTOR =
DECAY RATE	DECAY RATE	DECAY RATE	CONVERSION	CONVERSION
CONSTITUENT NO. 4	CONSTITUENT NO. 5	CONSTITUENT NO. 6	CONSTITUENT NO. 5	CONSTITUENT NO. 6

RESERVOIR NUMBER

м

#### OUTLET CHARACTERISTICS

FT			
ELEVATION,	901.00	652.00 720.00 788.00 856.00	669.00 737.00 805.00 873.00
ELEMENT	47	43 34 29 38 47 29	35 45 45
MAXIMUM FLOW, CFS	35000.00	4000.00	4000-00
RTUAL WIDTH, FT	180.00	10.00	10.00
IN	SPILLWAY	WET WELL 1	WET WELL 2

### GATE SELECTION SUBOPTIMIZATION FUNCTION

		-5.00E-03
		1.00E-01
COEFFICIENTS	-2.00E+00 -1.00E-01 -1.00E-01 -2.00E+00 -1.00E+00	-7.00E-01
AL FUNCTION	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	3.20E+00
POL YNOM I	1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02	1.00E+02
WEIGHTING	1.00E+01 5.00E+00 3.00E+00 1.00E+00 3.00E+00	5.00E+00
CONSTITUENT	- 0 M 0 V	8

# RESERVOIR GEOMETRY AND INITIAL TEMPERATURE

TEMPERATURE	5 47 5 47	6.67	6.67	6.67	6.67	0.6/ 22.2	0.01	0.01	6.67	6.67	6.67	6.67	6.67	6.67	6.67	10.0	0-01 6 67	6 67	0.01 6.67	6.67	6.67	6.67	6.67	6.67	6.67	6.67	6.67	6.80	7.11	7.42	7.74	0.10	0.11	9.71	10.65	11.59	12.53	12.24	11.46	10.67	10.11	10.90	11.68	12.46	12.8U 12.80
WIDTH 51	- 002	256.	312.	368.	424.	48U.	50.		2042	760.	816.	872.	928.	984.	1040.	1150.	1208.	1267	1320.	1376.	1432.	1488.	1544.	1600.	1656.	1712.	1768.	1824.	1880.	1936.	1992.	2116	2240.	2324.	2408.	2492.	2576.	2680.	2792.	2904.	3012.	3096.	3180.	5264.	3491.
ELEMENT VOL	7411	2274.	3136.	4066.	-2616	.0700 2028	0083	11133	13250	15434.	17853.	20440.	23027.	26006.	29534.	24007	-2000c	43758	47130.	50904.	55384.	60166.	. 64949	69810.	74749.	79688.	84896.	90731.	96925.	103118.	109512.	121600	128206.	135811.	144200.	152589.	160866.	168986.	177061.	185360.	195227.	206438.	217650.	.130861	126696.
	- 124	2411.	4685.	7821.	11000.	-05071	30870	39954	51086.	64336.	79770.	97622.	118062.	141090.	16/096. 104420	220850	266731.	307118	350877.	398006.	448910.	504294.	564461.	629410.	699219.	773968.	853656.	938552.	1029283.	1126208.	-026721	1454144	1575843	1704050.	1839861.	1984061.	2136650.	2297515.	2466501.	2643562.	2828922.	3024149.	3230587.	. 1020440	3773560.
AREA	22.	132.	193.	255.	. 020	4 10.	578.	720.	871.	1022.	1183.	1368.	1552.	1737.	72/1	250%	2764.	3005	3246.	3487.	3785.	4127.	4468	4810.	5163.	5516.	5868.	6260.	6/02.		- 1001	7777	8914.	9401.	10000.	10600.	11199.	11782.	12359.	12936.	13544.	14345.	15146.	. 1940	124 <i>2</i> 7.
ELEVATION FT	250.0	264.0	278.0	292.0	0.005	0.020	348.0	362.0	376.0	390.0	404.0	418.0	432.0	446.0	0.004	188.0	502.0	516.0	530.0	544.0	558.0	572.0	586.0	600.0	614.0	628.0	642.0	656.0 ( <u>7</u> 0.0	0.0/0	0.489	0,040	726.0	740.0	754.0	768.0	782.0	796.0	810.0	824.0	838.0	852.0	866.0	880.0 80' 0	0.44.0	922.0
ELEMENT	-	2	m ·	4 1	<b>n</b> 4	<b>~</b>	- ∞	0	0	11	2	<u>ت</u>	21	<u>د</u> م	0₽	ŝ	<u>5</u>	20	25	22	53	24	ß	58	27	ខ្ល	ର :	គ្គ	<u>,</u>	35	5 ¥	5 %	8	37	88	62	<del>.</del>	41	42	43	4	<b>4</b> 5	<b>6</b>	4/	<del>3</del> 6

### INITIAL RESERVOIR WATER QUALITY DATA

02 Source/Sink	100.00	100.00	100.00	100_00	100.00	100-001	100.00	100.00	100.00	100.00	100.00	100_00	100.00	100.00	100-00	100-001	100.00	100.00	100.00	100.00	100_00		100.00	100 001	100.00	100 001	100.00	100_00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00 100.00
OXYGEN	0.5	0.6	0.8	0.0		1.2		5.1	9-1	.1	1.9	2.0	2.2	2.3	2.5	2.6	2.7	2.9	3.0	2		7.2	5 Y	2.2	0.E	0-7	6-4 7	4-6	4.8	5.1	5.4	5.7	6.0	6.2	6.5	6.8	7.1	7.4	7.6	7.9	8.2	8.5	8.8	9.0	9.3	9.6	<b>6</b> .9	10.0 10.0
NONCONS.3	0.00	0.00	00.0	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	00-00	0.00	0.00	0.00	0.00	0.00	00.0	00"0	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00"0	0.00	0.0	0.00	0.00	0.00
NONCONS.2	0.00	00.00	00.0	00.0	00.0	00"0	00.0	00.0	00.0	00.0	0.00	00.00	00.00	00.00	00.00	00.00	00.0	00.0	00-00	00-00	00"0	00.00	00.0	00-00	00.0	00.00	00.0	00.0	00.0	0.00	00"0	0.00	0.00	00-0	0.00	00.0	00-00	00.00	00"0	00.00	0.00	00.0	00-0	00.0	00.0	00.0	0.00	0.00
NONCONS.1	00-0	0.00	0.00	0.00	00.0	0.00	0.00	00.0	0.00	0.00	00.0	00.0	0.00	00.0	0.00	00.00	00"0	00.0	0.00	00.0	00"0	00.0	0.00	00.0	00.0	00.0	0.00	00"0	00.0	0.00	0.00	00"0	0.00	0.00	0.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	00-00	0.00	00.00	0.00	00.0	0.00
CONS.3	00-0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	00.0	0.00	0.00	00.0	00.0	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0	00.00	00.0	00.0	00.0	00.0	00.0	00-00	0.00	0.00	0.00	0.00	0.00	0.00	00 2	0.00	00.0	0.00	0.00	0.00	0.00	0.00	00.00	0.00
CONS.2	40.00	40.00	40 <b>.</b> 00	40.00	40 <b>.</b> 00	40.00	40.00	40.00	40.00	40.00	40.00	40-00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40 <b>.</b> 00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40°00	40.00	40.00
CONS.1	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62.00	62 <b>.</b> 00	62 <b>.</b> 00	00.20	9. 8	8.0	8.8	8	8.8	00.20	62,00	62.00	62.00	62.00	62 <b>.</b> 00	00.20	62.00
ELEV	220.0	264.0	278.0	292.0	306.0	320.0	334.0	348.0	362.0	376.0	390.0	404.0	418.0	432.0	446.0	460.0	474.0	488.0	502.0	516.0	530.0	544.0	558.0	572.0	586.0	600.0	614.0	628.0	642.0	656.0	670.0	684.0	698-0		1.05/		0.407			0.05	810.0	824.0	838.0	852.0	866.0	880.0	894.U	922.0
ELEMENT	e (	2	<b>~</b> 7	4	ŝ	9	~	ø	0	9	1	12	13	14	5	16	17	18	19	20	21	23	ង	54	ß	5 <b>6</b>	27	58	ጽ	В.	3	R I	23	\$ ነ	ዓ ነ	8 5	<u>,</u>	8 6	2	3:	4	4:	£	4:	<del>.</del> 5	ð í	4	49 49

SPECIFIC CONDUCTANCE	TOTAL ALKALINITY	NOT BEING SIMULATED	NOT BEING SIMULATED	CARBONACEOUS BOD	AMMONIA AS N	DISSOLVED OXYGEN
IS	IS	IS	SI	IS	IS	IS
~	2	m	4	ŝ	Ś	~
Š.	ŝ	ŝ	ŝ	ŝ	Š.	ŝ
CONSTITUENT	CONSTITUENT	CONSTITUENT	CONSTITUENT	CONSTITUENT	CONSTITUENT	CONSTITUENT

.

DECAY RATES AND CONVERSION FACTORS ARE

0.0000	0.1000	0.0500	1.4630	4.5700
11	11		FACTOR =	FACTOR =
DECAY RATE	DECAY RATE	DECAY RATE	CONVERSION	CONVERSION
JENT NO. 4	JENT NO. 5	JENT NO. 6	JENT NO. 5	JENT NO. 6
CONSTITU	CONSTITU	CONSTITU	CONSTITU	CONSTITU

4 RESERVOIR NUMBER

20	7.0 480.0 225.0 832100.	EPTION, FT 2.00 0.40 11, FT 11	M3/M 0.10E-01 MH), KG/M3/M 0.10E-05 M2/SEC 0.10E-03 SPERSION (A3) -0.70E+00
CONTROL POINT I.D.	LAYER THICKNESS, FT MAXIMUM WATER SURFACE ELEVATION, F BOTTOM ELEVATION, FT STARTING RESERVOIR VOLUME, ACFT SECCHI DISK DEPTH FT	DEPTH OF INITIAL SOLAR ENERGY ABSO FRACTION OF SOLAR ENERGY ABSORBED METEOROLOGICAL DATA ZONE INFLOW I.D. EFFECTIVE RES. LEN 3 26400.	WATER COLUMN MINIMUM STABILITY, KG WATER COLUMN CRITICAL STABILITY (G MAXIMUM ALLOWABLE DISPERSION (A1), COEFFICIENT RELATING GRADIENT TO D

#### OUTLET CHARACTERISTICS

FT		
ELEVATION,	418.00	307.00
ELEMENT	28	12
MAXIMUM FLOW, CFS	567000.00	8000.00
VIRTUAL WIDTH, FT	336.00	1 10-40
	SPILLWAY	Wet Well 1

### GATE SELECTION SUBOPTIMIZATION FUNCTION

		٩,
		1.00E-01
COEFFICIENTS	-2.00E+00 -1.00E-01 -1.00E-01 -2.00E+00	-7.006-01
IAL FUNCTION	0.00E+00 0.00E+00 0.00E+00 0.00E+00	3.20E+00
FOLY NOM!	1.00E+02 1.00E+02 1.00E+02 1.00E+02	1.00E+02
WEIGHTING	1.00E+01 5.00E+00 3.00E+00 1.00E+00 3.00E+00	5.00E+00
CONSTITUENT	- 0 m 0 M	- ¢)

1.00E-01 -5.00E-03

# RESERVOIR GEOMETRY AND INITIAL TEMPERATURE

TEMPERATURE	, 00-8	8.00	8.00	8.00	8.06	8.20	8.34	8.48	8.50	8.50	8.50	8.54	8.68	8.82	8.96	9.06	9.14	9.23	9.33	9.52	9.72	9.92	10.43	11.19	11.94	12.70	12.93	13.17	13.30	13.30	13.30	13.30	13.30	13.30	13.30	13.30	13.30
WIDTH	100	212.	324.	436.	560.	700.	840.	980.	1240.	1520.	1800.	2080.	2360.	2640.	2920.	3200.	3480.	3760.	4040.	4320.	4600.	4880.	5160.	5440.	5720.	6000.	6389.	6778.	7094.	7312.	7531.	7750.	7969.	8240.	8520.	8800.	9400.
ELEMENT VOL	2002	1747	2492.	3220.	3909.	4575.	5242.	5942.	6681.	7426.	8294.	9593.	11200.	12807.	14554.	16498.	18497.	20614.	23554.	27199.	30845.	34558.	38388.	42269.	46150.	50107.	54142.	57984.	61374.	64506.	67639.	70771.	73908.	77052.	80197.	83446.	83446.
	0	2002.	3750.	6242.	9462.	13370.	17946.	23187.	29129.	35810.	43235.	51529.	61122.	72322.	85129.	99683.	116181.	134678.	155291.	178845.	206044.	236889.	271446.	309834.	352103.	398253.	448360.	502503.	560487.	621861.	686367.	754006.	824776.	898685.	975737.	1055934.	1139380.
AREA	8	196.	303.	409.	511.	606.	701.	796.	901.	1008.	1114.	1256.	1485.	1715.	1944.	2214.	2500.	2785.	3104.	3625.	4146.	4667.	5207.	5761.	6316.	6870.	7446.	8023.	8544.	8991.	9439.	9886.	10334 -	10783.	11232.	11681.	12160.
ELEVATION FT	225.0	232.0	239.0	246.0	253.0	260.0	267.0	274.0	281.0	288.0	295.0	302.0	309.0	316.0	323.0	330.0	337.0	344.0	351.0	358.0	365.0	372.0	379.0	386.0	393.0	400.0	407.0	414.0	421.0	428.0	435.0	442.0	449.0	456.0	463.0	470-0	477.0
ELEMENT	ſ	~ ~	m	4	'n	9	7	ß	\$	9	11	12	13	14	5	16	17	18	6	ຊ	21	23	ស	24	ß	58	27	28	53	30	31	32	33	34	35	36	37

### INITIAL RESERVOIR WATER QUALITY DATA

O2 SOURCE/SINK	100.00	00.001	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100_00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
OXYGEN	10.5	0 0 1 1 1 1	10.5	10.5	10.6	10.6	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.6	10.6	10.8	10.9	11.0	11.1	11.2	11.3	11.4	11.4	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3
NONCONS.3	20.0	20.0	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
NONCONS.2		0.00	00.0	0.00	0.00	0.00	0.00	00-0	00.0	0.0	00-0	0.00	00.0	00-00	00.0	0.00	00.0	00.0	00.0	00.0	0.00	0.00	00.0	00.0	00-00	0.00	0.00	00.00	0.00	00.0	0.00	0.00	0.00	00-00	0.00	0.00
NONCONS.1	8.0	00-0	00.0	00-0	0.00	0.00	0.00	00.0	0.00	0.00	00-0	0.00	00.0	00-0	0.0	0.0	00.00	00.0	00.0	0.0	0.00	00.0	00"0	0.00	0.00	0.00	0.0	0.00	0.00	0.0	0.00	0.00	00.0	0.00	0.0	0.00
CONS.3		0.00	0.00	00-0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00"0	00.0	0.0	00-0	00.0	00"0	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	00.0	00.0	00.0	0.00	00.0	0.00	0.00	0.00	0.00	00
CONS.2	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20-00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	70 <b>.</b> UU
CONS.1	20.00	20.00	20.00	20.00	8.8	20.02	8.6	8.6		8.0	8. 2	0.0	20.00	20-00	00-02	20.00	00-02	20.00	20.00	20.00	20.02	00.07	8.0	8.6	8.0	8.8 8.8	8.8	00.07	8.9	8.9 8	8.8	8.5	0.0	0.0	8.8 8.8	10.00
ELEV	232.0	239.0	246.0	253.0	260.0	) ) ) ) ) ) ) ) )	2/4-0	281.0	288.0	2.5	302.0	309.0	316.0	323.0	330.0	337.0	344.0	351.0	358.0	365.0	372.0	379.0	586.U	595.0	0.004	0. JU4	414°0	441.U	428.0	4.55.0	144.0	44 <b>7.</b> 0	456 <b>.</b> 0	465.U	0.04	0
ELEMENT 1	· ~1	м	4	Ś	1 0	<b>~</b> 0	οα	ې د	2;	= \$	2:	23	4	<u>ب</u>	2	21	<u>8</u>	19	ខ្ល	ភ	21	ង	* 1	0 2	9 ;	28	88	21	31	5	31	31	\$ i	ዓ ;	85	õ

SPECIFIC CONDUCTANCE	TOTAL ALKALINITY	NOT BEING SIMULATED	NOT BEING SIMULATED	CARBONACEOUS BOD	AMMONIA AS N	DISSOLVED OXYGEN
IS	IS	IS	SI	IS	IS	IS
-	~	M	4	ŝ	\$	~
Š	Š.	Š.	ŝ	Š	₽	ŝ
CONSTITUENT	CONSTI TUENT	CONSTITUENT	CONSTI TUENT	CONSTITUENT	CONSTITUENT	CONST I TUENT

### DECAY RATES AND CONVERSION FACTORS ARE

0.000	0.1000	0.0500	1.4630	4.5700
CONSTITUENT NO. 4 DECAY RATE =	CONSTITUENT NO. 5 DECAY RATE =	CONSTITUENT NO. 6 DECAY RATE =	CONSTITUENT NO. 5 CONVERSION FACTOR =	CONSTITUENT NO. 6 CONVERSION FACTOR =

#### THERMAL ADJUSTMENT FACTORS FOR

CONSTITUENT NO. 4 DECAY RATE =	1.0470
CONSTITUENT NO. 5 DECAY RATE =	1.0470
CONSTITUENT NO. 6 DECAY RATE =	1.0470
OXYGEN REAERATION RATE =	1.0159

STREAM RELATED DATA

PRINTOUT INTERVAL, DAYS
PRINTOUT INTERVAL, ELEMENTS
CROSS SECTION PRINT CONTROL
NUMBER OF CROSS SECTIONS
POINTS DEFINING CROSS SECTION GEOMETRY
X-SECTION WIDTH ADJUSTMENT RATIO

30 95 1.00 1.00

#### STREAM REACH DATA

BER		000000000000000000000000000000000000000
and nume		
OCATIONS	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000
TRIB L	410000000000000000000000000000000000000	5500000
	300.0 280.1 273.2 273.2 273.2 273.2 273.2 0.0 0.0 0.0 0.0 75.0 75.0 0.0	29.7 12.3 0.0 0.0 0.0
ELT LENGTH MILE	33338888888888888888888888888888888888	2.41 4.37 2.53 2.53 2.67 2.67
STREAM LOC.	300.0 275.9 275.9 2275.9 262.0 262.0 263.3 1140.8 1140.8 711.5 71.8 71.8 71.8 71.8 71.8 71.8 71.8	26.3 8.8 0.0 59.6 20.9 38.3 38.3
DOWN CP.	৸৵৸৵৸৵৹ঢ়ঢ়ঢ়৾ঢ়৾ঢ়৾৾ঢ়	3222234
STREAM LOC.	303.8 294.6 275.9 277.3 262.0 262.0 263.3 196.7 196.7 71.8 71.8 71.8 71.8 71.8 73.8 73.8	45.6 26.3 80.2 20.9 20.9 59.6
₽ ⁶ .	- M 4 M 9 L 0 8 0 0 C 0 10 2 10	222329384
REACH	៹៰៷៹៷៷៸∞៰៰ <u>៰</u> ៹៰៷	21 2 3 3 4 7 5 2 2 3 3 4 7 5 2 2 4 7 5 2

### METEOROLOGICAL AND REAERATION CONTROLS

POINT K2

K2(IF SET)	
K2 METHOD (OCCONNER AND DOBBINS) (OCCONNER AND DOBBINS)	(UCUNNEK AND DUBBINS)
MET.ZONE	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-
L0CAT IC 302.95 302.95 300.95 300.95 297.59 282.95 274.77 272.44 272.44 272.44 272.44 272.44 259.63 254.29 254.97 256.31	co.c+2
EL Me Me FL-0240000000555555 FL-02400000555555	Ŧ

CONTRACT	(SNIGBOUS)	(SNI8800	(SN18800	(SNI8800	(SNI8800)	DOBBINS)	DOBBINS)	DOBBINS)	DOBBINS)	(SNI8900	DORRINS	DOBBINS)	DOBBINS	DOBBINS)	(SN I BOOB	(SNI8800	(SNI890	(SNI880)	(SNI880)	DOBBINS)	(SNI8800	(SNI8800)	(SNI8800	(SNI8800)	<b>DOBBINS</b>	(SNI8800)	(SNI8800	(SNI8800)	CSN I SOURCE	(SNI8800)	(SNI8900	DOBBINS)	DUBBINS)		DORRINS	DOBBINS)	C SN I BOOD	(SN I BOOD	CSN18800	(SN18800	CSN18800	(SN18800	(SNI8800	(SNI8800	DOBBINS)	(SNI8800	CSN18800	(SNI8800	(SNI8800	DOBBINS)	(SNI8800	DOBBINS)
AND	a de la de l	AND	AND	AND	AND	AN SEC						AND	AND	AND	AND	AND	A B	AND	AND	AND R	AND	AND	AND	AND	AND	AND	AND	AND	AND	AND		AND				AND	AND	AND	AND	AND	AND	AND	AND	AND	AND	AND	AND	AND	AND	AND		AND
CONNED	COCONNER	(OCONNER	(OCONNER	COCONNER	COCONNER	COCONNER	COCONNER	COCONNEK	COCONNER	COCONNED	COCONNER	COCONNER	COCONNER	(OCONNER	COCONNER	COCONNER	COCONNER	COCONNER	COCONNER	COCONNER	COCONNER	(OCONNER	(OCONNER	(OCONNER	(OCONNER	(OCONNER	COCONNER	(OCONNER	(OCONNER	COCONNER	COCONNER	COCONNER		COCONNER	COCONNER	COCONNER	COCONNER	(OCONNER	(OCONNER	(OCONNER	(OCONNER	(OCONNER	(OCONNER	(OCONNER	(OCONNER	COCONNER	(OCONNER	COCONNER	COCONNER	COCONNER	COCONNER	(OCONNER
		-	-	-	-	-	_	-					-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-				-																
-		<b>~</b>	<b>~</b>	<b>~</b>	-	- •	- •	- •				- <del>-</del>	· -	-	•	وسع		(		- ,	- •	-	<b>-</b> '	<b>-</b> ·	<del>-</del> -	<del>,</del> - ·	<del>,</del> - ·	<del>,</del> -	<del></del> ,	<b></b> ,		- •					<b></b>	<b>~</b>	<b>~</b>	-	-	-	-	-	•	<b>~</b>	<b>~</b>	-	~ '			
~	-					¢	00	οo	> 0	~				9	2					=:	Ξ			1	2	5						ç	2 5	2 2	1 1			5	35			16	16						ļ	2	17	
00 U72	236.33	231.67	227.01	222.35	217.69	215.03	10.002			180 7	185.07	180.41	175.75	171.09	166.43	161.77	157.11	C4-2CI	67.74	145.15	158.47	133.81	129.15	124.49	119.83	115.17	110.51	105.85	101.19	96.53	91.87	17.18	07.70	7	70.20	66.95	63.71	60.46	57.18	53.86	50.54	47.22	44.35	41.94	39.53	37.11	34.70	32.28	29.87	27.46	24.06	14.69
15	22	17	<u>8</u>	6	ខ្ល	578	36	5 D	4 r	3 %	22	i 83	2	20	3	2	ŝ	\$	ዓ ;	8:	5	8	6	<b>ç</b> :	59	41	£1	4:	÷.	ð í	4	şç	) 4 4 4	2 F	5 62	ß	54	ŝ	20	57	28	50	3	61	62	<u>ي</u>	\$	\$ <u></u>	<u>8</u> !	67	8 8 9	69

		23 K
		51 AND 49 AND
1 (OCONNER AND DOBBINS)   1 (OCONNER AND DOBBINS)	COCONNER AND COBBINS     COCONNER AND DOBBINS     COCONNER AND DOBBINS	1 (OCONNER AND DOBBINS) 1 (OCONNER AND DOBBINS) SLOPE BETWEEN CROSS-SECTIONS ********** SLOPE BETWEEN CROSS-SECTIONS *********
70 15.32 71 10.95 18 72 6.57 18 73 2.19 19 75 73.16 19 76 89.93 65.81	73 73 74 75 75 75 75 75 75 75 75 75 75	93 42.29 94 39.62 23 *** WARNING *** ZERO HYDRAULIC ************************************

	FACTORS	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570	4.570
REACHES	CONVERSION	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463	1.463
FOR STREAM	CONS 6	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
AY RATES	CONS 5	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
DEC	CONS 4	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
	REACH NO	•	2	ы	4	ŝ	6	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21

CONTROL POINT 1

FOR FLOW AUGMENTATION CONTROL 0 0 0 0 0 0							FOR FLOW AUGMENTATION CONTROL 0 0 0 0 0 0		
SPECIFIED 0 0							SPECIFIED 0 0		
RESERVOIRS 0 0							RESERVOIRS 0 0		
GHTING 0.00 0.00	GHTING 0.00 0.00	GHTING 0.00 0.00	GHTING 0.00 0.00	GHTING 0.00 0.00	GHTING 1.00 1.00		GHTING 0.00 0.00	GHTING 0.00 0.00	GHTING 0.00 0.00
1.00	WE1 1.00 1.00	1.00 1.00	4EI 1.00 1.00	1.00 1.00	0.00 0.00		, wEI 1.00	1.00 1.00	1.00 1.00
COBJECTIVES, C TARGET 12.00 12.00	CONDUCTANCE TARGET 130.00 130.00	ALINITY TARGET 60.00 60.00	COUS BOD TARGET 5.00 5.00	IS N TARGET 0.10 0.10	) OXYGEN TARGET 5.00 5.00	5	: OBJECTIVES, C TARGET 12.00 12.00	CONDUCTANCE TARGET 130.00 130.00	CALINITY TARGET 60.00 60.00
TEMPERATURE DATE 790401 - 791031	SPECIFIC DATE 790401 - 791031	TOTAL ALK DATE 790401 - 791031	CARBONACE DATE 790401 - 791031	AMMONIA A DATE 790401 - 791031	DISSOLVED DATE 790401 - 791031	CONTROL POINT	TEMPERATURE DATE 790401 - 791031	SPECIFIC DATE 790401 - 791031	TOTAL ALK DATE 790401 - 791031

# Most of the Control Point Target records (CT) have been deleted from this listing.

#### CONTROL POINT 23

₩.		
11NG 0.00 0.00 0.00 0.00 0.00 0.00	11 NG 0.00 0.00 0.00 0.00 0.00 0.00	TING 0.00 0.00 0.00 0.00 0.00 0.00 0.00
		L 100 L 10
0BJECTIVES, C 14.00 19.00 21.50 21.50 21.50 21.00 21.00 19.00	ONDUCTANCE 150.00 150.00 148.00 148.00 157.00 157.00 190.00	LINITY 7ARGET 64.00 43.00 51.00 48.00 69.00 72.00
TEMPERATURE DATE 790401 790516 790614 790614 790823 790913 790913	SPECIFIC C DATE DATE 790401 790515 790612 790612 790823 790823 790813	T0TAL ALKA DATE DATE 790401 790515 790612 790823 790823 790913

CONTROL																																											
TATION	0	0																																									
AUGMEN	0	0																																									
OR FLOW	0	0																																									
SPECIFIED F	0	0																																									
RESERVOIRS	0	0																																									
		( RT0 = 1.00				( RTO = 1.00														(RT0 = 1.00)				( RTO = 1.00		( RTO = 1.00				( RT0 = 1.00		( RTO = 1.00				( RTO = 1.00		( RT0 = 1.00 )				00 F - 010 V	
-----------------------------------	---------------------------	-----------------------------------	--------------------------	-------------------	-------------------	-----------------------------------------------	-----------------	--------------------	----------------------------	---------------------	-------------------------	----------------------------------------------------------------	---------	------------------	--------------------------	-------------------	-----------------------	------------------	---------------------------	-------------------	---------------------------------------	----------------	----------------	---------------	---------------------------	----------------	------------	--------------------	-------------	--------------	---------------------------	-----------------------	-------------------	---------------------------	---------	-------------------	---------------------------	-------------------	---------------	-----------------------	----------------	--------------------------------	---------------
.0RD 790401 RD 791031 214	INFLOW = TOTAL LOCAL FLOW	SHASIA INFLOW SHASTA INFION FC	SHASTA INFLOW ALKALINITY	SHASTA INFLOW BOD	SHASTA INFLOW NH3	SHASIA INFLOW DO INFIDU = TOTAL INCAL FIOU	OROVILLE INFLOM	OROVILLE INFLOW EC	OROVILLE INFLOW ALKALINITY	OROVILLE INFLOW BOD	OROVILLE INFLOW AMMONIA	UNCUTLLE INFLOW UISULVEU UXTGEN INFIDUE = TOTAL POCAL FICKU		FOLSOM INFLOW EC	FOLSOM INFLOW ALKALINITY	FOLSOM INFLOW BOD	FOLSOM INFLOW AMMONIA	FOLSOM INFLOW DO	INFLOW = TOTAL LOCAL FLOW	SPRING CK. INFLOW	SPKING CK. EU SDPING CD AIVAITNITV	SPRING CR. ROD	SPRING CR. NH3	SPRING CR. DO	INFLOW = TOTAL LOCAL FLOW	COW CR. INFLOW	CON CR. EC	COW CR. ALKALINITY	COM CK. BOU	COM CR. DO	INFLOW = TOTAL LOCAL FLOW	COTTONWOOD CR. INFLOW	COLTONWOOD CR. EC	CUTIONWOOD CK. ALKALINITY		COTTONWOOD CR. DO	INFLOW = TOTAL LOCAL FLOW	BATTLE CR. INFLOW	BATTLE CR. EC	BATTLE CR. ALKALINITY	BATTLE CR. BOD	BAITLE UK. NHJ RATTIF CP DO	DAIILE UK. NU
RECO	ЯĞ З	žë	Ŗ	õ	ខ្លី ខ្ល	ž ĉ	ĔĔ	ß	ñ	ų Š	ě č	Ĕ	P. S.	FQR	FOR	ų Š	Ř	R R	Ĕ č	ž	2 6	č	i č	ę	FQR	ñ	۲ ۲	Ě	žë	i č	Ŗ	R R	Ě	žå	i č	ĕ	R	ñ	FQ	ñ	ě	58	5
ALITY LITY	READ	READ	READ	READ	READ		READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ					READ	READ	READ	READ	READ	READ			READ	READ	READ			EAD 2	READ	READ	READ	READ	READ	READ	READ READ	22
INFLOW QU NFLOW QUA OF DAYS	1 CARDS	2 CARDS	2 CARDS	1 CARDS	Z CARDS	1 CARDS	2 CARDS	1 CARDS	1 CARDS	1 CARDS	1 CARDS	1 CARDS	2 CARDS	2 CARDS	2 CARDS	1 CARDS	Z CARDS	3 CARDS	1 CARDS			1 CARDS	1 CARDS	1 CARDS	1 CARDS	1 CARDS	1 CARDS		1 CARDS	1 CARDS	1 CARDS	1 CARDS	I CAKDS		1 CARDS	1 CARDS	1 CARDS	1 CARDS	1 CARDS	1 CARDS	1 CARDS	1 CARDS	22222
DAY OF AY OF I NUMBER	:	::	:	;	:		5	2	5	:	:	м г	 M	3	:	:	:	:	:	:		4	4	4	:	:	:	:	::	::	6	:	:	:		· · · · •	7	7					:
IRST AST D OTAL		SIB RIB	R		818		218	ZIB	RIB	81		SIB	RIB	RIB	RIB	218 218			9 I 8			E BIS	SIB	SIB	ZIB	218 218	818	0 0		SIB	21B	812	2 2			SIB SIB	۲B	۲B	<b>ZIB</b>	81	218 218		2

	( RTO = 1.00 )	•				(  RTO = 1.00 )							-															
INFLOW = TOTAL LOCAL FLOW	THOMES CR. INFLOW	THOMES CR. EC	THOMES CR. ALKALINITY	THOMES CR. BOD	THOMES CR. NH3	THOMES CR. DO	INFLOW = TOTAL LOCAL FLOW	BYPASSED FEATHER RIVER	BYPASSED FEATHER RIVER EC	BYPASSED FEATHER RIVER ALKALINITY	BYPASSED FEATHER RIVER BOD	BYPASSED FEATHER RIVER AMMONIA	BYPASSED FEATHER RIVER DISSOLVED OXYGEN	INFLOW = TOTAL LOCAL FLOW	YUBA RIVER	YUBA RIVER EC	YUBA RIVER ALKALINITY	YUBA RIVER BOD	YUBA RIVER AMMONIA	YUBA RIVER DO	INFLOW = TOTAL LOCAL FLOW	BEAR RIVER	BEAR RIVER EC	BEAR RIVER ALKALINITY	BEAR RIVER BOD	BEAR RIVER AMMONIA	BEAR RIVER DO	S. INFLOW QUALITY AT CONTROL POINTS
БŖ	ñ	FOR	FOR	FOR	õ	FOR	Ş	õ	R	FOR	ñ	ñ	FOR	For	FOR	ñ	ñ	FOR	ñ	Ŗ	For	For	ñ	<u>S</u>	ñ	FOR	ñ	s (
READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	HOUR
CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	CARDS	H/DAY,
-	-	-	-	~	-	-	-	~	5	-	-	~	~	-	m	m	m	-	m	m	-	M	m	m	-	-	~	MONTH
:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	EAR/I
∞	ω	ø	ω	∞	ω	œ	0	0	0	0	0	0	0	9	9	10	9	9	10	9	=	5	1	1	1	7	7	Š
TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TR18	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TRIB	TIME

TRIB 79/4	1 TIME / 2/ 0	INFLOW = VALUE -1.00	101 107	AL LOCAL FL TIME /11/1/0	OW VALUE -1.00	F	INFLOW I IME	RATE AS VALUE	FRACTIO TII	N OF LO Me	cal flog Value	/ TIME	VALUE	TIME	VALUE
TRIB 79/4	1 TIME 1/ 2/ 0	SHASTA I) VALUE -15.00	NFLOI	J TIME 778/0	VALUE -12.00	T 79/11/	TEMPERA IME 1/ 0	TURE (C) VALUE -5.00	) as dep T11	ARTURE ME	FROM EQU VALUE	JILIBRIUM TEI TIME	MPERATURE VALUE	TIME	VALUE
TRIB 79/4	1 TIME 1/ 2/ 0	SHASTA I) VALUE 120.00	NFLOI	J EC TIME 5/30/ 0	VALUE 120.00	12 /62 1	SPECI IME 17/ 0	FIC CONF VALUE 140.00	DUCTANCE T1 79/10/1:	ME 2/ 0	VALUE 120.00	TIME 79/11/ 1/ 0	VALUE 120.00	TIME	VALUE
TRIB 79/4	1 TIME 1/2/0	SHASTA I) VALUE 55.00	NFLOU	ALKALINIT TIME 5/3/0	Y VALUE 55.00	1 1 1 1 1 1 1	TOTAL IME 30/ 0	ALKAL I) VALUE 45.00	итү тт 79/ 7/1	ME 77 0	VALUE 50.00	TIME 79/ 9/12/ 0	VALUE 64.00	TIME 79/11/ 1/ 0	VALUE 64.00
TRIB 79/4	1 TIME 1/ 2/ 0	SHASTA I) VALUE 1.50	NFLO	J BOD TIME /11/ 1/ 0	VALUE 0.80	F	CARBOI TME	NACEOUS VALUE	BOD	Æ	VALUE	TIME	VALUE	TIME	VALUE
TRIB 79/4	1 TIME 7 2/ 0	SHASTA II VALUE 0.00	NFLO	4 NH3 TIME / 7/17/ 0	VALUE 0.02	16 /62 1	AMMON TME 20/0	IA AS N VALUE 0.03	IIT /11/67	1 1 0	VALUE 0.00	ŢIME	VALUE	TIME	VALUE

VALUE	VALUE	VALUE 7.22	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE 62.00	VALUE	VALUE
TIME	TIME	TIME 79/10/2/0	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME 79/ 9/12/ 0	TIME	TIME
VALUE	VALUE	VALUE 10.00	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE 67.00	VALUE	VALUE
TIME	TIME	TIME 9/ 9/ 2/ 0	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME 9/8/8/0	TIME	TIME
SATURATION VALUE	OCAL FLOW VALUE	VALUE 12.00 7	VALUE	VALUE	VALUE	VALUE	VALUE	.OCAL FLOW VALUE	VALUE 15.00	VALUE 74.00 7	VALUE 19.00	VALUE
en as percent Time	FRACTION OF L TIME	ERATURE, C TIME 79/ 8/ 2/ 0	DUCTANCE T IME	NITY TIME	BOD TIME	TIME	EN, MG/L TIME	FRACTION OF L TIME	ERATURE, C TIME 79/10/23/0	DUCTANCE TIME 79/7/19/0	NITY TIME 79/11/ 1/ 0	: BOD TIME
VED OXYG VALUE	rate as Value	TEMP VALUE 18.30	IFIC CON VALUE 60.00	l alkalı Value	ONACEOUS	NIA AS N VALUE 0.00	VED OXYG VALUE 8.50	rate as Value	TEMP VALUE 14.00	IFIC CON VALUE 76.00	L ALKALI VALUE 19.00	ONACEOUS
DISSOL	INFLOW TIME	TIME 79/7/19/0	SPEC TIME 79/11/ 1/ 0	TOTA TIME	CARBI TIME	AMMOI TIME 79/11/1/0	DISSOL TIME 79/11/ 1/ 0	INFLOW TIME	TIME 79/7/28/0	SPEC TIME 79/ 6/15/ 0	TOTA TIME 79/7/28/0	CARB TIME
VALUE 100.00	VALUE - 1.00	VALUE 14.00	VALUE 60.00	ITY VALUE 150.00	VALUE 5.00	VALUE 0.00	) OXYGEN VALUE 8.50	NALUE -1.00	VALUE 14.00	VALUE 71.00	rY VALUE 13.00	VALUE 5.00
FLOW DO TIME 79/11/1/0	TOTAL LOCAL FL( TIME 79/11/ 1/ 0	INFLOW TIME 79/7/2/0	INFLOW EC TIME 79/7/19/0	INFLOW ALKALIN TIME 79/11/ 1/ 0	INFLOW BOD TIME 79/11/ 1/ 0	INFLOW AMMONIA TIME 79/7/19/0	INFLOW DISOLVE TIME 79/7/19/0	Total Local Fl( Time 79/11/ 1/ 0	FLOW TIME 79/ 5/31/ 0	NFLOW EC TIME 79/5/17/0	NFLOW ALKALINI' TIME 79/5/31/0	NFLOW BOD TIME 79/11/1/0
SHASTA IN VALUE 100.00	INFLOW = VALUE	OROVILLE VALUE 12.80 4.44	OROVILLE VALUE 62.00	OROVILLE VALUE 150.00	OROVILLE VALUE 5.00	OROVILLE VALUE 0.01	OROVILLE VALUE 10.40	INFLOW = VALUE -1.00	FOLSOM IN VALUE 8.00	FOLSOM I VALUE 74.00 61.00	FOLSOM I VALUE 20.00	FOLSOM I VALUE 5.00
1 TIME 4/ 2/ 0	2 TIME 4/ 2/ 0	2 TIME 4/ 2/ 0 11/ 1/ 0	2 TIME 4/ 2/ 0	2 TIME 4/ 2/ 0	2 TIME 4/ 2/ 0	2 TIME 4/ 2/ 0	2 TIME 4/ 2/ 0	3 TIME 4/ 2/ 0	3 TIME 4/ 2/ 0	3 TIME 4/ 2/ 0 11/ 1/ 0	3 TIME 4/ 2/ 0	3 TIME 4/ 2/ 0
TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/ 79/	TRIB 79/	TRIB 79/

VALUE 0.01	VALUE 10.00	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE
TIME 79/11/ 1/ 0	TIME 79/7/28/0	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME
VALUE 0.01	VALUE 9.50	VALUE	PERATURE VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	PERATURE VALUE	VALUE	VALUE
TIME / 8/ 8/ 0	TIME / 7/19/ 0	TIME	IBRIUM TEM TIME	TIME	TIME	TIME	TIME	TIME	T IME	.IBRIUM TEM TIME	TIME	TIME
VALUE 0.00 79	VALUE 9.10 79	ocal flow Value	From Equil Value	VALUE	VALUE	VALUE	VALUE	SATURAT ION VALUE	ocal flow Value	rrom Equil Value	VALUE	VALUE
TIME 79/7/28/0	N, MG/L TIME 79/ 6/15/ 0	FRACTION OF L TIME	AS DEPARTURE TIME	UCTANCE T IME	ITY TIME	BOD TIME	TIME	N AS PERCENT TIME	FRACTION OF L TIME	AS DEPARTURE TIME	UCTANCE TIME	IITY TIME
IONIA AS N VALUE 0.02	DLVED OXYGEN VALUE 10.60 10.60	Nu rate as i Value	ERATURE (C) VALUE -7.00	ECIFIC CONDI VALUE	FAL ALKALIN VALUE	RBONACEOUS I VALUE	MONIA AS N VALUE	olved oxygei Value	ow rate as Value	ERATURE (C) VALUE -7.00	ECIFIC COND VALUE	TAL ALKALIN VALUE
AM ^A TIME 79/7/19/0	DISSC TIME 79/ 5/31/ 0 79/11/ 1/ 0	INFLC TIME	TEMPI TIME 79/11/ 1/ 0	SPI TIME	TIME	CAI	AM TIME	DISSI	INFL TIME	TEMP TIME 79/11/1/0	SP TIME	TO TIME
VALUE 0.09	VALUE 9.40 8.60	OW VALUE -1.00	VALUE -2.00	VALUE 200.00	VALUE 55.00	VALUE 0.00	VALUE 0.00	VALUE 125.00	.ow VALUE -1.00	VALUE -2.00	VALUE 200.00	VALUE 100.00
4FLOW AMMONIA TIME 79/5/31/0	VFLOW DO TIME 79/ 5/17/ 0 79/ 9/12/ 0	rotal local FL Time 79/11/1/0	. INFLOW TIME 79/7/8/0	- EC TIME 79/11/ 1/ 0	. ALKALINITY TIME 79/11/ 1/ 0	- BOD TIME 79/11/ 1/ 0	. NH3 TIME 79/11/ 1/ 0	. DO TIME 79/11/ 1/ 0	TOTAL LOCAL FI TIME 79/11/1/0	NFLCW TIME 79/7/8/0	C TIME 79/11/ 1/ 0	LKALINITY TIME 79/11/1/0
FOLSOM IA VALUE 0.01	FOLSOM IN VALUE 10.70 7.90	INFLOW = 1 VALUE -1.00	SPRING CR. VALUE -5.00	SPRING CR. VALUE 200.00	SPRING CR. VALUE 55.00	SPRING CR. VALUE 0.00	SPRING CR VALUE 0.00	SPRING CR VALUE 125.00	INFLOW = . VALUE -1.00	COW CR. 1 VALUE 0.00	COW CR. E VALUE 200.00	COW CR. A VALUE 100.00
3 TIME 4/ 2/ 0	3 TIME 4/ 2/ 0 8/ 8/ 0	4 TIME 4/ 2/ 0	4 TIME 4/ 2/ 0	4 TIME 4/ 2/ 0	4 TIME 4/ 2/ 0	4 TIME 4/ 2/ 0	4 TIME 4/ 2/ 0	4 TIME 4/ 2/ 0	5 TIME 4/ 2/ 0	5 TIME 4/ 2/ 0	5 TIME 4/ 2/ 0	5 TIME
TRIB 79/	TRIB 79/ 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/

VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE
TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME
VALUE	VALUE	VALUE	VALUE	ERATURE VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	ERATURE VALUE	VALUE	VALUE
TIME	TIME	TIME	TIME	(BRIUM TEMP TIME	TIME	TIME	TIME	TIME	TIME	TIME	IBRIUM TEMP TIME	TIME	TIME
VALUE	VALUE	ATURAT ION VALUE	ICAL FLOW VALUE	From Equili Value	VALUE	VALUE	VALUE	VALUE	SATURAT ION VALUE	ocal flow Value	FROM EQUIL) VALUE	VALUE	VALUE
TIME	TIME	S PERCENT S TIME	CTION OF LC TIME	DEPARTURE T IME	ANCE T I ME	TIME	TIME	TIME	S PERCENT S TIME	CTION OF LC TIME	DEPARTURE TIME	ANCE TIME	TIME
ARBONACEOUS BOD VALUE	MMONIA AS N VALUE	solved oxygen as value	Low rate as frag Value	IPERATURE (C) AS VALUE 0 - 7.00	PECIFIC CONDUCT/ VALUE	OTAL ALKALINITY VALUE	ARBONACEOUS BOD VALUE	MMONIA AS N VALUE	solved oxygen a value	LOW RATE AS FRAN Value	IPERATURE (C) AS VALUE 0 -7.00	PECIFIC CONDUCT	OTAL ALKALINITY VALUE
TIME	TIME	DIS TIME	INF	TEM TIME 79/11/1/	S TIME	TIME	TIME	TIME	DIS TIME	INF TIME	TEV TIME 79/11/ 1/	TIME	TIME
VALUE 0.00	VALUE 0.00	VALUE 135.00	.ow VALUE -1.00	VALUE - 2.00	VALUE 200.00	TY VALUE 100.00	VALUE 0.00	VALUE 0.00	VALUE 135.00	-OW VALUE -1.00	VALUE - 2.00	VALUE 200.00	VALUE 100.00
R. BOD LUE TIME .00 79/11/ 1/ 0	R. NH3 -UE TIME .00 79/11/ 1/ 0	8. DO .UE TIME .00 79/11/ 1/ 0	4 = TOTAL LOCAL FL -UE TIME .00 79/11/ 1/ 0	WWOOD CR. INFLOW LUE TIME .00 79/7/8/0	WWOOD CR. EC .UE TIME .00 79/11/ 1/ 0	WOOD CR. ALKALINI LUE TIME .00 79/11/ 1/ 0	WWOOD CR. BOD LUE TIME .00 79/11/ 1/ 0	WWOOD CR. NH3 LUE TIME .00 79/11/ 1/ 0	WWOOD CR. DO LUE TIME .00 79/11/ 1/ 0	# = TOTAL LOCAL FI LUE TIME .00 79/11/ 1/ 0	E CR. INFLOW LUE TIME .00 79/7/8/0	E CR. EC LUE TIME .00 79/11/ 1/ 0	E CR. ALKALINITY LUE TIME .00 79/11/ 1/ 0
ME COW CF	Cou cr tme val 2/ 0 0.	COW CF TME VAL 2/ 0 135.	INFLOV IME VAL 2/ 0 -1.	TME COTTON TME VAL 2/ 0 0.	COTTO IME VAL 2/ 0 200.	COTTOR TME VAL 2/ 0 100.	TME COTTOR TME VAL 2/ 0 0.	THE COTTOR	COTTO IME VAL 2/ 0 135.	TINFLOI	BATTLI IME VAI 2/ 0 0.	THE BATTLI TME VAL 2/ 0 200.	BATTLI IME VAI 2/ 0 100.
TRIB 5 TI 79/4/	TRIB 5 TI 79/4/	TRIB 5 TI 79/4/	TRIB 6 TI 79/4/	TRIB 6 TI 79/4/	TRIB 6 TI 79/4/	TRIB 6 TI 79/4/	TRIB 6 TI 79/4/	TRIB 6 TI 79/4/	TRIB 6 TI 79/4/	TRIB 7 11 79/4/	TRIB 7 11 79/4/	TRIB 7 11 79/4/	TRIB 7 11 79/4/

VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE 12.20	VALUE 51.00
TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME 79/ 9/20/ 0	TIME 79/11/ 1/ 0
VALUE	VALUE	VALUE	VALUE	PERATURE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE 15.60	VALUE 65.00
TIME	TIME	TIME	TIME	.IBRIUM TEMI TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME 2/ 8/16/ 0	TIME 9/8/16/0
VALUE	VALUE	SATURAT ION VALUE	OCAL FLOW VALUE	FROM EQUII	VALUE	VALUE	VALUE 10.00	VALUE	SATURAT ION VALUE	.OCAL FLOW VALUE	VALUE 15.60 7	VALUE 65.00 7
D TIME	TIME	AS PERCENT TIME	laction of L Time	IS DEPARTURE TIME	CTANCE TIME	Υ TIME	00 TIME 2/11/ 1/ 0	TIME	AS PERCENT TIME	ACTION OF L TIME	ATURE, C TIME 2/7/19/0	CTANCE TIME 2/7/19/0
onaceous BC Value	NIA AS N VALUE	ved oxygen Value	RATE AS FR VALUE	ATURE (C) / VALUE 5.00	IFIC CONDUC VALUE	L ALKALINI VALUE	ONACEOUS BC VALUE 20.00 75	NIA AS N VALUE	ved oxygen Value	rate as Fr Value	TEMPER/ VALUE 17.80 73	IFIC CONDUC VALUE 64.00 75
CARB T IME	AMMO T I ME	DISSOL	INFLOW TIME	TEMPER TIME 79/11/ 1/ 0	SPEC TIME	TOTA TIME	CARB TIME 79/10/2/0	AMMC TIME	DISSOL	INFLON TIME	TIME 79/ 5/17/ 0	SPEC TIME 79/5/17/0
VALUE 0.00	VALUE 0.00	VALUE 135.00	ow VALUE -1.00	VALUE 9.00	VALUE 350.00	VALUE 350.00	VALUE 20.00	VALUE 0.05	VALUE 135.00	ow VALUE -1.00	VALUE 14.40	EC VALUE 68.00
. BOD TIME 79/11/ 1/ 0	. NH3 TIME 79/11/ 1/ 0	. DO TIME 79/11/ 1/ 0	FOTAL LOCAL FL TIME 79/11/ 1/ 0	. INFLOW TIME 79/ 6/26/ 0	. EC TIME 79/11/ 1/ 0	. ALKALINITY TIME 79/11/ 1/ 0	. BOD TIME 79/ 6/ 2/ 0	. NH3 TIME 79/11/ 1/ 0	. DO TIME 79/11/ 1/ 0	TOTAL LOCAL FL TIME 79/11/ 1/ 0	FEATHER RIVER TIME 79/4/19/0	FEATHER RIVER TIME 79/4/19/0
BATTLE CR. VALUE 0.00	BATTLE CR. VALUE 0.00	BATTLE CR. VALUE 135.00	INFLOW = 1 VALUE -1.00	THOMES CR. VALUE 5.00	THOMES CR. VALUE 350.00	THOMES CR. VALUE 350.00	THOMES CR. VALUE 10.00	THOMES CR. VALUE 0.05	THOMES CR. VALUE 135.00	INFLOW = VALUE -1.00	BYPASSED 1 VALUE 13.90 12.20	BYPASSED   VALUE 68.00
3 7 TIME / 4/ 2/ 0	3 7 TIME / 4/ 2/ 0	3 7 TIME / 4/ 2/ 0	3 8 TIME / 4/ 2/ 0	8 8 TIME / 4/ 2/ 0	8 8 TIME / 4/ 2/ 0	8 8 TIME / 4/ 2/ 0	8 8 TIME / 4/ 2/ 0	8 8 TIME / 4/ 2/ 0	8 8 TIME / 4/ 2/ 0	B 9 TIME / 4/ 2/ 0	B 9 TIME / 4/ 2/ 0 /11/ 1/ 0	B 9 TIME / 4/ 2/ 0
TRIE 79/	TR I 6	TRIE 79,	TR11 79,	TRII 79,	TRII 79,	TR11 79,	TRII 79,	TRII 79,	TR11 79,	78.I	TR11 29, 79	TRI  79,

VALUE	VALUE	VALUE	VALUE 6.20	VALUE	VALUE 11.50	VALUE 76.00	VALUE 31.00	VALUE	VALUE 0.02	VALUE 9.90	VALUE
TIME	TIME	TIME	TIME 9/20/ 0	TIME	TIME 8/24/0	TIME 8/24/0	TIME 8/24/ 0	TIME	T I ME 8/24/0	TIME 8/24/0	TIME
			161		162	162	162		162	162	
VALUE	VALUE	VALUE	VALUE 7.60	VALUE	VALUE 16.50	VALUE 74.00	VALUE 31.00	VALUE	VALUE 0.00	VALUE 9.90	VALUE
TIME	TIME	TIME	TIME 8/16/ 0	TIME	TIME 7/27/ 0	TIME 7/27/ 0	T IME 7/27/0	T IME	TIME 7/27/ 0	TIME 7/27/ 0	TIME
			162	3	162	162	162		/62	/62	3
VALUE	VALUE	VALUE 0.00	VALUE 8.60	LOCAL FLO VALUE	VALUE 18.00	VALUE 78.00	VALUE 31.00	VALUE	VALUE 0.00	VALUE 9.50	LOCAL FLO VALUE
r Time	) TIME	TIME /11/ 1/ 0	MG/L TIME / 7/19/ 0	ACTION OF TIME	URE, C TIME ' 6/22/ 0	ANCE TIME 6/22/0	TIME 6/22/ 0	TIME	TIME 6/22/0	MG/L TIME 6/22/0	CTION OF TIME
TINI	S B01	R [°]	GEN,	s FR/	PERA1 79,	162	(TINI) 197	S BOD	lê.	зеN, 79/	s FRA
ALKAL VALUE	VALUE	IA AS VALUE 0.00	ED OXY VALUE 9.20	VALUE	TEM VALUE 15.50	T2.00	ALKAL VALUE 29.00	ACEOU: VALUE	A AS P VALUE 0.02	10.00	ATE AS VALUE
TOTAL TIME	CARBO TIME	AMMON TIME 7/19/ 0	rgendissolvi Time 5/17/0	INFLOW I TIME	TIME 5/25/ 0	SPECII TIME 5/24/0	TOTAL TIME 5/24/0	CARBON TIME	AMMONI TIME 5/24/0	DISSOLVE TIME 5/24/0	INFLOW R TIME
Ł		Ŕ	/62 X0 0		162	62	162		162	/62	
ALKAL INI VALUE 50.00	BOD VALUE 0.50	AMMONIA VALUE 0.01	DISSOLVE VALUE 10.00	.OW VALUE -1.00	VALUE 13.50 15.50	VALUE 92.00 76.00	VALUE 36.00 32.00	VALUE 10.00	VALUE 0.00 0.00	VALUE 10.80 10.30	OW VALUE -1.00
FEATHER RIVER TIME 79/11/ 1/ 0	FEATHER RIVER TIME 79/11/1/0	FEATHER RIVER TIME 79/5/17/0	FEATHER RIVER TIME 79/4/19/0	TOTAL LOCAL FL TIME 79/11/1/0	R TIME 79/ 4/25/ 0 79/11/ 1/ 0	R EC TIME 79/ 4/25/ 0 79/11/ 1/ 0	R ALKALINITY TIME 79/ 4/25/ 0 79/11/ 1/ 0	R BOD TIME 79/11/1/0	R AMMONIA TIME 79/ 4/25/ 0 79/11/ 1/ 0	R DO TIME 79/ 4/25/ 0 79/11/ 1/ 0	Total Local FL Time 79/11/1/0
BYPASSED Value 40.00	BYPASSED VALUE 0.50	BYPASSED Value 0.03	BYPASSED VALUE 10.00 6.20	INFLOW = VALUE -1.00	YUBA RIVE VALUE 11.00 15.50	YUBA RIVE VALUE 87.00 76.00	YUBA RIVEI VALUE 34.00 32.00	YUBA RIVE VALUE 10.00	YUBA RIVER VALUE 0.01 0.00	YUBA RIVEF VALUE 11.00 10.30	INFLOW = 1 VALUE -1.00
9 TIME 4/2/0	9 TIME 4/ 2/ 0	9 TIME 4/ 2/ 0	9 TIME 4/ 2/ 0 11/ 1/ 0	10 TIME 4/ 2/ 0	10 TIME 4/ 2/ 0 9/21/ 0	10 TIME 4/ 2/ 0 9/21/ 0	10 TIME 4/ 2/ 0 9/21/ 0	10 TIME 4/ 2/ 0	10 TIME 4/ 2/ 0 9/22/ 0	10 TIME 4/ 2/ 0 9/21/ 0	11 TIME 4/ 2/ 0
TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/	TRIB 79/ 79/	TRIB 79/ 79/	TRIB 79/ 79/	TRIB 79/	TRIB 79/ 79/	TRIB 79/ 79/	TRIB 79/

TRIB 11 TIME	BEAR RIVE VALUE	ER TIME	VALUE		TIME	TEMPEF VALUE	RATURE, TI	ᇰᄴᆓ	VALUE	TII	Ä	VALUE	TIME	VALUI
79/ 4/ 2/ 0 79/ 9/21/ 0	13.50	79/ 4/25/ 0 79/11/ 1/ 0	14.50 19.00	62	5/24/ 0	21.00	79/ 6/2	2/ 0	24.00	2/1 /61	0 /2	25.50	79/ 8/24/ 0	25.50
TRIB 11 TIME 79/ 4/ 2/ 0 79/ 9/21/ 0	BEAR RIVE VALUE 91.00 190.00	ER EC TIME 79/ 4/25/ 0 79/11/ 1/ 0	VALUE 89.00 190.00	161	SPECII TIME 5/24/0	TC CONDI VALUE 82.00 7	JCTANCE Tin 79/6/22	2 HE	VALUE 210.00	11) 79/ 7/2	7 é 1	VALUE 174.00	T9/ 8/24/ 0	VALUE 199.00
TRIB 11 TIME 79/ 4/ 2/ 0 79/ 9/21/ 0	BEAR RIVE VALUE 30.00 74.00	R ALKALINITY TIME 79/4/25/0 79/11/1/0	VALUE 28.00 74.00	162	TOTAL TIME 5/24/ 0	ALKALINI VALUE 26.00 7	11Y 11N 79/ 6/23	2/ 0	VALUE 67.00	11 79/ 7/2	7. 0	VALUE 63.00	T9/ 8/24/ 0	VALUE 75.00
TRIB 11 TIME 79/ 4/ 2/ 0	BEAR RIVE VALUE 10.00	er Bod Time 79/11/1/0	VALUE 10.00		CARBON TIME	ACEOUS E VALUE		¥	VALUE	11	뿢	VALUE	TIME	VALUE
TRIB 11 TIME 79/ 4/ 2/ 0	BEAR RIVE VALUE 0.35	ER AMMONIA TIME 79/11/1/0	VALUE 0.35		AMMON I T I ME	A AS N VALUE	TIN	ĥ	VALUE	11	Å	VALUE	TIME	VALUE
TRIB 11 TIME 79/ 4/ 2/ 0 79/11/ 1/ 0 INGATE BLANK	BEAR RIVE VALUE 11.00 8.40 COMMON =	ir do Time 79/ 4/25/ 0 41582	VALUE 9.70	162	DISSOLVE TIME 5/24/0	ED OXYGEN VALUE 8.30 7	4, MG/L TIN 79/ 6/22	2 <del>1</del>	VALUE 8.80	TIN 79/ 8/24	代 市 0	VALUE 9.90	TIME 79/ 9/21/ 0	VALUE 8.40

# ***** CALIBRATION MODE ***** GATE SPECIFICATIONS *****

# START TIME (YRMODA) 790401 END TIME (YRMODA) 791031

.L 2 GATE	8 °.	о.	4.		
Wet Wei Flow	CFS 0.00	0.00	1.00	0.00	
LL 1 GATE	N0 		4.	;	
NET NE FLOW	CFS 1.00	1.00	1.00	1.00	
FLOOD CONTROL	CFS 0.00	0.00	0.00	0.00	
SPILLWAY	CFS 0.00	0.00	0.00	0.00	
END TIME	791031	791031	791031	-791031	
START TIME	790401	10401	790401	790401	
RES I.D.	-	m	13	20	

*RTCOF

				.0014	0083		0269		0269		0269		0269		0595		1001		.1345	
				ö	0		o		0		o		o		o		0		0	
				0.0049	0.0212		0.0546		0.0546		0.0546		0.0546		0.1001		0.1408		0.1596	
		0.0020	0020	0.0150	0478		.0988		.0988		0.0988		0.0988		.1479		0.1710		0.1612	
		0.0087 (	0.0087 (	0.0384 (	0.0950 (		0.1557 (		0.1557 (		0.1557 (		0.1557 (		0.1854 (		0.1727 (		0.1341 (	0.0023
	0.0034	0.0262	0.0262	0.0867	0.1640		0.2041		0.2041		0.2041		0.2041		0.1869		0.1386	0.0016	0.0886	0.0052
TO MY	0.0119	0.0705	0.0705	0.1714	0.2302		0.2050		0.2050		0.2050		0.2050		0.1426	0.0010	0.0845	0.0039	0.0447	0.0109
-	0.0416	0.1725	0.1725	0.2705	0.2285		0.1445		0.1445		0.1445		0.1445		0.0773	0.0028	0.0371	0.0088	0.0165	0.0215
M RES	0.1458	0.3436	0.3436	0.2588	0.1411		0.0656	0.0017	0.0656	0.0017	0.0656	0.0017	0.0656	0.0017	0.0277	0.0068	0.0110	0.0185	0.0041	0.0392
INTS FRO	0.5102	0.2915	0.2915	0.1249	0.0476		0.0170	0.0048	0.0170	0.0048	0.0170	0.0048	0.0170	0.0048	0.0058	0.0153	0.0019	0.0358	0.0006	0.0655
EFFICIE 1.0000 1.0000	0.2857	0.0816	0.0816	0.0233	0.0067	0.0029	0.0019	0.0119	0.0019	0.0119	0.0019	0.0119	0.0019	0.0119	0.0005	0.0317	0.0002	0.0630	0.000.0	0.0993
TING CO 2 3	4	'n	9	~	8		\$		9		=		12		19		ដ		ង	
ROU MY= MY=	=λW	=λW	=/M	=YM	=λW		MY=		₩Y≡		MΥ=		=λW		=λW		=γM		MΥ=	

TO MY ų ROUTING COEFFICIENTS FROM RES MY= 14 1.0000 MY= 15 0.2857 0.5102 0.1458 MY= 16 0.2857 0.5102 0.1458 MY= 17 0.0816 0.2915 0.3436 MY= 18 0.0233 0.1249 0.2588

14 1.0000 15 0.2857 0.5102 0.1458 0.0416 0.0119 0.0034 16 0.2857 0.5102 0.1458 0.0416 0.0119 0.0034 17 0.0816 0.2915 0.3436 0.1725 0.0705 0.0262 0.0087 0.0020 18 0.0233 0.1249 0.2588 0.2705 0.1714 0.0867 0.0384 0.0150 0.0049 0.0014

0.0067 0.0476 0.1411 0.2285 0.2302 0.1640 0.0950 0.0478 0.0212 0.0083 0.0029 0.0019 0.0170 0.0656 0.1445 0.2050 0.2041 0.1557 0.0988 0.0546 0.0269 0.0119 0.0048 0.0017 0.0119 0.0058 0.0277 0.0773 0.1426 0.1869 0.1854 0.1479 0.1001 0.0595 0.0317 0.0153 0.0068 0.0028 0.0010 2 19 =λW =γM

ង ≡γm

ROUTING C MY= 21 MY= 22 MY= 23

3 COEFFICIENTS FROM RES 20 TO MY 21 0.2857 0.5102 0.1458 0.0416 0.0119 0.0034 22 0.0816 0.2915 0.3436 0.1725 0.0705 0.0262 0.0087 0.0020 23 0.0233 0.1249 0.2588 0.2705 0.1714 0.0867 0.0384 0.0150 0.0049 0.0014

INTERPOLATION OF RESERVOIR LEVELS (RL CARDS) WAS USED

<del>.</del> 1 .. CONTROL POINT RESERVOIR NO

JULIAN DATE 120 (HOUR 24)

17.3 62.7	512.	6.86
EQUILIBRIUM TEMPERATURE, C HEAT EXCHANGE COEFFICIENT, LANGLAYS/C	SHORT WAVE SOLAR RADIATION, LANGLAYS WIND SPEED, M/S	EVAPORATION RATE, AC.FT./DAY
METEOROLOGICAL DATA		

INFLOW DATA

0101	ב נ				~ 0100				1107010	
IK1D	MOLL		CUNS.		C.0N0.0	NUNCUN -	NUNUN . A	C.NUUNUN	UXIGEN	
9	CFS	ပ	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	
-	8839.8	3.2	120.0	55.00	0.00	00.0	0.96	00-0	13.4	
DUTFLOW	INFORMATION									

OXYGEN MGZI	5.6 5.6	
NONCON .3	0.00	
NONCON.2 MG/I	0.08	
NONCON - 1 MG / I	0.00	
CONS.3	0.00	
CONS.2 MG/I	45.95 45.95	
CONS.1 MG/I	129.0	
TEMP	5.9 5.9	
FLOW	6232.9 6232.9	
OUTLET	Wet Well No 1 Total Outflow	

1048.27	28161.	4270990.
WATER SURFACE ELEVATION, FT	RESERVOIR SURFACE AREA, AC	RESERVOIR STORAGE VOLUME, ACFT
RESERVOIR INFORMATION		

OXYGEN	MG/L	<b>6</b> .4	7.4	5.8	6.1	6.2	6.1	6.0	5.9	5.8	5.8	5.7	5.7	5.7	5.7	5.8
NONCON.3	MG/L	0.00	0.00	0.00	0.00	0.0	00-00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00
NONCON.2	MG/L	0.03	0.03	0.05	0.09	0.09	0.09	0.08	0.07	0.07	0.06	0.06	0.06	0.07	0.07	0.08
NONCON.1	MG/L	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
CONS.3	MG/L	00.0	0.00	0.00	00"0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.00
CONS.2	MG/L	46.14	45.57	45.77	46.45	49.94	46.56	7 <b>6.</b> 44	46.31	46.20	46.11	46.03	45.99	46.00	46.04	46.14
CONS.1	MG/L	131.6	129.8	129.3	128.6	128.4	128.4	128.6	128.7	128.8	128.9	129.0	129.0	129.0	129.0	128.9
TEMP	U	17.1	13.3	9.2	8.0	7.4	7.3	7.2	7.2	7.1	7.1	7.0	6.8	6.7	6.5	6.4
DEPTH	FT	5.0	15.0	25.0	35.0	45.0	55.0	65.0	75.0	85.0	95.0	105.0	115.0	125.0	135.0	145.0

๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛ ฃฃฃฃ๚๛๛๛๛๛๛๛๛๛๛	5.1 5.0
888888888888888888888888888888888888888	0.0 0.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.04 0.03
888888888888888888888888888888888888888	0.00
888888888888888888888888888888888888888	0.0
46.19 46.19 46.19 45.57 45.61 45.61 45.61 45.61 45.61 45.61 45.61 45.61 45.61 45.61 45.61 45.61 45.61 45.61 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 45.63 57 57 57 57 57 57 57 57 57 57 57 57 57	45.32 45.20
128.8 128.8 128.8 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 128.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9 129.9	129.7 129.8
<i>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</i>	5.6
155.0 165.0 175.0 175.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.0 255.	405.0 415.0

м 2 .. CONTROL POINT RESERVOIR NO

120 (HOUR 24) JULIAN DATE

17.3	62.7	512.	4.5	0.07
EQUILIBRIUM TEMPERATURE, C	HEAT EXCHANGE COEFFICIENT, LANGLAYS/C	SHORT WAVE SOLAR RADIATION, LANGLAYS	WIND SPEED, M/S	EVAPORATION RATE, AC.FT./DAY
METEOROLOGICAL DATA				

### INFLOW DATA

TRIB	FLOW	TEMP	CONS.1	CONS.2	CONS.3	NONCON.1	NONCON.2	NONCON.3	OXYGEN	
NO	CFS	C	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	
50	6717.9	6.6	134.2	46.60	0.00	0.00	0.07	0.00	6.4	
OUTFLO	V INFORMATION									

OXYGEN MG/L 6.2 6.2	
NONCON.3 MG/L 0.00 0.00	
NDNCON.2 MG/L 0.06 0.06	
NONCON.1 MG/L 0.00 0.00	
CONS.3 MG/L 0.00 0.00	569.70 285. 22000.
CONS.2 MG/L 46.18 46.18	N, FT , AC ME, ACFT
CONS.1 MG/L 132.2 132.2	e elevatio Rface area Drage volui
TEMP C 6.9	fer surfaci Servoir su Servoir sti
FLOW CFS 6717.8 6717.8	TION WAI
OUTLET Wet Well No 1 Total Outflow	RESERVOIR INFORM

### WATER SURFACE ELEVATION, FT RESERVOIR SURFACE AREA, AC RESERVOIR STORAGE VOLUME, ACFT RESERVOIR INFORMATION

0 MGGE MGGE MGGE MGGE MGGE MGGE MGGE MGG	
NONCON.3 MG/L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	>> •>
NONCON.2 MG/L 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	
NONCON MG/L MG/L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
CONS.3 MG/L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
Cons.2 MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	
CONS.1 MG/L 134.4 134.4 132.5 132.5 133.2 123.3 123.3 123.3 123.3 123.4 123.4 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5 123.5	
TEMP C. 7. 7. 7. 8 7. 7. 7. 9 7. 7. 7. 9 7. 9 7. 9 7. 9 7.	
DEPTH FT 5.0 15.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 115.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 2	

RESERVOIR NO 3 .. CONTROL POINT 13

JULIAN DATE 120 (HOUR 24)

17.3 62.7 512. 4.5 14.87
EQUILIBRIUM TEMPERATURE, C HEAT EXCHANGE COEFFICIENT, LANGLAYS/C SHORT WAVE SOLAR RADIATION, LANGLAYS WIND SPEED, M/S EVAPORATION RATE, AC.FT./DAY
METEOROLOGICAL DATA

### INFLOW DATA

TRIB FLOW TEMP CONS.1 CONS.2 CONS.3 NONCON.1 NONCON	CON.1 NONCON.2	NONCON.3	OXYGEN
NO CFS C MG/L MG/L MG/L MG/L MG/	16/L MG/L	MG/L	MG/L
2 7803.9 13.2 61.5 150.00 0.00 0.00 3.4	0.00 3.42	0.00	9.9

### OUTFLOW INFORMATION

0XYGEN MG/L 8.3 8.6 8.5	
NONCON.3 MG/L 0.00 0.00 0.00	
NONCON.2 MG/L 0.68 0.52 0.52	
NONCON.1 MG/L 0.00 0.00	
CONS.3 MG/L 0.00 0.00	884.25 15389. 3297820.
CONS.2 MG/L 82.36 78.71 80.53	N, FT V, AC ME, ACFT
CONS.1 MG/L 61.9 61.9 61.9	E ELEVATIC RFACE ARE/ ORAGE VOLL
TEMP C 12.9 13.8	TER SURFAC SERVOIR SU SERVOIR ST
FLOW CFS 1781.0 1781.0 3561.9	ATION WA
OUTLET Wet Well No 1 Wet Well No 2 Total Outflow	RESERVOIR INFORM

OXYGEN	MG/L	0.0	8.3	8.2	8.3	2	0	8.3	8.2	 	2.7	7.3	4 0		6.6	6.3	<b>c v</b>	0.0	5.8	2	<b>1</b>
NONCON.3	MG/L	0.0	0.00	0.0	0.00	2	0.00	0.0	0.00		0.0	0.0	200	3.0	0.0	0.0	00	0.00	0.0	000	0.00
NONCON.2	HG/L	0.28	0.76	0.78	0.70		0.12	0.05	0.0	1	0.01	00.0	000	00	0.0	0.00		0.00	0.0	00	00
NONCON. 1	MG/L	00.0	0.00	0.00			0.0	0.0			0.0	0-00		0.00	0.0	0.00		0.0	00.00		0.00
CONS.3	MG/L	00-00	0.00	0.00		3	0.0	0.00		0.0	0.0	00.00		0.0	0.0	00 0		0.0	0.00		0.00
CONS.2	MG/L	70.43	80.64	87.82	01 1/		51.60	92-97	12 01	10.04	41.59	40 32		40.05	40.01	00 07	00.01	40.00	40 00		40.00
CONS. 1	MG / L		61.0	61 0 1 0		1.10	62.0	0 03		0.20	62-0	0 07	2	62.0	62.0	0 07	2.10	62.0	0 69	2	62.0
TEMD		, r , r	0 1	<u>, 5</u>		7.21	11.7			4. LT	11 0		3.01	<b>7</b> 6	8		<b>†</b>	8.0	7 4	2	7.3
DEDTH		2 2		25 011		44.0	63.0			91.0	105 0		112.0	133.0	0 271		0.101	5 0	0.001	107.0	203.0

	5.1	4.9	4.7	4.5	4.3	4.1	3.9	3.7	3.6	3.4	M.	M	3.0	2.9	2.7	2.6	2.4	2.3	2.2	2.0	1.9	1.8	1.6	1.5	1.4	1.2	1.1	1.0	0.9	0.8
	00-00	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	00.0	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	00"0	00.0	0.00	00.0	0.00	0.0	0.00	0.00	00"0	00.0	00-0	00"0	00.0	0.00	00-0	0.00	0.00
	0.0	00.0	0.0	0.0	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00-0	0.00	00.0	00.0	0.00	00.0	0.00	0.00	0.00	0.00
	0.0	0.00	0.0	0.00	00.0	00.0	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	40°00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00
:	62.0	07.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0
1	0.7	<b>.</b>	6.8	6.8	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7
	0.712	0.12	245.0	259.0	273.0	287.0	301.0	315.0	329.0	343.0	357.0	371.0	385.0	399.0	413.0	427.0	441.0	455.0	469.0	483.0	497.0	511.0	525.0	539.0	553.0	567.0	581.0	595.0	609.0	623.0

RESERVOIR NO 4 .. CONTROL POINT 20

JULIAN DATE 120 (HOUR 24)

17.3	AYS/C 62.7	LAYS 512.	4.5	77.29
EQUILIBRIUM TEMPERATURE, C	HEAT EXCHANGE COEFFICIENT, LANGLA	SHORT WAVE SOLAR RADIATION, LANGL	WIND SPEED, M/S	EVAPORATION RATE, AC.FT./DAY
METEOROLOGICAL DATA				

### INFLOW DATA

							ī		012.20
9.9	0.01	3.42	0.00	0.00	16.62	72.1	10.9	6279.9	M
WG/L	MG/L	MG/L	HG/L	MG/L	MG/L	MG/L	U	CFS	0 N
OXYGEN	NONCON.3	NONCON.2	NONCON.1	CONS.3	CONS.2	CONS. 1	TEMP	FLOW	TRIB

### OUTFLOW INFORMATION

OXYGEN MG/L 9.1 9.1
NONCON.3 MG/L 0.01 0.01
NONCON.2 MG/L 0.55 0.55
NONCON.1 MG/L 0.00 0.00
CONS.3 MG/L 0.00 0.00
CONS.2 MG/L 19.50 19.50
CONS.1 MG/L 71.5 71.5
1EMP C 9.2 9.2
FLOW CFS 2448.0 2448.0
OUTLET WET WELL NO 1 TOTAL OUTFLOW

461.82	11157.	963353.
WATER SURFACE ELEVATION, FT	RESERVOIR SURFACE AREA, AC	RESERVOIR STORAGE VOLUME, ACFT
RESERVOIR INFORMATION		

OXYGEN	MG/L	10.4	10.4	10.7	10.9	10.9	10.8	10.5	10.1	9.8	9.8	9.7	9.6	9.5	<b>6</b> .4	9.3	9.3
NONCON.3	MG/L	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
NONCON.2	MG/L	0.0	0.00	0.0	0.02	0.06	0.18	0.48	1.03	1.21	1.21	1.00	0.89	0.82	0.77	0.72	0.68
NONCON.1	MG/L	0.00	0.00	00"0	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CONS.3	MG/L	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	00-00	0.00	00.00	0.0	0.00	0.00
CONS.2	MG/L	20.15	20.15	20.10	20.03	19.96	19.82	19.49	18.91	18.70	18.70	18.90	19.00	19.07	19.13	19.19	19.25
CONS.1	MG/L	70.5	70.5	70.4	70.2	70.2	70.3	70.6	71.0	71.2	71.3	71.3	71.3	71.3	71.4	71.4	71.4
TEMP	U	16.3	16.3	15.7	14.1	13.0	12.1	11.5	11.0	10.7	10.6	10.4	10.3	10.1	10.0	9.8	9.7
DEPTH	E	3.5	10.5	17.5	24.5	31.5	38.5	45.5	52.5	59.5	66.5	73.5	80.5	87.5	94.5	101.5	108.5

0	10	0		. 0	0.0	0	0	0	0	0	0	0	0	0	0	0	.0.8
0.01	0.01	0.01	0.0	0.0	0.01	0.01	0.01	0.01	0-01	0.01	0.0	0-01	0.01	0.01	0.01	0.0	0.01
0.64	0.61	0.58	0.55	0.52	0.50	0.48	0.46	77	0.43	0.41	0.40	0.40	0.39	0.38	0.38	0.38	0.37
00-00	0.00	00.0	00-00	00-0	0.00	0.00	0,00	00.0	00.00	00-00	00-00	00.00	0.00	00.00	0.00	0.00	0.0
00-00	00.00	0.00	00.0	0.00	00.0	0.00	0.00	0.00	0.00	00"0	0.00	0.00	0.00	0.00	00.00	0.00	0.0
19.30	19.35	19.40	19.44	19.48	19.52	19.56	19.59	19.63	19.66	19.69	19.71	19.72	19.73	19.74	19.75	19.76	19.76
71.4	71.5	71.5	71.5	71.5	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6
9.6	9.5	9.4	9.3	9.2	9.1	9.0	0.0	8.9	8.8	8.7	8.7	8.7	8.6	8.6	8.6	8.6	8.6
115.5	122.5	129.5	136.5	143.5	150.5	157.5W1	164.5	171.5	178.5	185.5	192.5	199.5	206.5	213.5	220.5	227.5	234.5

### STREAM MODEL RESULTS

### JULIAN DATE 120 (HOUR 24)

METEOROLOGICAL DATA (MET.ZONE 1)	EQUILIBRIUM TEMPERATURE, C HEAT EXCHANGE COEFFICIENT, LANGLAYS/C SHORT WAVE SOLAR RADIATION, LANGLAYS WIND SPEED, M/S	17.3 62.7 512. 4.5
RESERVOIR RELEASES		

0XYGEN MG/L 5.6 8.5 8.5
NONCON.3 MG/L 0.00 0.00 0.00
NONCON.2 MG/L 0.08 0.60 0.60 0.55
NONCON.1 MG/L 0.00 0.00 0.00 0.00
CONS.3 MG/L 0.00 0.00 0.00
CONS.2 MG/L 45.95 46.18 80.53 19.50
CONS. 1 MG/L 129.00 132.24 61.92 71.55
TEMP C 5.9 6.9 73.8 9.2
FLOW CFS 6232.9 6717.9 3562.0 2448.0
teservoir NO 1 13 13 20

### LOCAL FLOWS AND WATER QUALITY

OXYGEN	MG/L	13.2	13.2	13.2	13.2	11.6	9.7	9.7	10.6	7 6
NONCON.3	WG/L	00.0	00.0	0.00	00.0	0.01	0.00	0.00	00.00	0.08
NONCON.2	MG/L	00.0	00.0	00.00	00.00	10.03	0.34	0.34	6.84	6.84
NONCON.1	MG/L	00.00	0.00	00-00	00.0	00.0	00-00	00-00	0.00	0.00
CONS.3	MG/L	0.00	00"0	00.0	0.00	0.00	0.00	00.0	0.00	0.00
CONS.2	MG/L	55.00	100.00	100.00	100.00	350.00	41.34	41.34	34.67	27.62
CONS.1	MG/L	200.00	200.00	200.00	200.00	350.00	66.36	66.36	88.21	87.67
TEMP	U	13.2	16.7	16.7	16.7	23.7	15.8	15.8	13.9	15.7
FLOH	CFS	485.0	610.0	897.0	510.0	410.0	89.0	400-0	581.0	356.0
с.Р.	2	2	4	ŝ	Ŷ	ø	12	15	17	18

### STREAM WATER QUALITY

OCATION	C.P./TRIB	TEMP	CONS.1	CONS.2	CONS.3	NONCON.1	NONCON.2	NONCON.3	OXYGEN	MEAN FLOW	U/S ELEV.	TIME
		ი	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	CFS	ET	DAYS
302.85	1/0	6.0	129.00	45.94	0.0	0.00	0.08	00-00	5.7	6232.9	6 207	0-02
300.95	2/4	6.6	134.17	46.60	0.0	0.00	0.07	00.0	6.4	6717.9	491.5	0.05
292.25	3 / 0	7.2	132.02	46.15	00.0	0.00	0.06	0.00	7.0	6717.9	475.7	0.13
287.59		7.5	131.86	46.12	0.0	0.00	0.06	0.0	7.5	6622.1	458.1	0.22
282.93		7.7	131.72	46.10	0.00	0.00	0.06	0.00	8.0	6526.3	429.6	0.31
278.27	4/5	8.8	137.56	50.78	0.00	0,00	0.06	0.00	8.8	7040.5	395.2	0,40
274.77	4 / 0	8.9	137.51	50.79	0.00	0.0	0.06	0.0	8.9	6689.7	374.2	0.44
272.44	5/6	9.9	144.81	56.59	0.00	0.00	0.05	0.0	9.5	7655.7	365.5	0.04
268.95	5/7	10.4	147.09	58.86	00.00	0,00	0.05	0.00	9.7	8234.7	354.2	0.12
264.29	6/0	10.6	147.06	58.90	0.0	0.0	0.05	0.00	9.8	8234.7	336.0	0.09
259.63	6/0	10.4	142.64	57.19	00.0	0.00	0.04	0.00	9.7	8234.7	313.8	0.19
254.97		10.6	142.64	57.24	0.0	0.00	0.04	0.00	9.8	8337.3	295.7	0.28
250.31		10.8	142.65	57.28	0.00	0.0	0.04	0.0	9.9	8439.9	279.6	0.36
245.65	7/0	10.9	142.66	57.33	0.00	0.0	0.04	0.00	10.0	8542.6	262.2	0.46
240.99	2/0	11.1	142.68	57.39	0.00	0.0	0.04	0.00	10.1	7906.2	249.0	0.57

7 5/	, k			0.0	0.77	0.93	1_13	1.34	0-04	0.09	0.17	22 U	0.45	69 U	22	0	1.04	1.20	1.35	1.48	1.61	2	1.85	1.97
21 6	2,44	14.5	t v	•	8.7	8.6	8-6	5.2	108-6	96.2	84.3	0	53_0	35.7	0 22	2. C	101	0.0	0-0	0-0	0-0	0.0	0.0	0.0
2722 R	2706 5	2833 2	0727 4	0.1014	9680.0	9622.4	9564.8	9507.3	2448.0	2479.7	2511.4	2543.1	2528.0	2513.0	0.8025	2482.9	11917.6	11837.3	11757.1	11676.8	11596-6	11516.4	11436.1	11355.9
10 0	0	0	0		9.9	<b>6</b> .9	10.3	10.7	9.3	9.5	9.7	10.01	10.2	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4
0.00	0.0	0.0		200	00.00	0.00	0.0	0.00	0.01	0.00	0.00	0.00	0.00	00.0	0.00	0.00	00"0	00.0	00.0	0.00	0.00	0.00	00.00	00.00
2.61	2.60	2.54	15		1.14	1.13	1.12	1.10	0.55	0.55	0.55	0.55	0.55	0.55	0.54	0.54	0.55	0.55	0.54	0.54	0.54	0.54	0.54	0.54
00-00	0.00	0.00		8	<b>00-0</b>	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00"0	0.00	0.00	0.00	0.00	00"0	00.00	0.00	0.00	0.00
0.00	00"0	00"0			0U	0.00	0.0	0.00	0.00	0.00	0.00	0.00	00"0	0.00	0.00	00.0	00-00	00"0	00.0	00.0	0.00	0.00	0.00	0.00
30.20	30.32	30.44	64.45	21.12	04-10 1	63.82	63.45	63.05	19.50	19.50	19.50	19.50	19.50	19.51	19.51	19.51	19.50	19.51	19.51	19.51	19.51	19.51	19.51	19.51
51.15	51.54	52.04	59.12	50 13	21.40	59.12	59.11	59.08	71.55	71.55	71.55	71.55	71.55	71.55	71.55	71.55	71.55	71.55	71.55	71.55	71.55	71.55	71.55	71.55
13.6	13.9	14.2	14.2	1, 7	<u>,</u>	14.4	14.5	14.6	9.3	9.5	<b>6</b> .9	10.4	10.8	11.3	11.7	12.1	10.2	10.2	10.3	10.4	10.5	10.6	10.7	10.8
18 /11	18 / 0	19 / 0	19 / 0					22 / 0	20 / 0		21 / 0	21 / 0				22 / 0	22 / 0							23 / 0
10.95	6.57	2.19	78.16	74.05		cy. yo	65 <b>.</b> 81	61.70	27.26	24.73	22.20	18.84	14.65	10.46	6.28	2.09	58.31	55.64	52.97	50.30	47.63	44.96	42.29	39.62

APPENDIX C

Graphical Displays of Sacramento River System Water Quality Modeling


























































