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RESERVOIR SYSTEM ANALYSIS FOR WATER QUALITY '' 

INTRODUCTION 

Water managers have been attempting to operate reservoirs in a "best 
water management strategy" to meet specific project objectives since the first 
man-made impoundment was constructed. Two things, however, require water 
managers to occasionally reevaluate a "best water management" strategy. As 
time goes on, project objectives may change due to either an individual 
owner/operatorls needs and desires or, in the case of large projects, due to 
public interests changing or finally being recognized. Secondly, 
state-of-the-art techniques for impoundment regulation change, and may require 
a reevaluation of operational. impacts due to structural or nonstructural 
changes . 

STATE-OF-THE-ART 

While water managers are probably performing a best project operation for 
water quality control for the existing structural facility, studies should be 
performed to evaluate possible improvements that could be provided by 
state-of-the-art structural modifications and/or multi-reservoir system 
operations. Evaluation of the water quality benefits due to possible 
structural modifications can be performed with several existing 
state-of-the-art one-dimensional computer programs. [14,26,22,15]. 

Computer programs to evaluate the impact on water quality due to a 
specific operation of a large system of reservoirs are not readily available. 
When it was realized, several years ago, that the U.S. Army Corps of Engineers 
must have the capability to analyze the operation of large multireservoir 
systems for water quality, the Hydrologic Engineering Center, HEC, was funded 
to develop a computer program to meet this need. 

PROGRAM DEVELOPMENT 

In 1978, various computer programs available within the Corps for 
evaluating reservoir system operations for water quantity were screened to 
obtain the best generalized model for adding water quality capability 
[27,12,16]. The "Simulation of Flood Control and Conservation Systems" 
Computer Program, HEC-5, was selected due to i.ts generality, documentation, 
and level of active support in training and maintenance. 

* Presented at the ASCE Hydraulics Division Specialty Conference, Coeur d'Alene, 
Idaho, August 14-17, 1954. 
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The HEC-5 program is designed to simulate the sequential operation of a 
reservoir-channel system of a branching network configuration. Any time 
interval from one hour to a month can be used. The model contains the 
capability to change from one time step to another in order to provide greater 
temporal resolution during certain periods, such as floods. Channel routing 
is provide-J by any ~f five kydr=fogic routing techniqfies. "- n e s e r v u i r s  - ------ - - - -  operate 
to (1) minimize downstream flooding; (2) evacuate flood control storage as 
quickly as possible; (3) provide for low flow requirements and diversions, and 
(4) meet hydropower requirements. Hydropower requirements can be defined for 
individual projects or for a system of projects. Pumped-storage operation can 
also be simulated. Sizing for conservation demands or storage can be 
automattcally performed, using the safe yield concept, and economic 
computations can be provided for hydropower benefits and flood damage 
evaluation. 

In 1979, work was initiated to modify HEC-5 to evaluate reservoir 
operations for water quality control in large reservoir systems. The 
modifications were identified to be accomplished in three phases as shown in 
Figure 1. Phase I added the capability to HEC-5 to control water temperature 
releases at one reservoir to provide for the best combination of downstream 
needs at up to three control points (i.e, river locations used for controlling 
flow routing computations, and for controlling quantity and quality target 
computations). The control of water temperature is accomplished through 
multilevel intake structure operation. In September 1979, a single reservoir 
water temperature control program called BEC-5Q [17] was completed. 

In 1980, work was initiated to modify the phase I model to add seven more 
water quality parameters and capability to evaluate either two tandem (i.e., 
in series) or two parallel (i.e., on two independent tributaries) reservoirs. 
In September 1980, a two-reservoir model [18] capable of system operation for 
three conservative and three nonconservative water quality parameters, in 
addition to dissolved oxygen and water temperature was completed. 

Following the phase I1 development, the model was modified with some 
small but significant additions and revisions during 1981. These 
modifications included flow augmentation, improved model efficiency, and 
recently developed selective withdrawal routines. 

The third and last major phase of development involves increasing the 
HEC,-5Q capability to include up to ten reservoirs and thirty control points. 
The NEC is currently testing the phase 111 model on a practical application. 

MODEL CONCEPTS 

Flow Simulation Module - 
The flow simulation module was devel.oped to assist in planning studies 

for evaluating proposed reservoirs in a system and to assist in sizing the 
flood control and conservation storage requirements for each project 
recommended for the system. The program can be used in studies made 
immediately after the occurrence of a flood to evaluate preproject conditions 
and to show the effects of existing and/or proposed reservoirs on flows and 
damages in the system. The program should also be useful in selecting the 
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proper reservoir releases throughout the system during flood emergencies in 
order to minimize flooding as much as possible and yet empty the system as 
quickly as possible while maintaining a balance of flood control storage among 
the reservoirs. 

The above purposes are accomplished by simulating the sequential 
operation of a system of reservoirs of any configuration for short interval 
historical or synthetic floods or for long duration nonflood periods or for 
combinations of the two. Specifically the program may be used to determine: 

a. Flood control and conservation storage requirements for each 
reservoir in the system. 

b. The influence of a system of reservoirs on the spatial and temporal 
distribution of runoff in a basin. 

c. The evaluation of operational criteria for both flood control and 
conservation (including hydropower) for a system of reservoirs. 

d. The expected annual flood damages, system costs, and system net 
benefits for flood damage reduction. 

e. The system of existing and proposed reservoirs or other alternatives 
including nonstructural alternatives that result in the maximum net fl.ood 
control benefits for the system by making simulation runs for selected 
alternative systems. 

Since many papers [19,4,8,9,7,11,2,3,10] have already been written 
regarding the detailed technical concepts of the flow simulation module, the 
remainder of this paper will emphasize the concepts of the water quality 
simulation module. 

Water Quality Simulation Module 

The water quality simulation module was developed so that temperature, 
three user selected conservative and three user selected non-conservative 
constituents can be simulated. The model allows dissolved oxygen to also be 
simulated if the user selects either carbonaceous or nitrogeneous oxygen 
demanding constituents, or both, as one or two of the non-conservative 
constituents. 

The water quality simulation module accepts system flows generated by the 
flow simulation module and computes the distribution of all the water quality 
constituents in up to ten reservoirs and their associated downstream reaches. 
The ten reservoirs may be in any arbitrary parallel and tandem configuration. 

The water quality simulation module also selects the gate openings for 
reservoir selective withdrawal structures to meet user-specified water quality 
objectives at downstream control points. If the objectives cannot be 
satisfied, the model will compute the increase in flow (if any) necessary to 
satisfy the downstream objectives. With these capabilities, the planner may 
evaluate the effects on water quality of proposed reservoir-stream system 
modifications and determine how a reservoir intake structure should be 
operated to achieve desired water quality objectives within the system. 



Each reservoir is assumed to be a control. point, in keeping with the 
concepts used in the development of the flow simulation module. The water 
quality module will allow for up to thirty control points, including the 
reservoir control points. The additional control points may be placed in the 
stream system below the reservoirs at any desirable locations provided the 
f~llowixg guidelines are fcllowed: 

a. The most downstream point in all systems must be a control point. 

b. The confluence of the two streams, on which parallel reservoirs are 
located, must be a control point. 

c. The end of the stream reach below the more upstream reservoir of a 
tandem reservoir system (at the upstream end of the more downstream reservoir) 
must be a control point. 

The water quality simulation module currently uses flow data from the 
flow simulation module at intervals of one day and uses computational time 
steps of one day. Shorter simulation time steps can be used but the model has 
not been tested with the shorter steps. The model is limited to simulations 
of one calendar year. 

The reservoirs are represented conceptually by series of one dimensional 
horizontal slices such as those shown in Figure 2. Each horizontal slice or 
layered volume element is characterized by an area, thickness and vol.ume, In 
the aggregate the assemblage of layered volume elements is a geometric 
representation in discre tized form of the prototype reservoir. This one 
dimensional representation has been shown to adequately represent water 
quality conditions in many deep, well stratified reservoirs by  Eiker [2], Baca 
[2] and WRE [28,29,301. 

Within each element, the water is assumed to be fully mixed. This 
implies that only the vertical dimension is retained during the computation. 
Each horizontal layer is assumed to be completely homogeneous with all 
isopleths parallel to the water surface both laterally and longitudinally. 
External inflows and withdrawls occur as sources or sinks within each layer 
and are instantaneously dispersed and homogeneously mixed throughout each 
element from the headwaters of the impoundment to the dam. It is not 
possible, therefore, to look at longitudinal variations in water quality 
constituents. Module results are most representative of conditions in the 
main reservoir body. 

Vertical advection is governed by the location of inflow to, and outflow 
from, the reservoir. Thus the computation of the zones of distribution and 
withdrawal for inflows and outflows are of considerable significance in 
operation of the model. The WES withdrawal method [3] is used for determining 
the allocation of outflow. The Debler inflow allocation method [ 5 ]  is used 
for the placement of inflows. 

Vertical advection is the net interelement flow and is one of two 
transport mechanisms used in the module to transport water quality 
constituents between elements. The vertical advection is defined as the 
interelement flows which result in a continuity of flow in all elements. 
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Geometric Representat ion of a S t r a t i f i e d  Reservoir 
and Mass Transport  Mechanisms 



Effective diffusion is the other transport mechanism used in the module 
to transport water quality constituents between elements. The effective 
diffusion is composed of molecular and turbulent diffusion and convective 
mixing. 

I.!lnd and flew ixduced turbulent diffusien end c~svective mixing are the 
dominant components of effective diffusion in the epilimnion of most 
reservoirs. In quiescent well stratified reservoirs, molecular diffusion may 
be a significant component in the metalimnion and hypolimnion. For deep, well 
stratified reservoirs with significant inflows to or withdrawals from the 
hypolimnion, flow induced turbulence in the hypolimnion dominates. For weakly 
stratified reservoirs, wind induced or wind and flow induced turbulent 
diffusion will be the dominant component of the effective diffusion throughout 
the reservoir. One of two methods may be selected by the user to calculate 
effective diffusion coefficients. For shallow weakly stratified reservoirs, 
the wind controlled mixing 1151 method is appropriate, while the stability 
method [15] is more appropriate for deeper well stratified reservoirs. Both 
of these methods have been shown in numerous applications to adequately 
represent the mixing phenomena for heat and dissolved water quality 
constituents when properly applied. 

The stream system is represented conceptually as a linear network of 
segments or volume elements. Each element is characterized by length, width, 
cross-sectional area, hydraulic radius, ~anning 's n and a flow and depth 
relationship (see Figure 3 ) .  Flow rates at stream control points are 
calculated within the flow simulation module using any one of the several 
programmed hydrologic routing methods. Within the flow simulation module, 
incremental local flows e . ,  inflow between adjacent control points) are 
assumed deposited at the control point. 

Within the water quantity simulation module, the incremental local flow 
may be divided into components and placed at different locations within the 
stream reach (i.e., that portion of the stream bounded by the two control 
points). A flow balance is used to determine the flow rate at element 
boundaries. Any flow imbalance e . ,  the difference in the flow at the 
upstream control point plus all tributary inflows and the flow at the 
downstream control. point) is distributed uniformly to the flows at each 
element boundary. Once interelement fl.ows are established, the depth, surface 
width, and cross section area are computed at each element boundary assuming 
normal flow. 

Both the streams and reservoirs are represented by a one-dimensional 
assemblage of fluid elements linked together by interelement flow and 
diffusion (stream diffusion is assumed to be small). The interelernent mass 
transports and the fundamental principle of conservation of heat can be 
represented by the following differential equation model of the dynamics of 
temperature within each fluid element. 
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where T = temperature  i n  " C  
T I  - --- 1 - 2 
v - v o l u u r e  of t h e  f l u i d  eiement i n  ma 
t = t i m e  i n  seconds 
z  = space coo rd ina t e  i n  meters  ( v e r t i c a l  f o r  t h e  r e s e r v o i r  and 

h o r i z o n t a l  f o r  t h e  s t ream) 
9 ,  = in te re lement  f low i n  m3/ s  
A, = element s u r f a c e  a r e a  normal t o  t h e  d i r e c t i o n  of f low i n  

nl2 
D, = e f f e c t i v e  d i f f u s i o n  c o e f f i c i e n t  i n  m2/s 
Qi = l a t e r a l  in f low i n  m3/s 
Ti = in f low water temperature  i n  degrees  Ce l s iu s  
Qo = l a t e r a l  outf low i n  m 3 / s  
Ah = element s u r f a c e  a r e a  i n  rn2 

H = e x t e r n a l  hea t  sources  and s i n k s  i n  kcal/m2/s 
P = water  d e n s i t y  i n  kg/m3 
c = s p e c i f i c  hea t  of water i n  kcal/kg/"C 

This  equa t ion  r e p r e s e n t s  t h e  hea t  cor iservat ion equa t ion  f o r  t he  f l u i d  
element ,  The set of  equa t ions  f o r  a l l  e lements  w i t h i n  t h e  r e s e r v o i r  o r  
s t ream system r e p r e s e n t s  t h e  h e a t  conserva t ion  wi th in  t h a t  system. A l l  of  
t h e  terms on t h e  r i g h t  s i d e  of Equat ion (1)  r ep re sen t  phys i ca l  h e a t  t r a n s f e r s  
i nc lud ing  t h e  e x t e r n a l  hea t  sources  and s inks .  The e x t e r n a l  h e a t  sources  and 
s i n k s  t h a t  a r e  considered i.n t he  module a r e  assumed t o  occur  a t  t h e  a i r -water  
i n t e r f a c e .  The r a t e  of h e a t  t r a n s f e r  p e r  u n i t  of  s u r f a c e  a r e a  can  be 
expressed a s  t h e  sum of t h e  fol lowing h e a t  exchange components. 

where Hn = n e t  hea t  t r a n s f e r  
Us = s h o r t  wave s o l a r  r a d i a t i o n  a r r i v i n g  a t  t h e  water  s u r f a c e  

Us, = r e f l e c t e d  s h o r t  wave r a d i a t i o n  
Ha = long wave atmospheric  r a d i a t i o n  

Ha, = r e f l e c t e d  long wave r a d i a t i o n  
Hc = h e a t  t r a n s f e r  due t o  conduction 

Hbr = r a d i a t i o n  from t h e  water s u r f a c e  
He = hea t  l o s s  due t o  evapora t ion  

A l l  u n i t s  a r e  i.n kcal/m2/s. 

Complete d i s cus s ions  of t h e  i n d i v i d u a l  terms have been presen ted  by 
Anderson [ l ]  and i n  Tennessee Val ley Author i ty  Report No. 14  [ 2 5 ] .  

The method used i n  t h e  module t o  e v a l u a t e  t h e  n e t  r a t e  of hea t  t r a n s f e r  
a t  t h e  ai r -water  i n t e r f a c e  was developed by Edinger and Geyer [ 6 ] .  Thei r  
method u t i l i z e d  t h e  concepts  of  equ i l i b r ium temperature  and t h e  c o e f f i c i e n t  
of s u r f a c e  'neat exchange. The equ i l i b r ium temperature  i s  de f ined  a s  t h e  
water temperature a t  which t h e  n e t  r a t e  of hea t  exchange between a  water  
s u r f a c e  and t h e  atmosphere i s  zero .  The c o e f f i c i e n t  of  s u r f a c e  h e a t  exchange 
i s  t h e  r a t e  a t  which t h e  hea t  t r a n s f e r  p rocess  proceeds.  The equa t ion  
desc r ib ing  t h i s  r e l a t i o n s h i p  i s :  



where H, = n e t  r a t e  of hea t  t r a n s f e r  i n  kcal/m2/s 
Ke = c o e f f i c i e n t  of s u r f a c e  hea t  exchange i n  k c a l / m 2 / s / ~ ~  
Te = quf 1ibriuin temperature in "C 

Ts = s u r f a c e  temperature i n  O C  

A Heat Exchange Program which computes t h e s e  terms i s  a v a i l a b l e  a t  t h e  
HEC [ 2 6 ] .  

A l l  hea t  t r a n s f e r  mechanisms except  s h o r t  wave s o l a r  r a d i a t i o n  apply a t  
t h e  water  su r f ace .  Short  wave r a d i a t i o n  p e n e t r a t e s  t h e  water  s u r f a c e  and may 
a f f e c t  water temperatures  several .  meters  below t h e  su r f ace .  The depth of 
p e n e t r a t i o n  i s  a f u n c t i o n  of adso rp t ion  and s c a t t e r i n g  p r o p e r t i e s  of t h e  
water [13]. Th i s  phenomenon i s  unimportant i n  t h e  s t ream r o u t i n e s  s i n c e  
elements  a r e  assumed v e r t i c a l l y  mixed. 

In  t h e  r e s e r v o i r  rout i .nes ,  however, t h e  s h o r t  wave s o l a r  r a d i a t i o n  may 
p e n e t r a t e  s e v e r a l  e lements .  The amount of hea t  which reaches each element i s  
determined by: 

where 1 = l i g h t  energy a t  any depth  i n  kcal /m2/s  
B = f r a c t i o n  of t h e  r a d i a t i o n  absorbed i n  t h e  top  f o o t  of depth 

1, = l i g h t  energy a t  t h e  water  s u r f a c e  i n  kcal./m2/s 
k = l i g h t  e x t i n c t i o n  c o e f f i c i e n t  i n  l / m  
z = depth i n  meters  

Combining equa t ions  ( 3 )  and ( 4 )  f o r  t h e  r e s e r v o i r  s u r f a c e  element,  t h e  
e x t e r n a l  h e a t  source  and s i n k  t e r m  becomes: 

and t h e  e x t e r n a l  hea t  source  f o r  a l l  remaining r e s e r v o i r  e lements  becomes: 

where I, = l i g h t  i n t e n s i t y  a t  t h e  t o p  of t h e  element i.n kcal/m2/s 

Water q u a l i t y  c o n s t i t u e n t s  o t h e r  t han  temperature  a r e  represen ted  by 
Equation (1)  wi th  minor modi f ica t ions :  

a .  The d e f i n i t i o n  of t h e  v a r i a b l e  T i s  gene ra l i zed  t o  r ep re sen t  t h e  
concen t r a t i on  of any water  q u a l i t y  c o n s t i t u e n t .  

b. The d i s t r i b u t e d  hea t  g a i n / l o s s  tern AhFf/(pc) i s  : 

(1 )  El iminated f o r  conse rva t ive  c o n s t i t u e n t s  



(2) Replaced by a first order kinetic decay formulation, -KIT, 
for non-conservati.ve constituents where K1 is the decay rate in l./day. 

(3) Replaced by a first order reaeration tern, K2(DO*-DO), for 
dissolved oxygen where K2 is the reaeration rate, DO* is the dissolved 
oxygen saturat-lon concentration at the anhient temperature and DO is the 
existing dissolved oxygen concentration. 

The reservoir reaeration rate is computed as follows: 

where K2 = reaeration rate in l/day at 20°C 
a, b = empirical coefficients derived by curve 

fit from Kanwisher [20] to be 0.641 
and 0.128 respectively. 

W = wind speed in m/s 
z = surface element thickness in meters 

The stream reaeration rate is computed using the OqConnor-Dobbins [24] 
method: 

where K2 = reaeration rate in l/day at 20' C 
Dm = molecular diffusion coefficient in m2/day 
U = flow velocity in m/s 
D = average stream depth in meters 

A11 first order kinetic rates are adjusted for local ambient 
temperatures using a mul.tiplicative correction factor. 

where 0 = kinetic rate multiplicative correction factor 
Tc = empirically determined temperature correction factor 

T = local ambient water temperature 

Reservoir Solution Technique 

Within the reservoirs, a Gaussian reduction scheme is used for solving 
the differential equati.ons which represent the response of the water quality 
constituents. Equation (1) is rewritten in a form where a "forward time and 
central difference" scheme is used to describe all the derivative processes. 
For element i adjacent to elements i-1 and iS1 (see Figure 4) the general 
mass balance equation becomes: 
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where subscripts i, i-1, i+l denote element numbers, and 

V = volume of the fluid element in m3 
T - temperature in O C  or water quality 

constituent concentration, mg/l 
t = computation time step in seconds 

A, = element area at the fluid element boundary in m2 
D, = effective diffusion coefficient in m2/s 
Az = element thickness (length of stream) in meters 
Qu = upward advective flow (stream flow) between elements in 

m3/s 
Qd = downward advective flow between elements in m3/s 
Qw = rate of flow removal from the element in m3/s 
Qx = rate of inflow to the element in m3/s 
T, = inflow water temperature in "C or constituent 

concentration in mg/l 
H = external sources and sinks of heat in kcal/s 
p = water density in kg/& 
c = specific heat of water in k~al/kg/~C 

Recall that the H/(pc) term is replaced by -KIT or K2(D0*-DO) for non- 
conservative water quality constituents and dissolved oxygen respectively. A 
finite difference equation of this type is formed for each element and 
integrated with respect to time, The system of finite difference mass balance 
equations represents the response of water quality within the entire reservoir 
and, with the aid of numercial integration technique, the equations are solved 
with respect to time. 

Stream Solution Technique 

For the stream, a linear programming algorithm is used to solve a fully 
implicit backward difference in space, f ort~ard difference in time, finite 
difference approximati.on of Equation (1). This approximation has the general 
form 

where the "a" terms are coefficients formed from the area, dispersion 
coefficients, flows, lengths of the computational elements and time step for 
each volume element; the "C" terms are the unknown temperatures and constituent 
concentrations in each volume element; the "b" terms are constants f orrned from 
initial conditions or previously computed conditions, tributary inputs of heat 
or mass loads and, depending upon the context, the reservoir releases. 



Two matrix formats are used i.n the stream water quality simulation 
module. The first is used to solve for temperature and constituent 
concentrations given all external inputs this format is 

where /A] is the matrix of coefficients, c is the vector of unknown 
temperatures or constituent concentrations and 6' is the vector of constants. 
This first format i.s used in the water quality simulation module to compute 
the final results after a11 reservoir operations have been completed. In 
effect, the linear programming algorithm is used simply as a matrix solver 
for a simulation model. 

The second, and more complex, matrix format used in the water quality 
simulation module is for determining the temperature and constituent 
concentrations that must come from the reservoirs to satisfy all water 
quality targets in the stream system. In effect, the second format is used 
to (1) determine which control. point controls the release for each 
constituent and (2) determine the reservoir release water quality that most 
closely satisfies the targets at the controlling point. This decision making 
capability is achieved by ( 1) transforming the constituent concentrations at 
each control point into a specification of the target and the deviation of 
the simulated concentration above or below the target, and (2) making the 
concentrations in the reservoir releases unknown so that they can be computed. 

The transformation used at control points to specify the target is: 

where ct+l - i - simulated temperature in degrees Celsius or constituent 
concentration in milligrams/liter 

Coi = target temperature in degrees Celsius or constituent 
concentration in milligrams/liter for a control point 

ttl = deviation of simulated temperature or constituent '+ i 
concentrations above the control point target 

ctt1 = deviation of simulated temperature or constituent 
-1 

concentration below the control point target 

This transformation is substituted into Equation (11) to yield the following 
equation which is applied to those volume elements that are located at 
control points. 

where the (ai,+Coi) term has been moved to the right hand side of the 
equation since ~t is known. Thus, the m x m simulation matrix has now been 
transposed into a m x n rectangular matrix where n = m + NCP and NCP is the 
number of control points. 



Equation (14) is the general form of the equation used for all volume 
elements in formulating decision making problem. It includes, as variables, 
the constituent concentrations in the reservoir releases, although the 
inclusion is not obvious. For those volume elments that are just below 

concentrations represent the constituent concentrations reservoirs, the Ci-l 
ii, the -------- 2- -- 1 ---  --  Irl 4-L- -..-. "+.,. 

L C ~ ~ Z L  VUIL LIZ L I Z Q D C D .  LIIC ;Iu~lCLL;Vn mads?, where the reser v e i r  
Ctfl release constituent concentrations are known, the ai,i-l i-l terms were 

included in the 5 vector for those volume elements just below reservoirs. 
cttl For the decision making model, the ai,i-,l i-lterms are included as unknowns. 

Thus the m x n simulation matrix has been made even more elongated in 
variables and n is now m + NCP + NRES where NRES is the number of reservoirs 
in the system. 

One additional set of equations is included in the water quality 
simulation modu1.e to ensure that realistic results are obtained i.n computing 
reservoir release water quality. These equations are appli.ed to define the 
range of constituent concentrations that may be released from the 
reservoirs. Normally the range is defined by two inequalities: 

C 
tt-1 > Ct+l. 
r min 

t+l 
where Cmin = minimum temperature or constituent concentration in reservoir 

t+l water quality profile 
CmaX = maximum temperature or constituent concentrati.on in reservoir 

tt.1 water quality profile 
'r = final computed temperature or constituent concentration in 

reservoir release 

In practice, these inequalities are written as equalities by adding slack and 
surplus variables . 

ct+l - 
= C 

t+l 
r Xsurplus m i n  

t+l t-t.1. 
= C 'r + 'slack max 

With the problem so formulated, the / A  [matrix of Equation (12) consists of 
(m + 2 * NRES) rows and (m + NCP + NRES) unknowns and the b vector consists of 
(m + 2 * NRES) constants. The J A l  matrix may be conceptually partitioned as 
shown in Figure 5, where it is assumed that reservoirs are above volume 
elements 1 and 3, that these reservoirs are in tandem and that volume elements 
1, 3, 7 and m are control points. 





There a r e  a  number of s o l u t i o n s  t h a t  w i l l  s a t i s f y  a  ma t r ix  t h a t  i s  n o t  
square ( i . e . ,  m x  m) . The purpose of using a  l i n e a r  programming s o l u t i o n  i s  
t o  s e l e c t  t h e  s o l u t i o n  t h a t  b e s t  s a t i s f i e s  t h e  o b j e c t i v e s  of t h e  r e s e r v o i r  
o p e r a t i o n  on downstream water  q u a l i t y .  However, i t  i s  know t h a t  one c l a s s  of  
s o l u t i o n s  w i l l  never appear:  a t  no t i m e  w i l l  t h e  v a r i a b l e s  t h a t  d e s c r i b e  t h e  
nnc i+ ive  and t h e  nega t ive  d e v i a t l o x s  from t h e  c o x t r o l  pa in t  t a r g e t  I-'--- 

c o n s t i t u e n t  concen t r a t i ons  appear  s imul taneous ly  i n  t h e  s o l u t i o n .  A t  a l l  
t imes,  one o r  t h e  o t h e r  d e v i a t i o n  w i l l  appear  bu t  no t  both.  It i s  a l s o  known 
t h a t  t h e  r e s e r v o i r  r e l e a s e  c o n s t i t u e n t  concen t r a t i ons  w i l l  always appear  i n  
t h e  f i n a l  so lu t ion .  Thus, s e l e c t i n g  t h e  s o l u t i o n  t h a t  b e s t  s a t i s f i e s  t h e  
o b j e c t i v e s  of t h e  r e s e r v o i r  o p e r a t i o n  on downstream water  q u a l i t y  reduces t o  
s e l e c t i n g  which c o n t r o l  p o i n t  d e v i a t i o n  v a r i a b l e  appears  i n  t h e  f i n a l  
s o l u t i o n  and t h e  numerical va lue  a t t ached  t o  t h a t  v a r i a b l e .  Once t h i s  
numerical. va lue  i s  known, i t  i s  known t h a t  t h e  d e v i a t i o n  of t h e  oppos i t e  s i g n  
i s  ze ro  s o  t h a t  t h e  a c t u a l  c o n t r o l  po in t  c o n s t i t u e n t  concen t r a t i on  can  be 
computed using Equat ion (13) .  

The o b j e c t i v e  f u n c t i o n  i s  used i n  a  l i n e a r  programming formulati .on t o  
q u a n t i t a t i v e l y  d e s c r i b e  t h e  d e s i r a b i l i t y  of any g iven  s o l u t i o n  t o  a  
formulated problem. I n  t h e  water  q u a l i t y  s imu la t i on  modul.e, a  minimizat ion 
r o u t i n e  i s  used wi th  t h e  o b j e c t i v e  

- .- 
minimize z  = p c  (19) 

The a c t u a l  va lue  of z i s  immater ia l  t o  t h e  water  q u a l i t y  s imu la t i on  module; 
i t  i s  j u s t  an  index by which t h e  d e s i r a b i l i t y  of t h e  s o l u t i o n  i s  determined. 
The v e c t o r  E- i s  t h e  same v e c t o r  E a s  i n  Equat ion (12) except  t h a t ,  a s  
previ  ous ly  descr ibed ,  i t  i n c l u d e s  t h e  v a r i a b l e s  r ep re sen t ing  

1. The d e v i a t i o n s  from t h e  c o n t r o l  p o i n t  t a r g e t s  f o r  those  volume 
elements t h a t  r e p r e s e n t  c o n t r o l  po in t s ,  

2. The c o n s t i t u e n t  concen t r a t i ons  i n  a l l  o t h e r  volume elements ,  and 
3 .  The c o n s t i t u e n t  concen t r a t i ons  i n  t h e  r e s e r v o i r  r e l e a s e s .  

The vec to r  j.T r e p r e s e n t s  t h e  pena l ty  a s s o c i a t e d  w i t h  t h e  appearance of  a  -. 
g iven  v a r i a b l e  i n  t h e  f i n a l  s o l u t i o n .  Log ica l ly ,  t h e  p e n a l t i e s  i n  p  a r e  
nonzero on ly  a t  c o n t r o l  p o i n t s  and a r e  app l i ed  on ly  f o r  t h e  v a r i a b l e s  t h a t  
r ep re sen t  d e v i a t i o n s  from t h e  t a r g e t .  

The water  q u a l i t y  s imu la t i on  module i s  s t r u c t u r e d  f l e x i b l y  s o  t h a t  
d i f f e r e n t  p e n a l t i e s  can be a s s igned  f o r  each  c o n t r o l  p o i n t ,  f o r  each  
c o n s t i t u e n t  and f o r  each dev ia t i on ,  above and below. The magnitude of t h e  
pena l ty  i s  unimportant,  as long a s  i t  i s  nonzero where necessary  and 
r e a l i s t i c a l l y  r e p r e s e n t s  t h e  d e s i r e d  po l i cy .  For  i n s t a n c e ,  f o r  a  temperature  
t a r g e t  expressed a s  " t h e  temperature  a t  c o n t r o l  p o i n t  I s h a l l  no t  exceed 
200 C",  o r  

t h e  pena l ty  f o r  t h e  p o s i t i v e  d e v i a t i o n  a t  c o n t r o l  p o i n t  I cou1.d be set t o  1 .0  
and t h e  pena l ty  f o r  t h e  nega t ive  d e v i a t i o n  could be set t o  0.0. Obviously, 
when t r y i n g  t o  minimize z, Equat ion (19 ) ,  t h e  l i n e a r  programming a lgo r i t hm 
would t r y  t o  ensure  t h a t  t h e  v a r i a b l e  r ep re sen t ing  t h e  nega t ive  d e v i a t i o n  
would appear  i n  t h e  E ina l  s o l u t i o n  s i n c e  a  lower va lue  of t h e  index  z  would 
r e s u l t .  



If it was twice as important that the temperature target at control 
point I be maintained than at another control point, say J, then the penalty 
associated with a positive deviation from the target at I could be set to 2.0 
and the penalty associated with a similar positive deviation at J could be 
set to 1.0. Of course, the penalties associated with negative deviations at 
both I and J would be set to 0.0. 

Similar logic is used for setting penalties for constituents that must 
always exceed a target value, such as di.ssolved oxygen. The nonzero 
penalties are applied to the variables representing negative deviations, and 
the variables that represent positive deviations are given penalties of 0. 

Gate Selection 

Once the desired reservoir release water quality has been computed, 
using the above procedure, the water quality simulation module proceeds to 
determine: (1) the reservoir gates from which releases can be made; (2) the 
gates that should be used, and, ( 3 )  the water quality of the releases. 

The port selection algorithm serves to determine which ports should be 
open and what flow rate should pass through each open port in order to 
maximize a function of the downstream water quality concentrations. Solution 
of this problem is accomplished by using mathematical optimization 
techniques. The objective function is related to meeting downstream target 
qualities subject to various hydraulic constraints on the individual ports. 

Kaplan 2211 solved a similar, although more difficult, problem by 
including in the constraint set upper and lower bounds on the relase 
concentration of each water quality constituent. Kaplan also considered as 
part of his objective function the reservoir water quality that resulted from 
any particular operation strategy. A penalty function approach was used to 
incorporate the many constraints into the objective function which could then 
be solved as an unconstrained nonlinear problem. For the problem of interest 
with respect to HEC-5Q, with appropriate transformations it is possible to 
formulate a quadratic objective function with linear constraints. 
Mathematical optimization techniques are available to exploit the special 
structure of this problem and to solve it efficiently. 

The hydraulic structure under consideration is composed of two wet 
wells, containing up to eight ports each, and a flood control outlet. It is 
assumed that releases through any of these ports (including the flood control 
outlet) leave the reservoir through a common pipe. At any given time, only 
one port in either wet well and the flood control outlet may be operated. 
Hence, the algorithm provides flows through three ports at most. 

The HEC-5Q model also provi.des for releases through an uncontrolled 
spillway. These releases are not a part of the gate selection algorithm, but 
the water quality of the spillway releases are considered by the gate 
selection algorithm. 



The algorithm proceeds by considering a sequence of problems, each 
representing a different combination of open ports. For each combination the 
optimal allocation of total flow to ports is first determined and then a 
water quality index is determined for the optimal allocation of flows. The 
combination of open ports with the highest water quality index and its 
associated allocation of flows; define the optimal operation strategy for the 
time period under consideration. 

There are four different types of combinations of open ports. For 
one-port problems, all of the flow is taken from a single port and the water 
quality index is computed. For two-port problems, combinations of one port 
in each wet well and combinations of each port with the flood gate are 
considered. For three-port problems, combinations of one port in each wet 
well and the floodgate are considered. The total flow to be released 
downstream is specified external to the port selection module, but if the 
flow alteration option is selected, then the flow can be treated as an 
additional decision variable and the flow for which the water quality index 
is maximized is also determined. 

For each combination of open ports, a sequence of flow allocation 
strategies is generated using a gradient method, a gradient projection 
method, or a Newton projection method as appropriate. The value of any flow 
allocation strategy is determined by evaluation of a water quality index 
subject to the hydraulic constraints of the system. The sequence converges 
to the optimal allocation strategy for the particular combination of open 
ports. 

To evaluate the water quality index for a feasible flow allocation 
strategy, first the release concentration for every water quality constituent 
is computed. 

where : 
c = index for constituents 

Rc = release concentration for constituent c 
p = index for open ports 

Np = number of open ports 
Qcp = concentration of constituent cat port p 
Qp = flow through port p 
Nc = number of constituents under consideration 



The deviation of release qualities from downstream target qualities can 
be computed. 

where : 
"36 = deviation of constituentc 
tc = downstream target quality for constituentc 

The subindex Sc for each constituent can be determined by: 

Where the function f(Dc) rakes the quadratic form: 

Suggested coefficients for some water quality constituents are shown in 
Table 1. 

Table 1 

Coefficients in Constituent Suboptimization 

of Gate Selection Procedure 

Quality 
Temperature 
D 0 
TD S 
BOD 
E. Coli 
NH 3 
N 03 

Finally, the scalar water quality index can be determined by: 



where: 
Z = water q u a l i t y  index 

W, = weighting f a c t o r  f o r  c o n s t i t u e n t  c ;  t h e  sum of  t h e  weighting 
f a c t o r s  f o r  a l l  c o n s t i t u e n t s  must equa l  one 

Sc = subindex f o r  c o n s t i t u e n t  c 

I n  summary, t h e  problem of  determining t h e  opt imal  a l l o c a t i o n  of flows t o  
p o r t s  f o r  a  p a r t i c u l a r  combination of  open p o r t s  and f o r  a  s p e c i f i e d  t o t a l  
f low r a t e  Q, can be expressed a s  fol lows:  

Subjec t  t o :  

Where Fmin and Fmax a r e  t he  minimum and maximum accep tab l e  flow r a t e s  
through a  po r t .  

When an  accep tab l e  flow range Q l o w e r  t o  Qupper i s  s p e c i f i e d ,  then  the  
problem i s  w r i t t e n  a s :  



Subject to: 

These problems are solved very efficiently by using mathematical 
optimization techniques that take advantage of the problem structure, namely 
a quadratic objective function with linear constraints. 

Flow A1 terations 

The flow alteration routine is designed to change the reservoir 
releases, computed by the flow simulation module, to better satisfy the 
stream control point water quality objectives. The routine is designed about 
a mass balance for all reservoir releases and all control points affected by 
those releases. Tributary in£ lows and other flow changes are included. 
Second order effects, such as reaeration and external heating due to 
increased or decreased stream surface area are not included. 

The procedure is as follows: 

1. The relative mass that needs to be added in the flow at the control 
point (for those constituents below the target) or reduced in the 
flow at the control point (for those constituents above the target) 
is computed using: 

where: 

Qcp = flow at the control point as determined by the 
flow simulation module 

C, = target constituent concentration at the control 
point 

Ccp = computed constituent concentration at the control 
point 

2. The average reservoir release concentration is computed for all 
reservoirs for which the constituent concentration i.n the releases 
is greater than the target concentration at tne control point of 
interest (for those constituents below the target) or for which the 
constituent concentration in the releases is less than the target at 
the control point of interest (for those constituents above the 
target) . Thus: 



where: - 
CR = average constituent concentration in reservoir releases 

for only those reservoirs releasing flow with 
constituent concentrations adequate to dilute the 
control point concentration and bring it to the target 

Qfi = flow release from reservoir i 
Ci = constituent concentration in release from reservoir i 
n = number of reservoirs 

and the sums are taken only over those reservoirs i that are capable 
of diluting the control point constituent concentration that is 
worse than the target. 

3. The total dilution flow requirement is then computed by the 
following quotient: 

where QA i.s the total flow release needed to bring the constituent 
concentration at the control point of interest to the target. 

4. The flow QA is then apportioned to the reservoirs capable of 
bringing the control point constituent concentration to the target 
in proportion to the flows originally computed for those reservoirs 
by the flow simulation module. 

Thus the flow augmentation requirement can be computed for each control 
point and for each constituent. The various computed flow rates are then 
combined by using the coefficients of the linear programming objective 
function and the deviation of the respective constituent concentrations from 
the target concentrations at each respective control point as follows: 



where: 

Qk = flow release from reservoir k 
Ncp = number of control points affected by both reservoirs 
Ncc = number of constituents 
P;: = linear programming objective function coefficient for 

I J  
constituent j at control point i 

Cij = computed concentration of constituent j at control 
point i 

C,, = target concentration of constituent i 

Once the Qk is determined, using equation (351, the fl.ow simulation 
module is recalled and the daily computations for flow and water quality are 
solved again for the final results. 

SUMMARY 

HEC-5Q is capable of simulating the effects of the operation of as many 
as ten reservoirs and the streams of the basin. The reservoirs may be 
operated to satisfy a number of objectives, including flood control, low £].ow 
maintenance, hydropower production, water conservation and water quality 
control. The water quality portion of the model will simulate temperature 
and seven water quality constituents including an option for dissolved 
oxygen. The model will internally determine the water quality needed from 
all reservoir releases to meet specified downstream water quality objectives 
and will determine the gate openings in each reservoir that will yield the 
appropriate reservoir release water quality. Should it be necessary, flows 
will be altered to ensure that downstream water quality objectives are met. 
As currently formulated, the model does not use foresight i.n an attempt to 
ensure that a "global" optimum solution is found that meets water quality 
objectives. The model selects the "best" solution for system-wide reservoir 
operation on a daily basis. 
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Appendix - Notat ion 

The followi-ng symbols a r e  used i n  t h i s  paper:  

A = s u r f a c e  a r e a  of f l u i d  element 

1 A /  = mat r ix  of c o e f f i c i e n t s  d e s c r i b i n g  water e iements  c h a r a c t e r i s t i c s  

a  = empi.rica1 elements  

-. 
5 = v e c t o r  of c o n s t a n t s  from i n i t i a l  cond i t i ons  

C = s imula ted  water q u a l i t y  concen t r a t ion  

C o  = t a r g e t  water q u a l i t y  concen t r a t ion  

c = s p e c i f i e d  h e a t  of water  

- 
c = v e c t o r  of water  q u a l i t y  concen t r a t ion  

D = e f f e c t i v e  d i f f u s i o n  coe f f  i . c ien t  

Dc = d e v i a t i o n  of a c t u a l  water  q u a l i t y  concen t r a t ion  from t a r g e t  
va lue  

Dm = molecular  d i f f u s i o n  c o e f f i c i e n t  

d  = flow depth 

F = accep tab le  flow r a t e  

H = e x t e r n a l  h e a t  source  o r  s i n k  

Ha = long wave atmospheric r a d i a t i o n  

Ha, = r e f l e c t e d  long wave r a d i a t i o n  

Hbr = water s u r f a c e  r a d i a t i o n  

Hc = h e a t  of  conduct ion 

He = h e a t  of evapora t ion  

Hn = n e t  h e a t  t r a n s f e r  

H, = s h o r t  wave s o l a r  r a d i a t i o n  

Hs r = r e f l e c t e d  s h o r t  wave r a d i a t i o n  



Appendix - Notat ion (Continued) 

l i g h t  energy a t  s p e c i f i e d  depth 

l i g h t  energy a t  water s u r f a c e  

h e a t  exchange c o e f f i c i e n t  

decay r a t e  

r e a e r a t i o n  r a t e  

l i g h t  e x t i n c  t i o n  c o e f f i c i e n t  

number of rows i n  ma t r ix  

number of  water q u a l i t y  c o n s t i t u e n t s  

number of  c o n t r o l  po in t s  e f f e c t e d  by more than  one r e s e r v o i r  

number o f  open p o r t s  on d i scha rge  s t r u c t u r e  

number of columns i n  m a t r i x  

d i s so lved  oxygen concen t r a t ion  

s a t u r a t i o n  d i s so lved  oxygen concen t r a t ion  

index f o r  open p o r t s  on d i scha rge  s t r u c t u r e  

l i n e a r  programming o b j e c t i v e  f u n c t i o n s  

i n t e r e  lement flow 

downward advec t i v e  f  1 ow 

l a t e r a l  i n f low 

r e s e r v o i r  r e l e a s e  

l a t e r a l  ou t f low 

upward advec t ive  flow 

flow withdrawal 

flow i n t o  element 

r e  l e a s e  concen t r a t ion  
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water  temperature  

water temperature  c o r r e c t i o n  f a c t o r  

equilibrium cem,perature 

water s u r f a c e  temperature  

in f low water temperature  

t ime 

flow v e l o c i t y  

volume o f  f l u i d  element 

water  q u a l i t y  subindex 

wind speed 

water  q u a l i t y  index  weight ing f a c t o r  

water  q u a l i t y  index  

space coo rd ina t e  ( v e r t i c a l  f o r  r e s e r v o i r / h o r i z o n t a l  f o r  s t ream) 

element t h i cknes s  

water  d e n s i t y  
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